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Figure 1: As the user zooms in, terrain geometry is created to adaptively refine the planet.

Abstract
Realistic terrain models are required in many applications, especially in computer games. Commonly, procedu-
ral models are applied to generate the corresponding models and let users experience a wide variety of new
environments. Existing algorithms generate landscapes immediately with view-dependent resolution and without
preprocessing. Unfortunately, landscapes generated by such algorithms lack river networks and therefore appear
unnatural. Algorithms that integrate realistic river networks are computationally expensive and cannot be used to
generate a locally adaptive high resolution landscape during a fly-through. In this paper, we propose a novel al-
gorithm to generate realistic river networks. Our procedural algorithm creates complete planets and landscapes
with realistic river networks within seconds. It starts with a coarse base geometry of a planet without further
preprocessing and user intervention. By exploiting current graphics hardware, the proposed algorithm is able to
generate adaptively refined landscape geometry during fly-throughs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Fractals, I.3.5 [Computer
Graphics]: Physically based modeling, I.3.5 [Computer Graphics]: Object hierarchies

1. Introduction

Movies, simulations, and computer games allow to explore
a wide variety of realistic, fictional terrains. In some cases,
using real terrain would break the illusion of exploring un-
known planets. The computer games Spore and Civilization
employ procedural models to generate planets from a set of
rules automatically. Procedural models have the advantage
that no geometry needs to be stored or streamed, instead they
are created when needed. While procedural models may use
numerous parameters, default values and help texts allow the
user to tweak the planets as desired with minimal effort. In
recent years, these algorithms were improved to interactively
adapt the geometry to a moving camera, in order to support
view-dependent level of detail.

While terrain can be generated quickly using previous

procedural models, these terrains lack realistic rivers. Rivers
are vital for life and can be important for navigation, as
rivers often lead to communities or to the sea. Erosion sim-
ulations model the natural processes that form rivers. Un-
fortunately, these algorithms are computationally expensive
and can therefore not be used to generate a locally adaptive,
high resolution landscape during a fly-through. Instead of
attempting to recreate the physical processes of erosion, we
aim for river networks that obey the following observations:

• While endorheic basins exist, most continental areas
transport precipitation to the sea over the river networks.

• River networks are surrounded by valleys between moun-
tains and hills.

• Rivers do not cross, they are mostly above ground, and
they follow the steepest decline until they reach the coast.
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We call such river networks realistic. Our new procedural
algorithm creates complete planets and landscapes with re-
alistic river networks without performing an erosion simu-
lation, rendering it suitable for on-the-fly generation of ter-
rain. The algorithm starts by creating a coarse representa-
tion of the terrain. Additional geometry has to be produced
in order to locally adapt the geometry to the camera position
and perspective as the user traverses the terrain. This must
be done in a manner that is consistent with the constraints
named above. The algorithm uses massively parallel graph-
ics hardware to reach sufficient performance.

In summary, the main contribution of this paper is a novel
algorithm that combines the following properties:

• Adaptive level of detail: We store terrain metadata in the
edges and vertices of a mesh and describe rules to refine
terrain based on that information. As a result, the algo-
rithm generates river networks at adaptive level of detail.
• Realistic river networks without an erosion simulation:

Water levels are computed directly and rivers carve into
the landscape without an iterative simulation of water
movement. Plausibility of the river networks is main-
tained while adapting the level of detail.
• Fast terrain synthesis: The data structures support mas-

sively parallel operations, allowing us to generate a base
mesh in less than a second and to process refinements in
real time.
• Reproducibility: The results of the algorithm are repro-

ducible. This is necessary to ensure that the same terrain
is generated when the player returns. It would also guar-
antee that all players see the same terrain if the algorithm
would be integrated into a networked game.

The remainder of this paper is structured as follows: Sec-
tion 2 analyzes why previous systems cannot generate ter-
rain with river systems spontaneously. Section 3 gives an
overview of the operations, reproducibility and computing
water levels. Section 4 describes generating the base mesh
in detail. In Section 5, we outline the adaption algorithm
for real-time rendering. Finally, we evaluate our approach
in Section 6, which leads to the conclusion (Section 7).

2. Related Work

Geomorphology studies the processes that shape the re-
lief of Earth. Among these are crust movements, vulcanism
and erosion. Erosion can be caused by temperature changes
(thermal erosion), water (fluvial erosion), glaciers (glacial
erosion), wind (eolian erosion), and other effects.

2.1. Fractal and Procedural Approaches

Mandelbrot [Man83] has analyzed the fractal nature of many
types of objects we are dealing with in this paper, includ-
ing mountains, river networks, and coast lines. Fournier et
al. [FFC82] demonstrated how to produce terrain or entire

planets using midpoint displacement. Their algorithm starts
with a polygon or sphere and recursively inserts new vertices
which split polygons into several new polygons. A new ver-
tex’s altitude is the average altitude of the surrounding ver-
tices, plus or minus a random value depending on the length
of the edges. Midpoint displacement can be used to increase
the resolution of terrain. For terrain created using midpoint
displacement, it is possible to select an altitude that repre-
sents sea level to obtain mountain ranges near the sea, but
river networks have to be generated differently. Bokeloh and
Wand [BW06] propose a GPU-based implementation of the
midpoint displacement algorithm.

Kelley et al. [KMN88] proposed an algorithm for generat-
ing procedural terrain with river networks. Their algorithm
uses the observation that water flows along edges that are
lower than the surrounding landscape. They first create a
river network, calculate river vertex altitudes, and finally as-
sign higher altitudes to the surrounding mountains. All trib-
utaries in the terrain lead into a single, main river.

Hnaidi et al. have proposed a method that defines ter-
rain from user-defined control curves that include ridge
lines, river beds, hills, cracks and cliffs [HGA∗10]. Two-
dimensional piecewise Bezier cubic splines are used to de-
fine the control curves. The terrain is computed from a set of
partial differential equations which are solved on the GPU.

Several algorithms that generate new terrain by trans-
planting detail from existing terrain have been pro-
posed [BSS06, EF01, ZSTR07]. A number of approaches
generate terrain that satisfies user-given constraints [ST89,
PGTG04,SS05,Bel07]. These algorithms could also be used
for procedural modeling by defining the constraints pro-
cedurally. Prusinkiewicz and Hammel integrated midpoint
displacement and the creation of a single river into a text
rewriting system [PH93]. While a lot of research has fo-
cused on modeling streets using grammars, most recent ap-
proaches model streets as splines or graphs without gram-
mars [GPMG10, LSWW11].

2.2. Erosion Simulation

Musgrave et al. proposed to simulate fluvial and thermal ero-
sion on fractal terrain [MKM89]. During every step of ero-
sion simulation, rain is dropped onto the surface and gath-
ered in lakes until it leaks at the lake’s lowest border and
forms a river bed. As the simulation proceeds, many ini-
tial lakes are converted to river beds in this manner and a
river network is created. Numerous extensions to erosion
simulation have been proposed. Beneš and Forsbach pro-
posed a data structure that stores several layers of material
in a grid. For each layer, material information and thickness
are stored [BF01a]. They also showed that if the terrain is
split into strips, erosion simulation can run in parallel for
each strip, only the boundary areas need to be treated sepa-
rately [BF01b] and they demonstrated how to integrate evap-
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Algorithm/Authors Input Output Precomputation/Size Water Effects Level of Detail
Midpoint Displacement Parameters Mesh Very fast Global sea level Adaptive
Kelley et al. Parameters Mesh Very fast River networks Fixed
Erosion Simulation Grid Layered grid [BF01a] Minutes Many Fixed
Constrained Modeling Constraints Grid 2.97s / 1024×1024 [Bel07] Global Sea Level Limited
Transplant Terrain Two grids Grid 2.5 s / 2794×394 [BSS06] Global Sea Level Fixed
Hnaidi et al. Control curves Grid 0.3 s / 1024×1024 [HGA∗10] User-defined rivers Limited
Proposed algorithm Parameters Mesh Very Fast (Table 4) Realistic river networks Adaptive (Figure 6)

Table 1: Comparison of features in previous algorithms.

oration into erosion simulations [BF02]. Rather than calcu-
lating erosion based on amounts of exchanged water, erosion
can be simulated with particles [CMF97,KBKv09]. An opti-
mized GPU implementation of erosion simulation has been
proposed by Št’ava et al. [SBBK08].

2.3. Terrain Rendering and Parallel Level-of-Detail

View-dependent simplification has been an active field of re-
search over the last two decades. Hoppe [Hop96] introduced
progressive meshes that smoothly interpolate between dif-
ferent levels of detail. Depending on the view position and
distance, a sequence of split- or collapse operations is per-
formed for the vertices to generate a view-dependent simpli-
fication. The inter-dependency of split operations can either
be encoded explicitly [XV96] or implicitly [Hop97]. Hoppe
later optimized the data structures and improved the perfor-
mance of the refinement algorithm [Hop98]. Duchaineau et
al. store triangles in a binary tree, where each level stores
the geometry for a single level of detail [DWS∗97]. Pa-
jarola and DeCoro [Paj01, PD04] developed an optimized
sequential view-dependent refinement algorithm. Losasso
introduced the geometry clipmap, which stores geometry
for quadratic regions centered around the user, similar to
mipmapping [Los04]. Hu et al. [HSH09] proposed a par-
allel adaption algorithm for progressive meshes. They in-
troduced a relatively compact explicit dependency struc-
ture that allows to group vertex splits and half-edge col-
lapses into parallel steps. The drawbacks of this technique
are that the explicit dependencies need additional memory
and that only half-edge collapses are supported. A more
compact data structure for progressive meshes was proposed
by Derzapf et al. [DMG10]. It is based on Hoppe’s original
view-dependent refinement algorithm [Hop98] and supports
a massively parallel adaption algorithm.

2.4. Analysis

Table 1 summarizes the features of the previous algorithms.
Ideally, such an algorithm would be interactive, support re-
alistic water and erosion effects, and immediately generate
terrain at any desired level of detail while the user explores
the terrain. For a number of algorithms, the level of detail
is fixed. In other cases, the level of detail is limited by the
functions that are used to define the terrain. At high poly-
gon counts, additional polygons make features rounder but

do not add further detail. In these cases, Table 1 reports the
level of detail as limited. Midpoint displacement can be used
to add further detail to a terrain [Bel07]. Unfortunately, the
algorithm lacks the necessary rules to prevent introducing
mountain peaks into rivers. Some algorithms do not sup-
port river networks. However, water effects are vitally im-
portant as river networks are a defining element of natural
landscapes. As a result, in related work, either the level of
detail is limited or river networks are missing.

Both midpoint displacement and the method of Kelley et
al. come very close to satisfying the stated requirements. The
one lacks river networks, while the other lacks adaptive level
of detail. Both methods also operate on a mesh. This paper
demonstrates how they can be combined into a new algo-
rithm. A parallel implementation is required to reach suffi-
cient performance for interactive applications.

3. Overview

Our approach consists of two phases. In the first phase, the
algorithm creates a rough representation of the planet, the
so-called base mesh: It creates a sphere, assigns continents,
river networks, and altitudes (Section 4). The second phase
is adaption (Section 5), where the algorithm interactively
and adaptively refines the terrain while the user moves about
freely. The adaption phase consists of a number of steps
that were optimized to take advantage of massively parallel
graphics hardware.

We use a mesh data structure because the algorithm of
Kelley et al. requires labeled edges. While it would be possi-
ble to store the planet in a displacement map wrapped around
a sphere, only eight directions are possible for transporting
water between neighboring cells, and a solution would be
needed that can exceed these 8 directions when zooming
in. Otherwise, parallel rivers would emerge. The mesh data
structure supports two atomic operations – edge split and
vertex collapse – that are used to manage the level of de-
tail. Edge split operations can be applied to increase the level
of detail locally when the user comes closer to parts of the
terrain. The reverse operation, vertex collapse, restores the
representation at the lower level of detail. Figure 2 shows
a split operation that creates faces f3 and f4, edges e2, e3,
e4 and vertex vnv, while a vertex collapse operation reverses
this operation by removing these entities. The designations
in Figure 2 are used in the entire paper.
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Figure 2: Vertex collapse and edge split operation.

3.1. Reproducibility

Procedural models can often be recreated from a random
seed, but a naïve implementation of midpoint displacement
would still produce different results when zooming into the
terrain along a different path. This is because the adaptive
refinements would apply the random values in different lo-
cal order. However, when the terrain is reproducible, only
its current representation needs to be stored, as geometry
at different levels of detail can be created when needed.
Otherwise, exploring the terrain would create new data un-
til storage is exhausted. Therefore, our method asserts that
the same terrain is generated regardless of the path of ex-
ploration, which allows several players to explore a planet
without streaming geometry over networks. A single random
seed is used to compute the entire planet. The base mesh is
produced from the random seed using a deterministic algo-
rithm and is thus reproducible, including the random seeds
for all vertices. As the order of refinements may vary, repro-
ducibility of the edge splits is guaranteed using the random
seeds stored in the vertices. We use the sum of the seeds
of vertices vev1 and vev2 as the seed of vnv. However, the
pseudo-random numbers alone are not enough to ensure that
refinements are reproducible. We also need to preserve the
local order of the operations, so we assign a split level to ev-
ery edge. For each split, we increment the edge’s split level
and decrement it for each collapse. Similar to [ESV99], only
the edge with the lowest split level can be split in each face.

3.2. Types of Edges and Faces

A flag in each face stores whether the polygon belongs to
the sea or to a continent. Edges are marked as sea, coast, or
continent depending on their surrounding polygons. In addi-
tion, edges between continental polygons may be flagged as
rivers. If a river edge is split, two river edges and two conti-
nent edges are created. When a coast edge is split, there will
be two coast edges, one sea edge, and one continent or river
edge. If a sea edge is split, there will be four new sea edges.
When a continent edge is split, the new vertex vnv will have
four new continent edges. If the new continent faces are not
connected to the river network, the edge between the new
vertex vnv and an existing river vertex is converted to a river,
to assert that polygons created later are still connected to

the river network. While an edge only has one type, vertices
have all the types of their incident edges.

3.3. Water Levels

We store ground and water altitudes in each vertex to de-
fine water levels for the sea and rivers. If the altitude of the
water surface is higher than the ground altitude, the vertex
is submerged. If the ground altitude of the river vertex is
higher than the water altitude, the vertex is not submerged,
but its edges may still be partially submerged by adjacent
submerged vertices. While executing a split operation, the
ground altitude and the water altitude of vnv are calculated
from the values of the adjacent vertices vt , vd , vev1 and vev2.
As a result, polygons that have both submerged vertices and
vertices above water level are partially flooded and form
coasts and river banks. We use a 2D lookup texture to define
colors for the climate zones and water depth. The ground al-
titude, water altitude and geographical position of the vertex
are used to compute the texture coordinates. A high quality
shader is used to create the water effects.

4. Planet Generation

Base mesh creation must be fast as the user wants to start
exploring the planet without delay but still all information
for refining the geometry has to be generated. This process
consists of two steps: First, we generate a base shape and the
land masses. Then we produce the inital river networks.

4.1. Base Shape and Continents

The base shape is created by inserting vertices into an octa-
hedron to form a sphere. During each split, each new vertex
vnv needs to be lifted to the surface of the base shape:

vnv← (r+anv)
vnv− c
‖vnv− c‖ + c, (1)

where r is the sphere’s radius, anv is the vertex’s ground alti-
tude, and c is the sphere’s center. Positions for new vertices
vnv are chosen from a randomized weighted sum of the sur-
rounding vertices:

vnv = (1−η)(ξvev1 +(1−ξ)vt)+η(ξvd +(1−ξ)vev2) ,
(2)

where ξ,η ∈ [0.25,0.75[ are uniformly distributed pseudo-
random numbers.

In this context, a continent is a connected land mass above
sea level. Initially, all faces are labeled as sea. For every con-
tinent, a starting face is selected and labeled as a continent.
Faces that have at most one pure sea vertex can be added
to the continent. The other vertices in a new face must al-
ready belong to the continent. This ensures that two conti-
nents are always separated by an edge. The face and its edges
are labeled to belong to the continent. This is repeated until
the percentage of the total land mass reaches a user-defined
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value. Any edges and vertices between continental and sea
faces are marked as coast. Alternatively, instead of creating
a random base mesh, types of polygons, edges and vertices
are read from a digital elevation model.

Ground altitudes for continental and coastal vertices are
assigned during river network creation and are initialized
with zero. Sea vertices are assigned an altitude below sea
level and a water altitude that equals the sea level, εsea. If ter-
rain below sea level is also required, pure midpoint displace-
ment can be used to compute altitudes. In order to generate
pseudo random numbers for the vertices in a reproducible
manner, each vertex is assigned an initial random seed and
its split count is set to zero.

4.2. Initial River Networks

At this point, continents consist only of continent and coast
edges and vertices. We still need to generate river networks
and compute continental vertex altitudes. First we define the
maximal depth of the rivers εriver < εsea. Creating the river
networks starts at the river mouths. We consider all vertices
in pseudo-random order, looking for continental vertices that
are adjacent to a coast vertex. In a river mouth, typically
only one river mouths into the sea, therefore the coast ver-
tex should not have a river edge yet. The edge between the
chosen vertices is flagged as a river edge. In order to com-
plete the river networks, we pick edges that connect a river
vertex with a continent vertex in pseudo-random order and
convert these edges to river edges. Two rivers may merge in
a river vertex, but if possible, alternative river edges should
be used to prevent merging more than two rivers in a single
vertex. When all continental vertices have been connected to
the river network, the river networks are complete.

While the river network is created, ground altitudes and
water altitudes are assigned to the river vertices, starting
from the coast vertices at sea level:

av = au + ealeξ, ea =
amax_river

lr
, (3)

wv = av + ewle, ew =
εriver

lcr
, (4)

where v is the current vertex, u is reached by v’s outgoing
river edge, au, av are the ground altitudes, wv is the water
altitude of v, average ground elevation ea, average water el-
evation ew, river length lr, length of the river between v and
river spring lcr, length of the current edge le and ξ ∈ [0,1[ is
a uniformly distributed pseudo-random number. Assigning
river altitudes using a constant elevation leads to sharp cliffs
in places where a branch of a long river neighbors a branch
of a smaller river. Instead, we assign a maximum altitude
amax_river for the river spring, depending on the length of the
river. The ground altitude of the river mouth is εsea− εriver.
The ground altitudes of the river springs are not allowed to
exceed amax_river and the water altitude is equal the ground

altitude. The altitude for all other river vertices is interpo-
lated linearly between these (see Figure 3). Vertex normals
are stored for lighting. As river vertices are hidden, this vari-
able is used to store a tangent towards the river mouth in-
stead, which is used to generate round rivers during later
vertex splits.

river spring

river vertices

water surface

river mouth

seaε

riverε<

seavv wa ε== ,0 rivervriverseav wa εεε =−= ,

riverv aa max_≤

vv aw =

ξ⋅⋅+= eauv leaa
ewvv leaw ⋅+=

sea vertices

seaε riverε

Figure 3: Water and ground altitudes of the river vertices.

Now, the river networks are separated by continent or
coast edges but there are no river beds. Therefore, we insert
a continent vertex into every continent edge between two
river vertices or between a river vertex and a coast vertex.
Coast edges with two river mouth vertices must be split in
the same manner. While producing the river networks, pure
mountain vertices are inserted to separate the rivers. These
vertices are placed at higher altitude than their surrounding
river vertices, so we compute an altitude anv for vnv using
the altitude ar of the highest adjacent river vertex vr:

anv = ar + emleξ, (5)

where em is the elevation of mountain edges, le is the hori-
zontal length of the edge between vnv and vr, and ξ ∈ [0,1[
is a uniformly distributed random number. This ensures that
rivers follow the steepest decline, because the rivers are sur-
rounded by continental vertices at higher altitude. Table 2
gives an overview of the parameters used by our algorithm.

Symbol/Name Description Value
Basic shape Sphere, ring or flat polygons Sphere
r Size or radius 6371 km
Continents Number of continents (optionally islands) 6
Land Percentage of land area to total planet’s surface 50%
Bitmap Alternatively, to define the continents
Edge length Minimum edge length 1 cm
Base shape accuracy Number of triangles for base shape 5000
2D Lookup Texture To define colors for the climate zones
amax_river Max. river altitude 12 km
amax_mountain Max. mountain altitude 13 km
εsea Global water level (sea level) 3 km
εriver Max. river depth 300 m
lrmin Min. river length 200 km
sr Min. river slope 1 m/km
srb Min. riverbed slope 300 m/km
sp Min. slope near river 1 m/km
εrb Riverbed edge height above water 10 m
sg Max. ground slope 1000 m/km

Table 2: Main parameters used to define a planet in our al-
gorithm.

5. Runtime Algorithm

The adaption algorithm is divided into several consecutive
steps to take advantage of massively parallel hardware. The
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partitioning is required for thread synchronization while
each step can be processed completely in parallel. First, we
test which edges have to be split and which vertices must
be collapsed to adapt the mesh to the new camera position.
Then the selected operations are performed. This mesh is
then used as input for the next frame to exploit temporal co-
herence.

The main data structures required for rendering are the
vertex buffer containing the position and normals and the in-
dex buffer storing the connectivity of the adapted mesh. Both
are stored as vertex buffer objects (VBOs) and are therefore
separate from all other data. Table 3 gives an overview of our
dynamic data structures that are discussed in the following.

Buffers Elements Memory New entities
(bytes per entity) (per new vertex)

active edges

face ID (×2) 8

3
length 4
split count 2
type 1

active faces

index VBO 12

2
edge ID (×3) 12
normal 12
type 1

active vertices

vertex VBO 24

1

ground altitude 4
water altitude 4
edge ID 4
maximal edge length 4
seed 4
type 1
coast marker 1

temporary
split flag 4 3
collapse flag 4 1
temp 4 3

Total memory (per vertex) 193 byte

Table 3: Elements of the data structure.

5.1. Vertex State Update

In the first step, we determine the necessary operations. If
the vertex v needs to be split according to its refinement cri-
teria, we set the split flag in its state. Otherwise, we set the
collapse flag if the refinement criteria allow a collapse. In all
other cases no operation is required for v. Then we determine
the state of the edges by traversing all edges. An edge is split
if one of the edge vertices meets the criteria for a split. As
some splits and collapses cannot be executed immediately,
an additional check has to be performed to remove conflict-
ing operations. For the split operations, only the edge with
the lowest split level can be split in each face f . In addition,
if any edge is marked for splitting, no vertex of f can be col-
lapsed. If no edge of the face needs to be split, we check the
collapse operations. vnv can only be collapsed if all incident
edges (e1, e2, e3 and e4) have the same split level. This as-
sures that only one edge in a face can be split and only one
vertex can be collapsed to avoid race conditions. Split and
collapse operations can be executed in parallel provided that
each triangle is affected by only one operation. If there are

several operations affecting a single triangle, the most im-
portant operation is executed immediately, while the other
operations may be executed in one of the following frames.
Due to camera movement, the priority of delayed operations
may change. Splitting all three edges on a triangle would
take three frames.

We check several criteria to remove invisible vertices. The
most simple one is view frustum culling: A vertex can be
collapsed if it lies outside the view frustum regardless of
the screen space error. To prevent foldovers and popping ar-
tifacts when rotating or panning, we do however not sim-
ply collapse all vertices that are outside of the view frustum
but modify the distance d of these vertices for the following
LOD selection:

d̃ =

(
cLOD

(
max(|x| , |y| , |z|)

w
−1
)2

+1

)
d, (6)

where x, y, z and w are the homogeneous coordinates of the
vertex after projective transformation and cLOD is a con-
stant value. In our experiments, cLOD = 20 resulted in a
smooth LOD falloff outside the view frustum. Then we per-
form backface culling and evaluate the screen space error.
For splitting and merging vertices based on camera distance,
we test l

d̃
> c, where l is the maximal length of the edge as-

signed to the vertex (stored) and c is a constant value, and set
split/collapse flags according to the result of the test. Dif-
ferent values of c are used for sea and continent vertices be-
cause the sea can be rendered at a lower resolution to reach
the same quality as the land. Algorithm 1 summarizes the
vertex update operations.

foreach vertex v in parallel do

if need_split(v)
mark(v, split)

elif may_collapse(v)
mark(v, collapse)

foreach edge e in parallel do

determine_edges_state(e,vev1 ,vev2)
if edge_marked(e, split)

levelmin = get_min_active_split_level( f )
unmark_dependent_splits( f , levelmin)
unmark_all_collapses( f )

foreach vertex v in parallel do

if any_vertex_marked(v, collapse)
if neighboring_edges_level_not_equals(vnv , e1-e4)

unmark_collapse(vnv)

Algorithm 1: The parallel vertex states update.

5.2. Memory Management

Before split and collapse operations can be performed, we
may need to adjust the size of the buffers. We always reserve
slightly more memory than currently required to reduce the
runtime cost for allocating memory and copying data when
the size of an array is modified. If the size of the vertex, edge
or face buffers is too small or significantly too large, new
buffers are allocated and the content of the old ones is copied
into them. When a reallocation is performed, the buffer size
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is set to the number of faces n f plus a user-defined threshold
nalloc. If the buffer is larger than n f +2nalloc it is reduced to
n f +nalloc.

5.3. Parallel Edge Splits

After updating the state of all active edges and removing
illegal splits and collapses, the operations can be applied.
We first compact the splits [SHZO07] to ensure that each
thread performs an operation to improve the thread utiliza-
tion. Then, the following steps are performed for each split
operation (summarized in Algorithm 2):

1. Calculate the seed snv = sev1 + sev2 of the new vertex vnv,
where snv is the seed of vertex vnv.

2. Two new faces f3 and f4 and three new edges e2, e3 and
e4 are generated and added to the buffers (Figure 2).

3. Change the connectivity of neighboring faces edges and
vertices, as demonstrated in Figure 2.

4. Assign types to the new faces, edges and vertices using
the rules from section 3.2. We assign the type of f1 to the
new face f3 and new edge e2. Similarly, the type of f4
and e4 is the type of f2.

5. The position of the sea vertices is the center of the edge
that is split. For continent and coast vertices the position
of vnv is calculated from the adjacent vertices vev1, vev2,
vt , and vd using equation 2. The position of the river ver-
tices is calculated from vt and vd only:

vnv = (1−ξ)vt +ξvd , (7)

where again ξ ∈ [0.25,0.75[ is a uniformly distributed
pseudo-random number, calculated with a seed of vnv. In
addition, ξ is biased to generate smooth rivers. If the edge
length is less than the minimal river length lrmin we use:

ξ
′ = ξ+

(vs− vd) · (vt − vd)

‖vt − vd‖2 , (8)

with

vs =
vev1 + vev2

2
+‖vev1− vev2‖

tev1− tev2
4

, (9)

where tev1 and tev2 are the stored tangents of vev1 and vev2.
Equation 9 assumes that the river flows from vev1 to vev2.
Additionally, the tangent is calculated for the new river
vertex vnv and stored instead of the normal. Finally, vnv is
added to the vertex buffer.

6. Calculate the ground altitude anv and water altitude wnv of
vnv. The altitude of sea vertices is simply the sea bottom
and the water altitude the sea level. For river vertices it
is 1

2 (wev1 +wev2) and 1
4 (wev1 +wev2 +wvt +wvd) for all

others. For continent vertices we then check if we can
construct a new river arm, where we set wnv to anv. It can
be generated if the split edge is not a river edge and one
of the four edges can be converted into a river. This is
only possible if the edge is longer than lrmin and anv can
be at least lesr above the other river vertex and below all

river vertex rbs

ps
rbε

Figure 4: Riverbed shaping parameters.

neighboring non-river vertices c:

anv < min
c

(ac−min(lesrb,εrb +(lesp),)) . (10)

where le length of the edge between vnv and neighbor-
ing non-river vertex vc, sr minimal river slope, srb min-
imal riverbed slope, sp minimal slope near river and εrb
riverbed edge height above water. For continent vertices
similar bounds apply (see Figure 4):

anv > min
bw

(min(abw + lesrb,wbwεrb +(lesp))) , (11)

max
c

(ac− (lesg))< anv < min
c

(ac +(lesg)) , (12)

where sg maximal ground slope, bw are the neighboring
river vertices or those covered by water and c the remain-
ing ones. The final altitude is then a random value inside
the previously computed bounds.

7. Calculate normals for f1, f2, f3 and f4 and the vertex nor-
mal of vnv unless it is a river vertex. We compute normals
for each vertex from the surrounding face normals.

compact(splits)
foreach split edge e in parallel do

calc_seed(vnv)
add_new_faces_edges_vertex(e1-e4 , f1- f4 , vnv)
relink_neighbors()
assign_types(e1-e4 , f1- f4 , vnv)
calculate_altitudes(vnv)
vnv = split_edge(e)
calculate_faces_normals( f1- f4)

Algorithm 2: Parallel edge split algorithm.

5.4. Parallel Vertex Collapses

After applying the split operations, the collapse operations
need to be performed. Each collapse operation removes ver-
tex vnv and edges e2, e3 and e4. In addition, faces f3 and f4
degenerate and are removed from the mesh. Then faces f1
and f2, edge e1, and all incident faces and edges are relinked
(Figure 2). We use the member variable edgeID in each
vertex to store an edge that contains the vertex. This helps us
locate the other edges around the vertex quickly for collapse
operations. When all operations have been applied, the max-
imal length of the adjacent edge of the new vertices and the
vertices in the neighborhood of the split and collapse opera-
tions need to be recalculated. Algorithm 3 shows the parallel
processing of the edge collapse operations and how maximal
lengths are recalculated.
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foreach vertex v in parallel do

if marked(v, collapse)
remove_faces_edges_vertex(v)
relink_neighbors(v)

foreach vertex v in parallel do

if required_length_recalc(v)
recalc_max_length(v)

Algorithm 3: Parallel edge collapse algorithm.

5.5. Buffer Compaction

If vertices were removed, the active vertices (including the
vertex VBO), active faces (including the index VBO), and
active edges are compacted in the final step of adaption.
Note that when compacting the vertices, faces or edges, the
references to them must be updated accordingly. While the
compaction of the faces and thus the indices is mandatory
since the index VBO are used for rendering, the compaction
of the vertices and edges is not. The latter two only need
to be compacted every few frames to prevent bloating of
the buffers. To save time and memory, we use a specialized
in-place compaction algorithm [DMG10] since the ordering
does not need to be preserved.

6. Results

Our test system consists of a 3.333 GHz Intel Core i7-980X
CPU with 6 GB of DDR3-1333 main memory, 16 lanes PCIe
2.0 slot, and a GeForce GTX 580 (841/4200MHz). OpenGL
is used for rendering and CUDA for the adaption algorithm.
Terrains were reproducible over networks and on different
PCs. All images in this paper were generated under real-time
conditions at a resolution of 1920×1080 with an edge length
of 0.5 pixel for the land and 5 pixels for the water. We limit
the number of polygons dynamically to a value that ensures
that 20 to 30 frames can be rendered per second, to adjust
the algorithm to the capabilities of different hardware.

Table 4 lists the number of rendered faces, the total time
(rendering and adaption per frame), total and adapt number
of triangles per second (TPS), and the memory consumption
for the views shown in Figure 5 and the fly through in the
accompanying video, where the numbers are taken from the
most complex frame. We used a base mesh with approxi-
mately 5000 faces. Creating the base mesh took 0.27 sec-
onds. Table 2 shows the values that were used to produce the

model # rendered faces memory (MB) frame time (ms) total/adapt M TPS
orbit view 1,153,435 115.8 35.8 (38.3%) 32.2/84.1
ground view 1 1,296,562 130.2 38.5 (33.6%) 33.7/100.2
ground view 2 858,562 92.6 33.8 (36.9%) 25.4/68.8
video (max.) 1,041,970 139.5 58.4 (46.8%) 17.8/38.1

Table 4: Memory consumption, total rendering time and to-
tal number of triangles per second (TPS) of the different
views. The ratio of adaption time compared to total time is
given in parenthesis.

accompanying results. While the user explores the planet,
the dynamic data structures reside on the graphics card only.
This has the advantage that the data can be rendered and
adapted without passing it over the PCIe bus. We can pro-
cess up to 34/100 (total/adapt) M TPS for static views. We
use high quality shaders to demonstrate that our algorithm
is suitable for real-time rendering of terrains at high quality.
However, the shaders require 50% to 80% of the rendering
time. With simpler shaders, the adaption time lies between
at 40% to 70% of the total frame time.

Figure 5: The images show the models as rendered from
the point of view. The bottom image demonstrates that parts
of the terrain that are outside the view frustum (yellow) are
reduced to the base mesh.
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Timings for adaption and rendering together with mem-
ory consumption and the number of active faces for the
fly through in the accompanying video are shown in Fig-
ure 6. The data structures consumed less than 139.5 MB and
the average frame rate is 30 frames per second (fps). The
peak performance for dynamic views is 27/72 MTPS (to-
tal/adapt) and up to 7/15 MTPS can be generated. Our ap-
proach quickly reacts to changes of the view direction with
fast adaption of the terrain complexity. Due to the high adap-
tion performance, only few popping artifacts are visible in
the video despite the fast movements. Figures 1, 5, and 8
show example planets.
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Figure 6: Timings and memory consumption for the scene
using a pre-recorded camera path.

Finally, we analyze the runtime of each step inside the
adaption and rendering algorithm in Figure 7. The most ex-
pensive step of our algorithm is the state update, because it
must be performed for each active vertex. The time spent
on mapping and unmapping the index and vertex buffers for
access by CUDA/OpenGL cannot be reduced or prevented.
Rendering takes up to 63% of the frame time.

7. Discussion and Conclusion

We have proposed a new procedural algorithm that sponta-
neously creates planets or terrain parts with continents and

Figure 7: Relative time of the several adaption steps com-
pared to rendering.

Figure 8: Left: Alternatively, our algorithm can be used to
generate river networks for user-provided maps. Right: Me-
andering rivers.

realistic river networks. It is specifically developed for mas-
sively parallel view-dependent adaption. While previous al-
gorithms are not able to generate planets at adaptive level of
detail within seconds while ensuring consistency of the river
networks, we are the first to present a parallelized pipeline
that combines these features. The algorithm correctly mod-
els how valleys and mountain tops differ in that rivers flow
through the valleys. While many applications use a fixed
level of detail, interactively adapting the level of detail to the
camera perspective is a necessity when dealing with large
terrains, such as planets. The algorithm does not require stor-
age except for the mesh representing the terrain, and the ge-
ometry does not have to be streamed over network, even
when several users wish to explore the same terrain. Only
a small parameter set and an initial random seed are needed
to completely recreate a planet because of reproducibility.

The system by Kelley et al. produces only a single river
network, and it does not support refinement [KMN88]. Our
technique is suitable for interactively adapting large terrains
to a moving camera. The only other technique that can do
this is the midpoint displacement algorithm by Fournier et
al. [FFC82], which does not produce river networks. When
using midpoint displacement on realistic terrain, rivers may
be interrupted by mountains, which would likely block the
rivers, resulting in large endorheic basins or inconsistencies.
In contrast to that, the rules implemented by the proposed
algorithm ensure consistency of the river networks.

Erosion simulation can also produce eroded terrain with
continents and river networks, but that family of algorithms
requires much more computation time and has to run super-
vised. Otherwise, either too many large lakes remain, or the
rivers carve too deeply into the terrain. Bad choices for the
parameter values often mean that the entire simulation must
be restarted, whereas the presented algorithm produces a vi-
able solution much faster. While it may be possible to com-
bine erosion simulation with adaptive level of detail, ulti-
mately similar problems would have to be solved, and users
might note changes in the terrain caused by the simulation.
In contrast to that, the terrain generated by our algorithm is
immediately realistic and stable.

Our system yields correct results for glaciofluvial erosion.
Thermal and eolian erosion are modeled by limiting terrain
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slope. These effects are computed by our method without
time-intensive simulations. The algorithm can be used for
simulations that require spontaneously created terrain. This
includes computer games and learning to steer vehicles, e.g.
flight school.
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