
Eurographics Symposium on Parallel Graphics and Visualization (2014)
M. Amor Lopez and M. Hadwiger (Editors)

Parallel Progressive Mesh Editing

Evgenij Derzapf1, Nico Grund1 and Michael Guthe2

1Sirona Dental Systems GmbH, Bensheim, Germany
2Universität Bayreuth, Visual Computing, Germany

Figure 1: Editing of the Armadillo progressive mesh. Note how the fine geometric details are preserved by the local encoding
of the split operations.

Abstract
Highly detailed models are commonly used in computer games and other interactive rendering applications. In-
tuitive editing methods are thus also required in addition to rendering algorithms. Progressive meshes are often
employed to improve the rendering performance by reducing the number of rasterized triangles. The classical
work flow is to generate a model and then use simplification algorithms to construct the progressive mesh. Thus
the whole simplification has to be performed again after editing the model. This does not only require additional
processing time but also hinders animations of progressive meshes.
Based on this observation we propose a real-time parallel multi resolution modeling algorithm for progressive
meshes. It can be used for real-time editing and animation of complex progressive meshes. Due to the progressive
representation we can intuitively modify the overall shape or small scale details. To quickly generate a progressive
mesh from a complex triangle model we also propose a massively parallel simplification algorithm that generates
all required data structures within a few seconds.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.3.1 [Computer Graphics]: Hardware
architecture—Parallel processing

Highly detailed geometric models are very popular in in-
teractive applications such as computer games. These mod-
els are usually represented as triangle meshes. To render sev-
eral of these models at real-time frame rates, level-of-detail
(LOD) techniques are commonly used. Mesh editing is used
to correct errors or animate the models. In the traditional
work flow simplification algorithms are used afterwards to
generate the LODs. This requires a re-simplification after
editing and restricts animations to space deformations. To
solve this problem, multi resolution modeling approaches
were proposed that use different resolutions. These subdivi-
sion meshes are comparable to static LODs that are simply
a set of polygon meshes. Although multi resolution model-

ing is restricted to geometric deformations, it is still a very
valuable tool of the modeling pipeline.

In contrast to the static LODs used for previous multi res-
olution modeling algorithms, dynamic LODs store a coarse
base mesh and a sequence of refinement operations. The
most common data structure used in this context are pro-
gressive meshes. Using our approach it is possible to edit
the mesh at a lower quality while modifications are auto-
matically propagated to finer resolutions. Thus only a few
vertices need to be modified, to achieve large scale or small
scale deformations, depending on the current LOD. In con-
trast to progressive meshes, multi resolution modeling re-

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

quires a local geometry encoding to allow editing and the
propagation of the geometric modifications. We use a paral-
lel simplification algorithm to generate the progressive mesh
and to propagate changes to coarser resolutions. The main
contributions of our approach are:

• Real-time editing of large progressive meshes.
• Complete progressive mesh generation on the GPU.

1. Related Work

Mesh editing has been an active field of research over the last
three decades. Early approaches focused on editing smooth
surfaces while later ones tried to preserve local properties
of the mesh. The algorithm of Welch and Witkin [WW94]
is based on arbitrary triangle meshes and allows free-form
shape design. Taubin [Tau95] later optimized this approach
and improved the efficiency. Editing of smooth surfaces is
still an active field of research [LF03].

1.1. Multi Resolution Modeling

Meshes containing geometric details require special tech-
niques to preserve these during editing. Commonly, multi
resolution representations are used. The details are stored
relative to a coarser model for one or more resolu-
tions [FB88, ZSS97, KCVS98, KVS99, GSS99, Gar99]. The
user can edit the mesh on a lower quality level and the
changes are automatically propagated to the higher lev-
els. This way only a few vertices need to be edited to
achieve large changes. Using so-called Laplacian or differ-
ential coordinates [LSCo∗04, SCOL∗04], the fine-scale sur-
face can be reconstructed by solving a linear system con-
taining the modified differential coordinates. To manipulate
the mesh, Sorkine et al. [SCOL∗04] proposed to use inter-
active free-form deformation in a region of influence (ROI)
or to integrate detail of one surface into another. Marinov et
al. [MBK07] mapped a multi resolution deformation frame-
work to the GPU. As the displacement vectors are encoded
independently for each component, visible artifacts in highly
deformed regions can occur. A combination of this approach
with multi resolution meshes was proposed by Manson and
Schaefer [MS11] but they only allow to edit a fixed coarse
resolution mesh and then transfer the changes to the full res-
olution and not the other way round. Other approaches in-
clude using lower resolution point based models [BSS07] or
deforming the surrounding space instead of the model itself
as e.g. in [ZSGS12]. The edit granularity is however limited
to the resolution of the auxillary representation.

1.2. Mesh Simplification

Mesh simplification is one of the fundamental techniques for
real-time rendering of polygonal models. A detailed review
of simplification algorithms is given by Luebke [Lue01]. As
we focus on modeling, we only discuss those methods that
support local modifications.

Garland and Heckbert [GH97] as well as Popović and
Hoppe [PH97] introduced the vertex pair contraction. This
approach has become the most common technique for the
simplification of triangle meshes. The contraction operation
is combined with the introduced quadric error metric. It al-
lows a flexible control over the geometric error and can be
used to calculate optimal vertex positions. Later Garland
and Heckbert extended their approach to handle an arbitrary
number of vertex attributes [GH98]. While the generated ap-
proximations are superior to vertex clustering at the same
number of triangles, the simplification performance is sig-
nificantly lower. On the other hand, all required levels can
be generated using a single simplification sequence from the
original model to the coarsest level. Grund et al. [GDG11]
proposed a parallel GPU implementation of the quadric er-
ror simplification. On a customer level graphics card, it can
generate a set of LODs for a model containing over 4 million
faces in less than a second.

Pajarola and Rossignac [PR00] introduced compressed
progressive meshes that provide a very compact coding but
a view-dependent adaption is not possible. They also use a
differential coding of vertex attributes but store the offsets in
a global coordinate system which is not suitable for editing.
Hu et al. [HSH09] proposed a parallel adaption algorithm
for progressive meshes. They introduced a relatively com-
pact explicit dependency structure that allows to group ver-
tex splits and half-edge collapses into parallel steps. A more
compact progressive meshes data structure for parallel adap-
tion was proposed by Derzapf et al. [DMG10a,DMG10b]. It
was later generalized to non-manifold meshes using a com-
pressed progressive mesh data structure [DG12]. In our ap-
proach we modify and extend this data structure for real-time
editing. A slightly different strategy was used by Maglo et
al. [MGH13] where a spatial subdivision is used to split the
model into sub-meshes that can be processed independently.

2. Overview

Traditionally, multi resolution editing performs global defor-
mations by decomposing the geometry of a highly-detailed
model into a coarse base surface and reconstructing the ap-
plied modifications using a displacement in normal direc-
tion. In contrast to this we use edge split operations of a
progressive mesh to propagate the transformations to finer
resolutions. Therefore, we propose an appropriate data struc-
ture that contains relevant informations about the connectiv-
ity and vertex attributes. The operations are stored in a tree
structure that is generated by a parallel simplification of the
original mesh. Based on the operation tree, the model can
be continuously adapted using parallel vertex split and edge
collapse operations. Our proposed algorithm can be divided
in two main phases:

1. Simplification of the model and generation of the pro-
gressive mesh operation tree.

2. Multi resolution editing of the progressive mesh.

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

To preserve the connectivity during the propagation of the
modifications, the local ordering of operations needs to be
preserved. This implies for example that a collapse is only
allowed, if no other vertex in any adjacent triangle is col-
lapsed or split. The current resolution can be edited using a
handle and a euclidean distance based region of influence
(ROI). The handle can be translated and rotated and the
transformation is applied to the whole ROI (see Figure 1).

2.1. Progressive Mesh

We simplify the original model by collapsing all non-conflict
edges in parallel. The original model can then be recon-
structed by performing a sequence of parallel vertex split
operations. Figure 2 shows the principle of an edge collapse
operation colv and the corresponding split operation splv. By
applying colv to an edge defined by the vertices vt and vu it
is contracted into the vertex v. The new vertex v is computed
based on the neighboring triangles. The adjacent faces fl and
fr of vt and vu degenerate and are removed. Since splv rep-
resents the inverse operation of colv, the faces fl and fr are
generated by splitting the vertex v into vt and vu. Addition-
ally, an update of the connectivity between the vertices vt
and vu and the adjacent faces is performed.

Figure 2: Edge collapse and vertex split operation.

2.2. Operation Coding

The data structure used to encode the operations is based
on the one proposed by Derzapf and Guthe [DG12]. In our
context, the main advantage is that non-manifold meshes
are supported by storing the successive topology modifica-
tions within the triangles instead of the operations. For this
we need to generate so-called final vertex IDs (FVIDs) by
enumerating the vertices after computing all edge collapses
and storing them in the data structure. This way all possible
topology modifications are encoded within the vertex indices
of the faces. The faces are then stored in the split operation
where they are generated by storing their vertex FVID0..2 for
the finest resolution.

In summary, each operation encodes the attributes of vt
and vu, the refinement criteria, the generated faces including
later modifications and the subsequent operations. In con-
trast to [DG12] we do not compress the operations but keep

their uncompressed form to allow editing. The local order-
ing is preserved by storing the maximum of the simplifica-
tion error and the errors stored for the neighbor vertices plus
a small epsilon. This way we only need to check the errors
of neighboring vertices to enforce a strict local ordering of
split and collapse operations.

2.3. Local and Global Attributes

In compression approaches, the vertex offsets are often en-
coded in the local coordinate system of the split vertex.
While this improves compression rates, a transformation of
the split vertex directly applies to all its decendents. To sup-
port a smooth propagation of the transformation to neigh-
boring split vertices, the local coordinate system is averaged
from all adjacent vertices (see Figure 3). Local position, nor-
mal and tangent (Pi, Ni, Ti) are computed as weighted aver-
age of v and all vertices adjacent to vt or vu. Then the po-
sition and normal offsets (P∆, N∆) are encoded in the local
coordinate system spanned by Ni and Ti. Note that only one
degree of freedom remains for the tangent and it is thus en-
coded as rotation about N.

Figure 3: Vertex attributes encoded relative to the local co-
ordinate system interpolated from neighboring vertices.

3. Progressive Mesh Generation

The progressive mesh generation is based on the par-
allel edge collapse simplification algorithm of Grund et
al. [GDG11]. Figure 4 gives an overview of the extensions
and modifications necessary to construct a progressive mesh
that allows both parallel adaption and real-time editing.

After loading the initial mesh, the attributes and indices
are transferred to the GPU and stored in a vertex buffer
and index buffer. Then the edge data structure is filled as in
the original simplification algorithm. Additionally, we store
the edge indices for each face since we require them later
to guarantee a fixed collapse neighborhood. In contrast to
the previous simplification algorithm, we use memoryless
simplification [LT98] which results in computing the vertex
quadrics inside the simplification loop.

All adjacent faces and boundary edge quadrics are accu-
mulated to calculate the vertex quadrics. The quadric error
optimization is identical to the original method with the ex-
ception that the stored simplification error εv of vertex v is:

εv = max
(

εquadric,(1+ ε f loat) max
i∈neighbors(v)

ε
s
i

)
,

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

Collect Vertex
Neighborhood

Calculate Local
Coordinate Plane

Store Operations

#Faces < Threshold Assign FVIDs
No Yes

Remove Illegal
Collapses

Remove
Duplicates

Initial Mesh

Quadric Error
Optimization

Vertex Quadrics

Parallel
Edge Collapse

Connectivity
Update

Edge Compaction

Extensions Modifications Previous

Figure 4: Progressive mesh generation including the exten-
sions (left) and modifications (middle) of the previous sim-
plification algorithm (right).

where εquadric is the quadric error (i.e. the sum of the squared
distances to the adjacent faces’ planes), ε

s
i is the previous er-

ror stored for vertex i, and the multiplication with 1+ ε f loat
assures that the error stored for collapsing vt and vu to v is
larger than the error of previous neighboring collapses. This
property is later used during adaption and modeling to guar-
antee a fixed neighborhood for each operation. This also ne-
cessitates a modification of the overlapping collapse removal
step that requires the edge references stored for each face.
Fixing the neighborhood means that no two vertices shar-
ing a common edge can be collapsed in parallel. For static
LODs, preventing a collapse of two adjacent edges was suf-
ficient. In addition, the collapse can also not be performed,
if vl or vr are not connected to vu or vt by another triangle
despite fl and fr. This condition is necessary because other-
wise vl or vr will be missing in the neighborhood of vu and
vt when performing the vertex split.

After performing the collapses, the operations can be
stored in the progressive mesh data structure. This is done by
first collecting the neighborhoods for all operations and then
encoding the attribute offsets in the local coordinate systems.
Finally, we update the connectivity and remove the collapsed
and duplicate edges. The edge references stored in the faces
are also updated during the compaction of the edge buffer.

When the number of faces falls below a specified thresh-
old, the simplification stops and the FVIDs are assigned to
the vertices and operations. Note, that not all buffers are re-
quired during the complete algorithm and can be freed as
soon as they are not used anymore.

4. Editing

Editing is based on modifying the attribute offsets of vertices
encoded in split operations or the attributes of base mesh ver-

tices. If a vertex is edited, its global attributes are changed
and need to be mapped to modified local attributes. Model-
ing is based on the framework of Bendels et al [BKS03] that
allows translations and rotations. Instead of using geodesic
distances, we only use the Euclidian distance due to perfor-
mance reasons. The editing is transferred to finer levels by
encoding the split offsets in the local coordinate system of
the neighbor vertices. For the coarse levels, the global at-
tributes need to be recomputed after editing. Thus we need
to constantly convert between local and global attributes.

4.1. Local and Global Attributes

The interpolated local coordinate systems of the neighbor
vertices are used as reference coordinate system. As only
the collapse target and its one ring are available, we can only
use these. Therefore, we need to guarantee that the neigh-
bor vertices are the same for a split and its inverse collapse
operation. This is assured by the definition of the local or-
dering of the operations (see Section 2.2). Figure 5 shows
the neighborhood used as reference for vertex vt . Note that
vertex v is weighted by a factor of two when computing the
refernce coordinate system, as it is closest to vt .

Figure 5: Vertices in the split neighborhood of vt . The ones
used to interpolate the reference coordinate system of vt are
marked in red.

Given the attribute offsets in the global coordinate system
and the local coordinate system of the neighborhood, the lo-
cal offsets (Pl , Nl and α) are calculated as:

Pl = (Ti Bi Ni)
t P∆

Nl = (Ti Bi Ni)
t N∆

T⊥ = normalize(Ti −N (N ·Ti))

α = arctan
T⊥ · (N ×T)

T⊥ ·T ,

where P, N and T are position, normal and tangent of the
vertex vt or vu, Bi = Ni × Ti the interpolated bitangent and
α the rotation of T about the normal of the local coordinate
system. The required position and normal offsets are:

P∆ = P−Pi

N∆ = N −Ni.

On the other hand, the global attributes of the vertex can be

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

calculated as:

P∆ = (Ti Bi Ni)Pl

N∆ = (Ti Bi Ni)Nl

P = Pi +P∆

N = Ni +N∆

T = Ti cos(α)+(Nl ×Ti)sin(α).

If no tangent vectors are specified for the mesh, we initially
assign default tangent vectors (orthogonal to (001)t) to the
base mesh vertices and set the local offsets α to zero.

4.2. Edit Propagation

After editing the changes need to be propagated to the
coarser meshes. As noted earlier, the propagation to finer res-
olutions is handled automatically during the split operations.
During editing, all modified vertices are marked by setting
their modified flag to one. This value means that the local
coordinate system and the global attributes where changed.
Then the edited vertices are used for the calculation of the
interpolated coordinate system. By adding the attribute off-
sets, which are encoded in the local coordinate system, finer
details can be rebuilt. For the propagation to coarser res-
olutions, the local coordinate systems of the modified ver-
tices need to be recalculated during the collapses. As we use
memoryless simplification and guarantee a fixed neighbor-
hood for every collapse, we can simply recompute the edge
quadrics. Then the quadric is again minimized to calculate
the new vertex attributes in the coarser mesh. The new sim-
plification error is also calculated as discussed in Section 3.
Due to storing the attribute offsets in the local coordinate
system of the neighborhood, we need to recompute the col-
lapse for every vertex that is adjacent to a modified one. This
can be checked by simply traversing all triangles in parallel
and setting the modified flag of each triangle vertex to two
if it is zero and at least one of the others in the triangle has
a modified flag of one. A modified value of two now means
that the vertex has a new local coordinate system but still
its old global attributes. Note that we do not need to prevent
race conditions here as we only change the flag from zero
to two. The modification flag is then set for all vertices for
which the collapse was recomputed to transfer the editing up
to the base mesh. This implies that the progressive mesh has
to be collapsed down to the base mesh before saving.

5. Adaption Algorithm

The adaption algorithm is based on the progressive mesh
rendering algorithm of Derzapf and Guthe [DG12]. The al-
gorithm is subdivided into several consecutive steps to im-
plement the adaption on massively parallel hardware. In the
first step we update the state of the vertices as in the original
algorithm, but a global simplification error is used instead of
view dependent refinement criteria during editing. Addition-
ally, we remove overlapping split and collapse operations to

guarantee the fixed neighborhood. Then all edge collapses
are performed in parallel. Another modification is that we
recalculate the local coordinate system of the correspond-
ing split operation if the vertex v was marked as modified
(see Section 4.2). The memory management required before
splitting is unmodified. For the split operations we addition-
ally need to calculate the global attributes of the vertex (see
Section 4.1). Finally, the index update and buffer compaction
of the original algorithm are performed.

The dynamic data structures required for adaption and
editing are listed in Table 1. The vertex buffer containing
position and attributes and the index buffer storing the con-
nectivity of the adapted mesh are required for rendering and
thus separated from all other data. The modification flag is
used to mark all vertices for which the split operations need
to be updated. In the following we discuss the extensions of
the progressive meshes adaption algorithm in detail.

buffers elements bytes per entry

active faces
index VBO 12
FVIDs 12

active vertices

vertex VBO (×2) 8k
vertex ID (×2) 8
modified flag (×2) 2
collapse target (×2) 8
next split & collapse (×2) 16

temporary

vertex count 4
face count 4
vertex prefix sum 4
face prefix sum 4
vertex quadric 2k2 +6k+4

Table 1: Elements of the dynamic data structure, where k is
the number attributes and additions are marked bold.

5.1. Illegal Operation Removal

After updating the state of all active vertices, we remove
splits and collapses that cannot currently be performed. The
algorithm traverses all triangles and checks the vertex states.
For the split operations, only the vertex with the highest sim-
plification error can be split in each face f . In addition, no
vertex of f can be collapsed, if any other is marked for split-
ting. Finally, a collapse operation can only be performed, if
its simplification error is the lowest in the triangle. The com-
plete removal of illegal operations is shown in Algorithm 1.

foreach face f in parallel do
if any_vertex_marked(f , split)

simpli f ication_errormax = get_max_split_error(f)
unmark_dependent_splits(f , errormax)

if any_vertex_marked(f , collapse)
simpli f ication_errormin = get_min_collapse_error(f)
unmark_illegal_collapses(f , errormin)

Algorithm 1: Parallel removal of illegal operations.

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

Original model Simplification Rendering
model vmax fmax IFS PM memory time (s) Op/s spl. Op/s coll. Op/s upd. Op/s fps
Horse 48,485 96,966 2.7 MB 5.4 MB 41.3 MB 0.3 162k 595k 443k 384k >60
Armadillo 172,974 345,944 7.9 MB 19.1 MB 147.3 MB 0.6 288k 1181k 810k 631k >60
St. Dragon 437,645 871,414 19.9 MB 48.3 MB 372.2 MB 1.4 313k 1201k 882k 674k 30–60
Welsh Dragon 1,105,352 2,210,673 50.5 MB 122.3 MB 941.6 MB 3.2 346k 986k 381k 336k 11–60
Dragon 3,609,455 7,218,906 165.2 MB 399.0 MB 1872.6 MB 10.4 347k 760k 379k 335k 3–60

Table 2: Models used for evaluation with memory consumption for the progressive mesh (PM), simplification operations per
second (Op/s), split (spl.), collapse (coll.) and update (upd.) performance.

5.2. Parallel Edge Collapses

When no neighboring vertices of the edge are marked, the
collapse operation simply moves vertex vt to its old position
v. Otherwise, the weigthed average of the adjacent vertex at-
tributes is required. We calculate this by counting the num-
ber of adjacent vertices and accumulating their attributes. If
the vertex was marked as modified, the local coordinate sys-
tem of the next split operation is re-calculated and the modi-
fied flag is propagated to the parent vertex and its neighbor-
hood. Removing vertex vu and the degenerated faces is han-
dled in later stages. Algorithm 2 shows the parallel edge col-
lapses including operation update after editing and preparing
removal of the collapsed vertices and faces.

foreach face f in parallel do
v1, v2, v3 = get_vertices(f)
atomic_add_acc_adjacent_sum(v1, v2, v3)
atomic_add_adjacent_number(v1, v2, v3, 2)
q = face_quadric(f)
atomic_add_vertex_quadric(v1, v2, v3, q)

foreach vertex vu in parallel do
v = get_target(vu)
if marked(v, modified) || marked(vu, modified)

LCS_V T = optimize_quadric(v)
LCS_VU = optimize_quadric(vu)
update_split(v, LCS_V T)
update_split(vu, LCS_VU)

else
restore_attributes(v)

collapse_vertices(v, vu)

Algorithm 2: Parallel edge collapse algorithm.

5.3. Parallel Vertex Splits

As in Derzapf and Guthe [DG12] we first compact the split
operations to improve thread utilization. Then the global po-
sition of vt and vu are calculated from the weighted aver-
age of the local offsets stored in the operation. Again, the
weighted average of the adjacent vertex attributes is required
(see Section 2.3). For splitting, the new faces are first added
to the mesh. Then the global attributes are calculated. Algo-
rithm 3 shows the parallel vertex split.

compact(splits)
foreach split vertex v in parallel do

vu = v+1
split_vertex(v, vu)
append_faces(v, face_sum[v])

foreach face f in parallel do
v1, v2, v3 = get_vertices(f)
atomic_add_acc_adjacent_sum(v1, v2, v3)
atomic_add_adjacent_number(v1, v2, v3, 2)

foreach split vertex v in parallel do
LCS_V T = acc_adjacent_sum(v) / adjacent_number(vt)
LCS_VU = acc_adjacent_sum(vu) / adjacent_number(vu)
calc_attributes(v, vu, LCS_V T , LCS_VU)

Algorithm 3: Parallel vertex split algorithm.

6. Results

Our test system consists of a 3.333 GHz Intel Core i7-980X
CPU with 6 GB DDR3-1333 main memory and an NVIDIA
GTX580 (841/4204MHz). We used CUDA to implement
the parallel simplification and editing and use OpenGL for
rendering. Table 2 gives an overview of the generated pro-
gressive meshes and the runtime performance during model-
ing. All models use position and normal as vertex attributes
(k = 6). Note that increasing k needs more memory The
original meshes contain vmax vertices and fmax faces. As the
progressive meshes are uncompressed, they require approx-
imately twice the memory than the original models (IFS).
The maximum memory consumption is between 16 times
(for small models) and 11 times (for larger ones) larger than
that of the original model. This maximum is reached at the
beginning of the simplification. During rendering the maxi-
mum is approximately 2

3 since the edge data structures are
not required anymore. Similarly to the simplification, the
maximum is reached when the model is refined to full reso-
lution. Compared to the approach of Grund et al. [GDG11]
the preprocessing performance is by a factor of 5.8 lower.
The two main reasons for this are the larger neigborhood that
reduces the number of parallel collapses by a factor of two
and the generation of the progressive mesh data structure. In
addition, the memoryless simplification is computationally
more expensive than the normal quadric error simplification
used in that algorithm. The adaption performance is even by
a factor of 9.6 lower than that of Derzapf and Guthe [DG12].

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

Figure 6: Several progressive meshes used in our evaluation. From left to right: original models, three frames captured during
editing where the purple spheres show the ROIs, and the final proressive meshes refined to full resolution.

This is partially again due to the fact that we introduce neigh-
borhood dependencies which reduce the number of parallel
operations by a factor of approximately 6. On the other hand,
the uncompressed data require more memory bandwidth and
the transformation from local to global coordintes also slows
down the adaption. The reduction of the number of oper-
ations and thus decreasing performance for larger models
is due to the fact that fewer operations were performed in
parallel. The reason for this is that these models were not
pre-simplified and therefore contained many coplanar faces.
In our current implementation this blocks many collapses as
only those are performed that have a smaller error than all of
their neighbors. Although we broke the possible deadlock by
adding a small random number to the error, a more sophisti-
cated solution would lead to more parallel collapses and thus
increase the split and collapse performance. In addition, the
frame rate drops to approximately 12 fps for meshes con-
taining one million vertices when drastically changing the
approximation error. When the adaption finishes, the frame
rate however returns to 60 fps. In total, adaption and propa-
gation scale almost linear in the number of cores.

The modeling performance of our approach is approxi-
mately on par with algorithm of Marinov et al. [MBK07]

with real-time frame rates for all our test models. In con-
trast to their approach we are however able to edit a mesh
at different resolutions and the modifications are transferred
directly to all LODs. Previous multi resolution modeling ap-
proaches like the method of Zorin et al. [ZSS97] are only
suitable for models with subdivision connectivity. In Lapla-
cian mesh editing [SCOL∗04] a smoothed surface is used for
editing and the topology is transferred back to the surface
afterwards. The drawback of that approach is that modifica-
tions can only be performed for small ROIs with at most
100K vertices at interative frame rates. Our algorithm is
on the other hand able to handle models containing up to
serveral million triangles and edit them at real-time frame
rates, independent of the ROI size. Figure 1 and 6 show some
of the generated progressive meshes during editing.

7. Conclusion and Limitations

We have proposed a parallel progressive mesh generation
and editing algorithm. Its input is an indexed face set from
which it first generates a progressive mesh data structure.
The progressive mesh can then be edited at any resolution.
The modifications are automatically propagated to finer res-
olution using an encoding of the split operations based on

c© The Eurographics Association 2014.

E. Derzapf & N. Grund & M. Guthe / Parallel Progressive Mesh Editing

local coordinate systems. In addition to that, the coarser res-
olutions – up to the base mesh – are updated using memo-
ryless simplification. This leads to a valid progressive mesh
during the complete editing pipeline.

The main limitation of our algorithm is that the model size
is currently limited to a few million triangles. This could be
alleviated using out-of-core stream simplfication or possibly
even compression techniques as in [DG12]. Another limi-
tation is that the local ordering of operations is fixed after
initial simplification. While this is necessary for animations,
a partial re-simplification might be desirable after huge de-
formations.

Like all multi resolution modeling techniques, our algo-
rithm is limited to geometric modifications of the vertices.
Changing the connectivity of the mesh requires rebuilding
the progressive mesh data structure. While it would be possi-
ble to locally re-compute the operations after large deforma-
tions, changing the mesh connectivity would require longer
processing times than geometric modifications.

References
[BKS03] BENDELS G. H., KLEIN R., SCHILLING A.: Image

and 3d-object editing with precisely specified editing regions. In
Vision, Modeling and Visualisation 2003 (2003), pp. 451–460. 4

[BSS07] BOUBEKEUR T., SORKINE O., SCHLICK C.: Simod:
Making freeform deformation size-insensitive. In Symposion on
Point Based Graphics (2007), pp. 47–56. 2

[DG12] DERZAPF E., GUTHE M.: Dependency free parallel pro-
gressive meshes. Computer Graphics Forum 31, 8 (2012), 2288–
2302. 2, 3, 5, 6, 8

[DMG10a] DERZAPF E., MENZEL N., GUTHE M.: Parallel
view-dependent refinement of compact progressive meshes. In
Eurographics Symposium on Parallel Graphics and Visualization
(2010), pp. 53–62. 2

[DMG10b] DERZAPF E., MENZEL N., GUTHE M.: Parallel
view-dependent out-of-core progressive meshes. In Vision, Mod-
eling, and Visualization (2010), pp. 53–62. 2

[FB88] FORSEY D. R., BARTELS R. H.: Hierarchical b-spline
refinement. In Proc. of the 15th annual conference on Com-
puter graphics and interactive techniques (1988), SIGGRAPH
’88, ACM, pp. 205–212. 2

[Gar99] GARLAND M.: Multiresolution modeling: Survey & fu-
ture opportunities. Proc. of the Eurographics ’99 – State of the
Art Reports (1999), 111–131. 2

[GDG11] GRUND N., DERZAPF E., GUTHE M.: Instant level-of-
detail. In Vision, Modeling, and Visualization (VMV2011) (2011),
pp. 293–299. 2, 3, 6

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification
using quadric error metrics. In Proc. of the 24th annual confer-
ence on Computer graphics and interactive techniques (1997),
SIGGRAPH ’97, pp. 209–216. 2

[GH98] GARLAND M., HECKBERT P. S.: Simplifying surfaces
with color and texture using quadric error metrics. In Proc. of the
conference on Visualization (1998), pp. 263–269. 2

[GSS99] GUSKOV I., SWELDENS W., SCHRÖDER P.: Mul-
tiresolution signal processing for meshes. In Proc. of the 26th
annual conference on Computer graphics and interactive tech-
niques (1999), SIGGRAPH ’99, pp. 325–334. 2

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In I3D ’09: Proc.
of the 2009 symposium on Interactive 3D graphics and games
(2009), pp. 169–176. 2

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL
H.-P.: Interactive multi-resolution modeling on arbitrary meshes.
In SIGGRAPH (1998), pp. 105–114. 2

[KVS99] KOBBELT L., VORSATZ J., SEIDEL H.-P.: Multires-
olution hierarchies on unstructured triangle meshes. Comput.
Geom. 14, 1-3 (1999), 5–24. 2

[LF03] LE FEUVRE L.: Modelling and deformation of surfaces
defined over finite elements. In Proc. of the Shape Modeling
International (2003), IEEE Computer Society, p. 175. 2

[LSCo∗04] LIPMAN Y., SORKINE O., COHEN-OR D., LEVIN
D., RÖSSL C., PETER SEIDEL H.: Differential coordinates for
interactive mesh editing. In Proc. of Shape Modeling Interna-
tional (2004), Society Press, pp. 181–190. 2

[LT98] LINDSTROM P., TURK G.: Fast and memory efficient
polygonal simplification. In IEEE Visualization (1998), pp. 279–
286. 3

[Lue01] LUEBKE D. P.: A developer’s survey of polygonal sim-
plification algorithms. IEEE Comp. Graph. Appl. 21 (2001), 24–
35. 2

[MBK07] MARINOV M., BOTSCH M., KOBBELT L.: Gpu-based
multiresolution deformation using approximate normal field re-
construction. Journal of Graphics, GPU, and Game Tools 12, 1
(2007), 27–46. 2, 7

[MGH13] MAGLO A., GRIMSTEADB I., HUDELOTA C.: Po-
mar: Compression of progressive oriented meshes accessible ran-
domly. Computers & Graphics 37 (2013), 743–752. 2

[MS11] MANSON J., SCHAEFER S.: Hierarchical deformation
of locally rigid meshes. Computer Graphics Forum 30, 8 (2011),
2387–2396. 2

[PH97] POPOVIĆ J., HOPPE H.: Progressive simplicial com-
plexes. In Proc. of the 24th annual conference on Computer
graphics and interactive techniques (1997), SIGGRAPH ’97,
pp. 217–224. 2

[PR00] PAJAROLA R., ROSSIGNAC J.: Compressed progres-
sive meshes. IEEE Transactions on Visualization and Computer
Graphics 6, 1 (2000), 79–93. 2

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA
M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In
Proc. of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing (New York, NY, USA, 2004), SGP ’04,
ACM, pp. 175–184. 2, 7

[Tau95] TAUBIN G.: A signal processing approach to fair sur-
face design. In Proc. of the 22nd annual conference on Com-
puter graphics and interactive techniques (1995), SIGGRAPH
’95, ACM, pp. 351–358. 2

[WW94] WELCH W., WITKIN A.: Free-form shape design us-
ing triangulated surfaces. In Proc. of the 21st annual conference
on Computer graphics and interactive techniques (1994), SIG-
GRAPH ’94, ACM, pp. 247–256. 2

[ZSGS12] ZOLLHÖFER M., SERT E., GREINER G., SÜSSMUTH
J.: Gpu based arap deformation using volumetric lattices. In Eu-
rographics (Short Papers) (2012), Andújar C., Puppo E., (Eds.),
pp. 85–88. 2

[ZSS97] ZORIN D., SCHRÖDER P., SWELDENS W.: Interactive
multiresolution mesh editing. In Proc. of the 24th annual confer-
ence on Computer graphics and interactive techniques (1997),
SIGGRAPH ’97, pp. 259–268. 2, 7

c© The Eurographics Association 2014.

