Z_3

179

179

0

0

0

4

 Z_4

180

179

0

0

0

4

 Z_2

183

184

0

0

0

4

Prof. Dr. R. Loogen, M. Dieterle Fachbereich Mathematik und Informatik Hans-Meerwein-Straße D-35032 Marburg

 Z_1

184

183

0

0

0

4

IC

 \overline{FP}

SP

IR

199

198

197

Stack 200

Übungen zu "Grundlagen des Compilerbau", Winter 2011/12

Nr. 12, Abgabe der Aufgaben: 6. Februar 2012 vor der Vorlesung

Hinweis: Dies ist das letzte Übungsblatt.

Aufgaben

12.1 MPP-Maschinenzustände

6 Punkte

Die untenstehende Abbildung skizziert den Zustandsraum der Maschine MPP. Überprüfen und begründen Sie, ob die angegebenen Maschinenzustände Z_1-Z_4 bei der Programmausführung eines von PSPP nach MPP Übersetzten Programms entstehen können. Dabei sei 200 die feste Adresse des Kellerboden.

Kellerboden.				10.				
remer boc	лен. 			196	198	198	198	198
		:	\uparrow +	195	3	3	3	3
		par_1		194	198	198	198	198
		1 1		193	8	8	8	8
		:		192	2	2	2	2
		par_{p+q}		191	194	194	194	194
IC		sv		190	100	100	100	100
				189	194	194	194	194
		ra		188	1	1	1	1
		_		187	1004	1004	1004	1004
FP		dv		186	189	194	194	189
		loc_1		185	55	55	55	55
CD		_		184	194	189	189	189
SP		<u>:</u>		183	20	20	20	1304
	×	loc_n		182			1304	194
IR		:	1	181			189	25
			↓ -	180			75	184
				179			184	1055

12.2 PSPP-Übersetzung

4 Punkte

In der Übersetzungsfunktion $ct(I(E_1, ..., E_p; V_1, ..., V_q), st, a, l)$ für Prozeduraufrufe in PSPP Programmen (Skript, S. 111) sind nur Fälle mit $st(V_j) = (var, l_j, o_j)$ $(1 \le j \le q)$ definiert. Erweitern sie die Definition so, dass auch Variablenparameter übergeben werden können, also definieren sie $ct(I(E_1, ..., E_p; V_1, ..., V_q), st, a, l)$ für alle Fälle mit $st(V_j) = (var, l_j, o_j) \lor (st(V_j) = (vpar, l_j, o_j)$ $(1 \le j \le q)$.

$12.3 \ {\bf Basis block darstellung}$

2 Punkte

Bestimmen Sie eine Basisblockdarstellung zu folgender Drei-Adress-Codesequenz:

L1:	j t1 v i t2 t3	= m-1 = n = 4*n = a[t1] = i+1 = 4*i = a[t2] t3 <v goto="" l1<="" th=""><th>L3:</th><th>t7 = 4*i t8 = 4*j t9 = a[t8] a[t7] = t9 t10 = 4*j a[t10] = x goto L1 t11 = 4*i</th></v>	L3:	t7 = 4*i t8 = 4*j t9 = a[t8] a[t7] = t9 t10 = 4*j a[t10] = x goto L1 t11 = 4*i
L2:	t4 t5 if if t6	<pre>= j-1 = 4*j = a[t4] t5>v goto L2 i>=j goto L3 = 4*i = a[t6]</pre>		x = a[t11] t12 = 4*i t13 = 4*n t14 = a[t13] a[t12] = t14 t15 = 4*n a[t15] = x