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Abstract

Like the related paperGrundbegriffe Differentialgeometrie für Gravitationstheorien(in
German) this talk was held at the seminarGeometrische Analysis (spring 2005) to
clarify some basics of the mathematics inGeneral Relativity. As an often ignored or
mistaken topic which, too, was only grazed by the preceding presentation, thegauge
invarianceor diffeomorphism invarianceof the Einstein-Hilbert actionis shown ex-
plicitly and elementally. It turns out that the induced transformation of the involved
geometrical objects as theLevi-Civita connectionand thecurvature tensorsis each
similar to its transformation under coordinate changes – a fact that originates in the
same behavior of themetric, the dynamical variable, itself.

1 Introduction

In General Relativitythemetricencodes the curvature ofspace-time M, thereby modelling
the gravitational “force” on matter. So the metric itself is regarded as the dynamicalfield
variable and we denote the space of (possible) fields

M :=
{

Lorentz metrics g on space-timeM
.= R1,3}

= C∞(M;T#M∨T#M).

Since a metricg is (locally) described as a symmteric ‘matrix’ (more exactly a symmteric
2-tensor), thedegrees of freedomfor M = R1,3 areR10.

Whereas in the other commonfield theories(asYang-Mills theoryfor bosonsof spin< 2 or
asDirac theoryfor fermions) theLagrange actionon the fields

S: M −→ R

(sloppy as in physicist’s language) depends on the field and it’s first derivatives only, here
one has to go to second derivatives to get acovariantaction, i.e. invariant under theaction
(again this name!) of a certainsymmetry groupG – calledgauge group(in generalization
of Maxwell theoryof gauge fields). The abstractLagrange mechanismrequires invariance
of SunderG , and one actually has a mapping

S: M /G −→ R,

which is to be minimized (principle of least action) for a field to be aphysical field. In
general, that invariance thing is due to several reasons, especially the following ones:
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1. Easier presentation and calculation: Often the space of fieldsM itself is linear or
almost linear. In any case there is more algebraic structure than onM /G . This
means one introduces additional degrees of freedom to get a nicer description, but has
to take care of invariant formulation under some selecting conditions, captured by the
gauge group.

2. Easily deducing conservation laws: ViaNoether theoremeach symmetry induces a
conservation law.

We want to describe symmetries of theEinstein-Hilbert action

SEH(g) =
∫

M
ScalgdVg (1.1)

of General Relativity and show thatSEH is invariant under thegauge group

G := Diff +(M)

of orientation preservingdiffeomorphismsφ of space-timeM. In general such symmetry
groups for fieldsM −→ E with degrees of freedomE split into

G = Diff (M)×Weyl(E) .= Aut(M)×Aut(E)

where the latterWeyl groupfactor operates on the image spaceE, e.g. asU(N) or SU(N)
on Cn in Yang-Mills theory. More exactly, in the Yang-Mills situationE = T#M⊗Cn and
the so called ‘internal symmetries’U(N) operate only on theCn-part, whereas the actual
‘gauge symmetries’ (in a tighter sense) act on the cotangent spaceT#M, leading to the
direct product of both for Weyl(E). The former factor Diff(M) is to be regarded as kind of
reparametrizations and (forM = R1,d−1) is usually reduced to thePoincaŕe group

Poin(d) := O(1,d−1)nRd = Aut(R1,d−1) @ Aff (Rd)

due to the additional affine linear structur. The second factor Weyl(E) in the Einstein-Hilbert
situation is trivial – except for the case of dimension 1+1, where we really have invariance
of the action under multiplications.

Remark. Because of the reparametrization character one usually has an additional group
operation of the Diff(M) factor on the second Weyl(E) factor leading to thesemidirect
productas the true gauge group:

G = Diff (M)nWeyl(E),

as was similarly the case for the Poincaré group above as a semi-directly splitted Aut(M)
itself. Usually the Weyl group operation is the simple action of multiplications on the target
spaceE: For fieldsM 3 ϕ : M −→ E we have the action of Weyl(E) = C∞(M,R+) given as

C∞(M,R+)×M −→M , (ρ,ϕ) 7→ ρϕ

with
(
ρϕ

)
(o) = ρ(o)ϕo. As explained just before, Diff+(M) acts onC∞(M,R+), namely

by pullback and we end up at the semidirect product(φ ,ρ)(φ ′,ρ ′) =
(
φφ ′,(ρ ◦φ ′−1)ρ ′).

This splitting fact of the gauge groupG may be expressed in terms of exact sequences as

0−→ Weyl−→ G −→ Diff −→ 0
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which is analogous to the well-known Quantum mechanics picture ofHeisenberg groupand
symplectic group,

0−→ Heis(R2n+1)−→ G −→ Sp(2n+1,R)−→ 0

or in pure mathematics to the splitting of the automorphism group into translations and
multiplications

0−→ C−→ Aut(C)−→ C× −→ 1

or more generally
0−→ Rn −→ Aff (Rn)−→ GL(n,R)−→ 1.

Note that for the full invariance (as we will obtain later by transformation rule) the semidirect
product structure, i.e. the action of the reparametrizations Diff(M) on the simple multipli-
cations, is essential.

But in our case, the Einstein-Hilbert action does not admit further symmetries than diffeo-
morphisms. Thus this more complicated structure is not important for us and only should
have aided us to find our position.

2 The gauge group of diffeomorphisms

Proposition. The groupG = Diff +(M) of diffeomorphisms on space-time M acts on the
space of fieldsM , the Lorentz metrics on M, bypullback:

G nM −→M , (φ ,g) 7→ φ
∗g.

Remark. Here foro∈ M and tangent vectorsX,Y ∈ ToM at o, the pullbackg′ of g under
fixed φ−1 is given by (

(φ−1)∗g
)

o(X,Y) = gφ(o)(ΦX,ΦY) (2.1)

with the shorthandΦ := Toφ , it’s inverse then beingΦ−1 = Tφ(o)(φ−1). We took the inverse
on the left hand side to avoid three times inverse on the right hand side and further more.

Proof. For φ ,ψ ∈ G andg∈M we simply have(
φ
∗(ψ∗g)

)
o(X,Y) = ψ

∗gφ−1(o)(Φ
−1X,Φ−1Y)

= g
ψ−1

(
φ−1(o)

)(Ψ−1Φ−1X,Ψ−1Φ−1Y)

= g(φ◦ψ)−1(o)
(
(ΦΨ)−1X,(ΦΨ)−1Y

)
=

(
(φ ◦ψ)∗g

)
o(X,Y).

Remark. We want to present two further descriptions of this action.

1. In local coordinates with metric componentsgmn := g(∂m,∂n) and again the tangent
or JacobianΦµ

m∂µ := Φ∂m = Toφ∂m

g′mn(o) = Φµ
mgµν

(
φ(o)

)
Φν

n.
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2. To abbreviate notation we may regard the metric as a matrix identifying the 2-tensor
gmn with matrix componentsgm

n . We then haveg(X,Y) = XtgY as matrix multiplica-
tion whereX now denotes a column with coefficientsXm locally given byX = Xm∂m.
Finally, with g̃ := g◦φ we can write the above equation as

g′ = Φt g̃ Φ.

In general, we want to distinguish between “inner” and “outer” transformations of the fol-
lowing objects and abbreviate the “inner” ones by a tilde. In each case they will be the
usual pullback of the object (underφ−1) but without the “outer” ones emerging for matrix
valued fields as connection and curvature. Here in the last notation,g has become a (matrix
valued) scalar, thus its pullback reduces to simply composing withφ : the “inner” trans-
formation, and, in addition, multiplying withΦt andΦ from each side, respectively: the
“outer” transformation.

3 Einstein-Hilbert action

We describe the ingredients of the Einstein-Hilbert action

SEH(g) =
∫

M
ScalgdVg. (3.1)

For a metricg∈M , i.e. onM = R1,3 and of Minkowski type (signature(1,3)), we subse-
quently construct the following objects:

• Levi-Civita connection (metric connection) ∇g : Γ(TM)−→ End
(
Γ(TM)

)
of g

• Riemann curvatureRg : Γ(TM)×Γ(TM)−→ End
(
Γ(TM)

)
of ∇g

• Ricci curvature Ricg : Γ(TM)×Γ(TM)−→ R of Rg

• Scalar curvature Scalg : M −→ R of Rg by means of Ricg

Here we only want to recall some collected formulas for each of them and refer to [Eckert]
(in German) as a more detailed presentation or to standard texts in differential geometry,
e.g. [Hicks].

• TheLevi-Civita connection∇ is given by the (local)Christoffel symbols

Γi
jk := ∂

i∇∂k
∂ j = 1

2gil (∂ jgkl +∂kgl j +∂l gjk = Γi
k j (3.2)

wheregi j are the so-calledinverse metricor dual metriccomponents withgi j gjk = δ i
j .

Besides we want to work with theconnection-1-form A, being endomorphism-valued,
i.e. we have to applyA(X) to avector fieldyielding again a vector field:

A(X)Y := ∇XY. (3.3)

• TheRiemann curvatureof the connection is given by

R(X,Y) = ∇X∇Y−∇Y∇X −∇[X,Y] =−R(Y,X) (3.4)
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or in local expressions by the curvature coefficients

Rm
nkl := ∂

mR(∂k,∂l )∂n = ∂kΓm
nl −∂l Γm

nk+Γm
rkΓr

nl −Γm
rl Γ

r
nk, (3.5)

but we do not need the latter term. The curvature is in fact a2-formagain endomor-
phism-valued and now calledfield strength

F := R= dAA := dA+A∧A = (dAi
j +Ai

k∧Ak
j)i, j . (3.6)

We shall prove this formula as an example at the end of this listing. Note that the
wedge product is a matrix wedge product whereA is viewed as a matrix of 1-forms
Ai

j which of course is squared by summing up wedge products of its entries.

• TheRicci curvatureis given by Ric(X,Z) = tr
(
R(X, �)Z

)
, globally, and locally by its

components
Rnk := Ric(∂n,∂k) = Rm

nkm. (3.7)

• The scalar curvatureScal is most commonly described using metriccontractionor
raisingandloweringof indices (Ricci calculus):

Scal= Rk
k := gknRnk = gknRm

nkm. (3.8)

Of course it also may be defined globally (or invariantly): Scal= trSwhere the endo-
morphismS is given by the formula Ric(X,Z) = g(X,SZ) possible at least for sym-
metric Ricci tensor, also calledtorsion free. This is always the case when constructed
from the metric via Levi-Civita connection.

Lemma. As mentioned above, the curvature-2-form is given by

F = dA+A∧A = dAA. (3.9)

Proof. With F(X,Y) = R(X,Y) = ∇X∇Y−∇Y∇X −∇[X,Y] on basis vectors we have

F(∂k,∂l )∂ j = ∇∂k
(Γi

jl ∂i)−∇∂l
(Γi

jk∂i −∇[∂k,∂l ]∂ j

= (∂kΓi
jl )∂i +Γi

jl Γ
m
ik∂m− (∂l Γi

jk)∂i −Γi
jkΓm

il ∂m−0.

Then by (3.10) and(3.11) beneath, forA =: Am∂ m(
dA+A∧A

)
(∂k,∂l )∂ j = dA(∂k,∂l )∂ j +(A∧A)(∂k,∂l )∂ j

= (∂kAl −∂l Ak)∂ j +A(∂k)
(
A(∂l )∂ j

)
−A(∂l )

(
A(∂k)∂ j

)
= (∂kΓi

jl )∂i − (∂l Γi
jk)∂i +A(∂k)Γi

jl ∂i −A(∂l )Γi
jk∂i

= F(∂k,∂l )∂ j

as shown above. For the missing equations we write

dA(∂k,∂l ) = (dAm∧∂
m)(∂k,∂l ) = ∂kAm∂

m
∂l −∂l Am∂

m
∂k (3.10)

where then∂ m∂l = δ m
l etc. and besides

(∂kAl )∂ j =
(
∂kA(∂ l )

)
∂ j = ∂k

(
A(∂ l )∂ j

)
= ∂k(Γi

jl ∂i) = (∂kΓi
jl )∂i . (3.11)

Finally there is left one ingredient of the Einstein-Hilbert action, namely themeasure

dVg :=
√
|detg|dx1∧·· ·∧dxn (3.12)

which by construction of integration on manifolds is simply the standard measure on(M,g),
i.e. M equipped with the metricg.
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4 Gauge invariance of the Einstein-Hilbert action

We want to show that the Einstein-Hilbert actionSEH is (covariant or) invariant under the
gauge groupG of diffeomrphisms, that isφ∗SEH = SEH for anyφ ∈ G , or for g∈M ,

SEH(φ∗g) = SEH(g).

To start with, we first inspect the measure part of the action. With

|det
(
(φ−1)∗g

)
|= |det(Φt g̃ Φ)|= det2Φ|detg| ◦φ

we obtain

dV(φ−1)∗g =
√
|det(φ−1)∗gdx= |detΦ|

√
|detg| ◦φ dx.

And sinceΦ = Tφ , to apply trafo-formula it remains to show

Scal(φ
−1)∗g = Scalg◦φ , (4.1)

which is the same formula as for the fact that the scalar curvature “transforms as” ascalar
(tensor). But be careful, here we don’t deal with coordinate changes but with transforma-
tions of the metricg and the induced changes of the respective objects as Scal in the end.
Compare next remark.

The tail of this section shall prove this transformation formula. Its main portion, at least
technically, is the transformation of the Levi-Civita which is covered by the following

Proposition. Under a diffeomorphism transformation of the metric g the Levi-Civita con-
nection in local terms is changed into

Γ′kmn = (∂mΦκ
n)(Φ−1)k

κ +Φµ
mΦν

nΓ̃κ
µν(Φ−1)k

κ . (4.2)

Again, the prime indicates the components of the connection for(φ−1)∗g, and for the simple
functionsΓκ

µν the tilde again only means composition withφ .

Remark. 1. If we investigate that formula we find the following structure:

Γ′ = Φ−1ΓΦ+Φ−1dΦ = Φ−1(Γ+d)Φ.

Of course this is quite sloppy: Firstly in dropping the “inner” transformations, namely
the tilde of (the function)Γk

mn together with the transformation of then index, which in
form notation is the argumentX of A(X). And secondly it is sloppy in treating the exte-
rior derivatived the same asΓ. Observe thatdΦ = TTφ is second derivative ofφ and
(dΦ)k

mn = ∂mΦk
n = ∂m∂nφk in charts.

2. After this we can read off the transformation rule for the connection-1-formA(X) = ∇X

as
A′ = Φ−1ÃΦ+Φ−1dΦ = Φ−1(Ã+d)Φ (4.3)

where now the “inner” transformatioñA meansÃo(X) := Aφ(o)(ΦX). This formula in turn
adds up to clarify the first topic.

3. The formula is the same as for transformation under a change of coordinates. In fact,
the action of a gaugeφ on a metricg is the same, as one would have expressed a change
of charts by the diffeomorphismφ , at first forg but apparently it pulls out. Thereafter, the
transformation law of the proposition implies that the connection is not a tensor because of
the additional summand with second derivatives.
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Proof. By definition of the Christoffel symbols we find it easier to multiply by the “in-
verses”, and thus calculate

2Γ′kmng′kl = ∂mg′nl +∂ng′lm−∂l g
′
mn

= ∂m(Φν
ng̃νλ Φλ

l )+∂n(Φλ
l g̃λ µΦµ

m)−∂l (Φµ
mg̃µνΦν

n)

= (∂mΦν
n)g̃νλ Φλ

l +Φν
n(∂̃µgνλ )Φµ

mΦλ
l +Φν

ng̃νλ (∂mΦλ
l )

+(∂nΦλ
l )g̃λ µΦµ

m+Φλ
l (∂̃νgλ µ)Φν

nΦµ
m+Φλ

l g̃λ µ(∂nΦµ
m)

− (∂l Φµ
m)g̃µνΦν

n −Φµ
m(∂̃λ gµν)Φλ

l Φν
n −Φµ

mg̃µν(∂l Φν
n)

where some terms cancel by Schwarz rule of commuting second partial derivatives, remem-
bering the preceding remark that∂mΦk

n = ∂m∂nφk: namely third with seventh and fourth
with the last. In addition, by the same reason the first term is equal to the sixth such that we
get

2Γ′kmng′kl = 2(∂mΦη
n )g̃ηλ Φλ

l +Φµ
mΦν

nΦλ
l (∂µgνλ +∂νgλ µ −∂λ gµν )̃

= 2(∂mΦη
n )g̃ηλ Φλ

l +2Φµ
mΦν

nΦλ
l (Γκ

µνgκλ )̃ .

Now, inserting aδ κ
η = (Φ−1)k

ηΦκ
k in front of eitherg-term and adapting its indices, in both

summands we obtain a factorΦκ
k g̃κλ Φλ

l = g′kl which can be pulled out to end up with

2Γ′kmng′kl = 2
(
(∂mΦη

n )(Φ−1)k
η +Φµ

mΦν
nΓ̃η

µν(Φ−1)k
η

)
g′kl.

Once this result is established that transformingg by diffeomorphisms induces changes of
the metric and consequently of the connection similar to changes of coordinates, we can
continue with standard proofs for the transformation of the curvature, which contrary to the
connection again becomes a tensor, since the ill terms cancel. We want to avoid the many
indices, hence switch to form notation which shall be demonstrated anyway. In addition,
this separates the different roles of “outer” and “inner” transformations.

Proposition. Transforming the metric g by the gauge group, the curvature F is changed
into

F ′ = Φ−1F̃Φ (4.4)

where now, of course,̃Fo(X,Y) := Fφ(o)(ΦX,ΦY).

Proof. Expanding the expression

F ′ = dA′+A′∧A′

= d(Φ−1ÃΦ+Φ−1dΦ)+Φ−1(Ã+d)Φ∧Φ−1(Ã+d)Φ

by product rule for exterior derivative (observe the minus when passing a form of odd de-
gree) and by contraction ofBΦ−1∧ΦC = B∧Φ−1ΦC = B∧C, we obtain

F ′ = dΦ−1∧ ÃΦ+Φ−1(dÃ)Φ−Φ−1Ã∧dΦ+dΦ−1∧dΦ+Φ−1d2Φ

+Φ−1Ã∧ ÃΦ+Φ−1Ã∧dΦ−dΦ−1∧ ÃΦ−dΦ−1∧dΦ



8 4 GAUGE INVARIANCE OF THE EINSTEIN-HILBERT ACTION

where for the last two terms (carefully!) we usedΦ−1dΦ =−d(Φ−1)Φ which is easily seen
from the product rule again:

d(Φ−1)Φ+Φ−1dΦ = d(Φ−1Φ) = d1 = 0.

From the preceeding sum three pairs of terms cancel, and withd2 = 0 we arrive at

F ′ = Φ−1(dÃ+ Ã∧ Ã)Φ = Φ−1F̃Φ.

Note that actuallydÃ = d̃A and similarlyÃ∧ Ã = Ã∧A, which has to be checked by direct
computation, i.e. in local expressions: If againA = Ak∂ k thenÃ = Ãk∂ kΦ = (Ak ◦φ)Φk

m∂ m

and by definition of exterior derivative one has

dÃ = ∂n(ÃkΦk
m)∂ n∧∂

m

=
[
(∂nÃk)Φk

m+ Ãk∂nΦk
m

]
∂

n∧∂
m

= ∂̃l AkΦl
nΦk

m∂
n∧∂

m

since the second summand∂nΦk
m = ∂n∂mφk vanishes in the wedge product because of

Schwarz rule. Note that̃∂l Ak is a convenient shortcut for(∂l Ak) ◦φ , coming in from chain
rule. Now, by the same computations that is exactly the same as

d̃A= (∂l Ak∂
l ∧∂

k)̃ = ∂̃l AkΦl
nΦk

m∂
n∧∂

m.

The similar wedge statement is trivial. Of course, for this 2-formA∧A the same definition
of the tilde is being in mind as for the 2-fromF of curvature.

Finally, we can conclude the proof of invariance by the following, already stated result:

Corollary. Under a diffeomorphism change of the metric g the scalar curvatureScalg is
transformed into

Scal(φ
−1)∗g = Scalg◦φ .

Proof. As common in Ricci calculus, letR= Scal andR′ = Scal(φ
−1)∗g. Then, fromF ′ =

Φ−1F̃Φ we read off the transformation of the curvature components as

R′mnkl = (Φ−1)m
µ R̃µ

νκλ
Φν

nΦκ
k Φλ

l (4.5)

where theconjugationwith Φ, the “outer” transformation, is encoded in the summation over
µ andν , and the two other products withΦ arise from the “inner” transformation of the two
vector slots ofR, or F at will. This way, of the inner transformation there is still left the
composition withφ , which is denoted̃Rµ

νκλ
.

Besidesg′ab = (Φ−1)a
α g̃αβ (Φ−1)b

β
, for, if we multiply the right hand side with the well-

knowng′bc = Φη

b g̃ηγΦγ
c, this reduces to

(Φ−1)a
α g̃αβ

δ
η

β
g̃ηγΦγ

c = (Φ−1)a
αδ

α
γ Φγ

c = δ
a
c .

But then, we get

R′ = R′kk = g′knR′mnkm= (Φ−1)k
α g̃αβ (Φ−1)n

β
(Φ−1)m

µ R̃µ

νκλ
Φν

nΦκ
k Φλ

l

where all theΦ-terms cancel overm, n, andk, yielding

R′ = g̃κνR̃µ

νκµ = (gκνRµ

νκµ)◦φ = Rκ
κ ◦φ = R◦φ ,

the assertion.
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invariantseecovariant
inverse metric4

Jacobian3

Lagrange action1
Lagrange mechanism1

least action,principle of ∼ 1
Levi-Civita connection4, 4, 6
Lorentz metric1
lowering indices5

Maxwell theory1
measure5
metric1, 4

dual∼ 4
inverse∼ 4
Lorentz∼ 1

metricconnection4

Noether theorem2

outer transformations4

Poincaŕe group2
principle of least action1
pullback 2,3

raising indices5
Ricci calculus5, 8
Ricci curvature 4,5
Riemann curvature4, 4, 7

scalar 4,6
scalar curvature 4,5, 8
semidirect product2
space-time1
symmetry group1
symplectic group3

tensor 1,4, 5–7
tensor componentsseetensor
torsion free5
transformations,inner∼ 4

outer∼ 4

vector field4

Weyl group2

Yang-Mills theory1
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