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Abstract

Like the related papdggrundbegriffe Differentialgeometrié@if Gravitationstheorierfin
German) this talk was held at the semi@ometrische Analysis (spring 2005) to
clarify some basics of the mathematicsGeneral Relativity As an often ignored or
mistaken topic which, too, was only grazed by the preceding presentatiogatiye
invarianceor diffeomorphism invariancef the Einstein-Hilbert actionis shown ex-
plicitly and elementally. It turns out that the induced transformation of the involved
geometrical objects as tHeevi-Civita connectiorand thecurvature tensorss each
similar to its transformation under coordinate changes — a fact that originates in the
same behavior of themetric, the dynamical variable, itself.

1 Introduction

In General Relativitthe metricencodes the curvature space-time Mthereby modelling
the gravitational “force” on matter. So the metric itself is regarded as the dynafieichl
variable and we denote the space of (possible) fields
A = {Lorentz metris g on space-timé1 = R*3}
=C°(M; T*M Vv T*M).
Since a metriq is (locally) described as a symmteric ‘matrix’ (more exactly a symmteric
2-tensor), thelegrees of freedofior M = R areR1°,
Whereas in the other commdield theoriegasYang-Mills theoryfor bosonsof spin< 2 or
asDirac theoryfor fermiong the Lagrange actioron the fields
S: 4 —R

(sloppy as in physicist’s language) depends on the field and it’s first derivatives only, here
one has to go to second derivatives to gebaariantaction, i.e. invariant under thection
(again this name!) of a certasymmetry groul/ — calledgauge group(in generalization

of Maxwell theoryof gauge fields The abstracLagrange mechanismequires invariance

of Sunder¥, and one actually has a mapping

S: M9 — R,
which is to be minimizedgdrinciple of least actiopfor a field to be gphysical field In
general, that invariance thing is due to several reasons, especially the following ones:
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2 I INTRODUCTION

1. Easier presentation and calculation: Often the space of figldgself is linear or
almost linear. In any case there is more algebraic structure thaw/'¢#. This
means one introduces additional degrees of freedom to get a nicer description, but has
to take care of invariant formulation under some selecting conditions, captured by the
gauge group.

2. Easily deducing conservation laws: \liether theoreneach symmetry induces a
conservation law

We want to describe symmetries of tBestein-Hilbert action

Sen(g) = /M ScaPd\, (1.1)
of General Relativity and show th&ty is invariant under thgauge group
@ := Diff (M)

of orientation preservingiffeomorphisms of space-timeM. In general such symmetry
groups for fielddM — E with degrees of freedoif split into

¢ = Diff (M) x Weyl(E) = Aut(M) x Aut(E)

where the lattekVeyl groupfactor operates on the image spa&tee.g. adJ (N) or SU(N)
on C" in Yang-Mills theory. More exactly, in the Yang-Mills situatidh= T#M ® C" and
the so called ‘internal symmetriedl (N) operate only on th€"-part, whereas the actual
‘gauge symmetries’ (in a tighter sense) act on the cotangent spéde leading to the
direct product of both for WeyE). The former factor DiffM) is to be regarded as kind of
reparametrizations and (f = R:9-1) is usually reduced to thoincaré group

Poin(d) := O(1,d— 1) x RY = Aut(R*1)  Aff(RY)

due to the additional affine linear structur. The second factor Weyh the Einstein-Hilbert
situation is trivial — except for the case of dimension 1, where we really have invariance
of the action under multiplications.

Remark. Because of the reparametrization character one usually has an additional group
operation of the DiffM) factor on the second We#) factor leading to thesemidirect
productas the true gauge group:

@ = Diff (M) x Weyl(E),

as was similarly the case for the Poinegroup above as a semi-directly splitted A}
itself. Usually the Weyl group operation is the simple action of multiplications on the target
spaceE: For fields.# > ¢ : M — E we have the action of Wefit) = C*(M,R_ ) given as

Cm(MaRJr) XM — M, (P,(P)'—>P§0

with (p@)(0) = p(0)@o. As explained just before, Diff(M) acts onC*(M,R..), namely
by pullback and we end up at the semidirect prodgcp)(¢’,p’) = (9¢’,(po 9’ 1)p’).

This splitting fact of the gauge group may be expressed in terms of exact sequences as

0— Weyl - ¥ — Diff —0



which is analogous to the well-known Quantum mechanics picturedfenberg groupnd
symplectic group

0 — HeigR?"?!) — ¥ — Sp2n+1,R) — 0

or in pure mathematics to the splitting of the automorphism group into translations and
multiplications
0—C—AutC) —C*—1

or more generally
0 — R" — Aff(R") — GL(n,R) — 1.

Note that for the full invariance (as we will obtain later by transformation rule) the semidirect
product structure, i.e. the action of the reparametrizationgjffon the simple multipli-
cations, is essential.

But in our case, the Einstein-Hilbert action does not admit further symmetries than diffeo-
morphisms. Thus this more complicated structure is not important for us and only should
have aided us to find our position.

2 The gauge group of diffeomorphisms

Proposition. The group¥ = Diff *(M) of diffeomorphisms on space-time M acts on the
space of fields#, the Lorentz metrics on M, lpullback

Gx M— M, (¢,9) — ¢"0.

Remark. Here foro € M and tangent vectorX,Y € T,M at o, the pullbackg of g under
fixed ¢ 1 is given by
((67179)o(X,Y) = Gy (o) (PX, DY) (2.1)

with the shorthand := T,¢, it's inverse then being 1 = Ts(0) (¢~1). We took the inverse
on the left hand side to avoid three times inverse on the right hand side and further more.

Proof. For ¢,y € ¢ andg € .# we simply have

(0" (¥'9)) o (X.Y) = W' Gy-1(0) (PTIX, D71Y)
_ —-14H-1 —1Hx-1
_ng(w(o))(qJ O X, WoTlY)

= O(poy)1(0) ((PW) "X, (@) 1Y)

= ((90¥)"g),(X,Y).

Remark. We want to present two further descriptions of this action.

1. In local coordinates with metric componewts, := 9(dm, dn) and again the tangent
or Jacobian®hd), := Pdm = ToIm

Imn(0) = Phrguv (¢(0)) Pr.
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2. To abbreviate notation we may regard the metric as a matrix identifying tées?r
dmn With matrix componentgll". We then havey(X,Y) = X'gY as matrix multiplica-
tion whereX now denotes a column with coefficieX§' locally given byX = XMg,.
Finally, with g := go ¢ we can write the above equation as

g ='go.

In general, we want to distinguish betweenrfer’ and “outer’ transformations of the fol-
lowing objects and abbreviate the “inner” ones by a tilde. In each case they will be the
usual pullback of the object (undér?) but without the “outer” ones emerging for matrix
valued fields as connection and curvature. Here in the last notgtltag become a (matrix
valued) scalar, thus its pullback reduces to simply composing itkhe “inner” trans-
formation, and, in addition, multiplying witkb' and ® from each side, respectively: the
“outer” transformation.

3 Einstein-Hilbert action
We describe the ingredients of the Einstein-Hilbert action

Sen(g) = /M Scaf d\. (3.1)

For a metricg € ., i.e. onM = R13 and of Minkowski type (signaturgl, 3)), we subse-
quently construct the following objects:

e Levi-Civita connectiontfietric connectiop9 : ' (TM) — End(I(TM)) of g
e Riemann curvatur® : I'(TM) x I'(TM) — End(I" (TM)) of 09

Ricci curvature Rig: '(TM) x '(TM) — R of RY

e Scalar curvature Sl M — R of R? by means of Ri¢

Here we only want to recall some collected formulas for each of them and refer to [Eckert]
(in German) as a more detailed presentation or to standard texts in differential geometry,
e.g. [Hicks].

e Thelevi-Civita connectiori] is given by the (localChristoffel symbols
M :=0'050; = 39" (950 + AQij + A gk = T (3.2)

whereg'! are the so-callethverse metrior dual metriccomponents witly'l gy = 6/.
Besides we want to work with th@nnection-1-form Abeing endomorphism-valued,
i.e. we have to apphA(X) to avector fieldyielding again a vector field:

AX)Y := OxY. (3.3)

e TheRiemann curvaturef the connection is given by



or in local expressions by the curvature coefficients
R:PH = 8mR((9k, 3| )an - akrm — 8| I_nmk—l— rﬂlrh - rwr::]k, (35)

but we do not need the latter term. The curvature is in fé&&ff@arm again endomor-
phism-valued and now calldald strength

F:=R=daA1=dA+AANA= (dA +ANAY; . (3.6)

We shall prove this formula as an example at the end of this listing. Note that the

wedge product is a matrix wedge product whéres viewed as a matrix of 1-forms
A} which of course is squared by summing up wedge products of its entries.

e TheRicci curvatures given by Ri¢X,Z) = tr(R(X, .)Z), globally, and locally by its
components
Rnk := RiC(an,ak) = eranm. (3.7)

e Thescalar curvatureScal is most commonly described using metrimtractionor
raising andloweringof indices Ricci calculus:

Scal= R := g“"Ry = g“"RY. ., (3.8)
Of course it also may be defined globally (or invariantly): Seat Swhere the endo-
morphismSis given by the formula RiX,Z) = g(X,SZ) possible at least for sym-

metric Ricci tensor, also calld@drsion free This is always the case when constructed

from the metric via Levi-Civita connection.
Lemma. As mentioned above, the curvature-2-form is given by
F =dA+AANA=dAA (3.9)
Proof. With F(X,Y) =R(X,Y) = OxOy — Oy Ox — Oyx,y; on basis vectors we have
F (0 )0) = Oa (T} 9h) — Oy (Thed — Og 219
= (8krj| ) + Fh [ Rom— () r;k)ai - r;kr{ram —-0.
Then by (3.10) and(3.11) beneath, foe=: And™
(dA—l— A/\A) (ak, d )81' = dA(ak, o )8j + (A/\ A)(ak, a|)8j
— (kA — AT} + A (A2)9; ) — A@) (A9
= (kT ) — (AT} )h +A(d)T o — A9 iyl

=F(dk,d)9,
as shown above. For the missing equations we write
dA(dk,d) = (dAnA ™) (0k, d) = HAmI™ A — d Amd Mk (3.10)
where therd™Mg, = §™ etc. and besides
(kA )9} = (AAD"))dj = ok(A(0")d)) = k(T}y k) = (kT}y) . (3.11)

]

Finally there is left one ingredient of the Einstein-Hilbert action, namelyribasure

d\g := /| detg|dxt A - - AdX" (3.12)
which by construction of integration on manifolds is simply the standard measuhé,o,
i.e. M equipped with the metrig.
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4 Gauge invariance of the Einstein-Hilbert action

We want to show that the Einstein-Hilbert acti§py is (covariant or) invariant under the
gauge grou of diffeomrphisms, that i$*Scy = Sy forany ¢ € ¢, or forg € .#,

SeH(979) = Sen(9)-
To start with, we first inspect the measure part of the action. With
|det((¢1)*g)| = | de{P'g P)| = det?d| detg| o ¢

we obtain
dViy-1y:g = 1/ |det(¢~1)*gdx= |det®| /| detg| o ¢ dx.

And since® = T ¢, to apply trafo-formula it remains to show
Scal? "9 = Scafog, (4.1)

which is the same formula as for the fact that the scalar curvature “transformsealaa
(tensor). But be careful, here we don’t deal with coordinate changes but with transforma-
tions of the metriqy and the induced changes of the respective objects as Scal in the end.
Compare next remark.

The tail of this section shall prove this transformation formula. Its main portion, at least
technically, is the transformation of the Levi-Civita which is covered by the following

Proposition. Under a diffeomorphism transformation of the metric g the Levi-Civita con-
nection in local terms is changed into

Mn= (Om@f) (@K + PhDNTE, (@)K, (4.2)

Again, the prime indicates the components of the connectiawfor)*g, and for the simple
functionsl};, the tilde again only means composition with

Remark. 1. If we investigate that formula we find the following structure:
M=o o+ o tde =0 (I +d)o.

Of course this is quite sloppy: Firstly in dropping the “inner” transformations, namely
the tilde of (the function) K, together with the transformation of theindex, which in
form notation is the argument of A(X). And secondly it is sloppy in treating the exte-
rior derivatived the same a§. Observe thad® = TT¢ is second derivative op and
(dD)K |, = Om®K = ImdndX in charts.

2. After this we can read off the transformation rule for the connection-1-f&{) = Cx
as
AN =0 AD+ o tdd = A+ d)d (4.3)

where now the “inner” transformatioh meansAy(X) := Ay (0)(®X). This formula in turn
adds up to clarify the first topic.

3. The formula is the same as for transformation under a change of coordinates. In fact,
the action of a gauge on a metricg is the same, as one would have expressed a change
of charts by the diffeomorphism, at first forg but apparently it pulls out. Thereafter, the
transformation law of the proposition implies that the connection is not a tensor because of
the additional summand with second derivatives.



Proof. By definition of the Christoffel symbols we find it easier to multiply by the “in-
verses”, and thus calculate
2r%ng/kl = amgfwl + angl/m -9 g;nn

= Im(PGva D) + On (D] Gp Phy) — 91 (PHGuv DY)

= (Om®H)Gua P + P} (JuGyi) PP + PGy (ImPf)

+ (Gn® )G O+ P (v G0 ) O Pl + P Gy (Gn D)

— (APH)Guv®h — Ph(1Guv) P DY) — OfiGuy (A DY)
where some terms cancel by Schwarz rule of commuting second partial derivatives, remem-
bering the preceding remark that®k = dmda¢X: namely third with seventh and fourth
with the last. In addition, by the same reason the first term is equal to the sixth such that we
get

ZF%ng{d = Z(arqu)g)gnlq)I?L + CD#FDX(DIA (8ugwl + avg/lu - a/lguv>~
= 2(Om®f)Tya P + 205P O (T Gen )

Now, inserting &b, = (CD_l)',‘,CDE in front of eitherg-term and adapting its indices, in both
summands we obtain a factd g, d)l’l = gy, Which can be pulled out to end up with

2M 50T = 2((Am®T) ()5 + ORNT L (0745 ) -
O

Once this result is established that transforngrgy diffeomorphisms induces changes of

the metric and consequently of the connection similar to changes of coordinates, we can
continue with standard proofs for the transformation of the curvature, which contrary to the
connection again becomes a tensor, since the ill terms cancel. We want to avoid the many
indices, hence switch to form notation which shall be demonstrated anyway. In addition,
this separates the different roles of “outer” and “inner” transformations.

Proposition. Transforming the metric g by the gauge group, the curvature F is changed
into
F=0'Fo (4.4)

where now, of coursé,(X,Y) := Fs(0) (PX, DY).
Proof. Expanding the expression
F'=dA+AAA
=d(® 'Ad+ o Hdo) + P LA+ d)OAD HALd)D

by product rule for exterior derivative (observe the minus when passing a form of odd de-
gree) and by contraction &b~ A dC = BA ®~1dC = BAC, we obtain

F'=do 1 AAD+ & L (dA)D — D AAdD + dd I AdD + D 1d%D
+ O IANAD+ D IANdD —dP T AAD —dD I AdD
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where for the last two terms (carefully!) we useédld® = —d(®~1)d which is easily seen
from the product rule again:

d(@ Ho+ o tdo=d(® 'P)=d1=0.
From the preceeding sum three pairs of terms cancel, andif/ith0 we arrive at
F/ =0 HdA+AANA)D = O IF .
Note that actualldA = dA and similarlyAA A = AA A, which has to be checked by direct

computation, i.e. in local expressions: If again= AdX thenA = A KD = (Ao ¢)DK 9™
and by definition of exterior derivative one has

dA = n(A®K)a" A o™
= [(OnA) K, + Adn®K ] 0" A O™
= QAP DKIN A I™
since the second suanvara?qu‘;n = Jndm¢* vanishes in the wedge product because of

Schwarz rule. Note tha} Ay is a convenient shortcut f@g Ay) o ¢, coming in from chain
rule. Now, by the same computations that is exactly the same as

dA= (A" A IKT = g AD DKM A ™.
The similar wedge statement is trivial. Of course, for this 2-fétmA the same definition
of the tilde is being in mind as for the 2-fromof curvature. Il

Finally, we can conclude the proof of invariance by the following, already stated result:

Corollary. Under a diffeomorphism change of the metric g the scalar curveBaa? is
transformed into

Scal® "9 = ScaPog.
Proof. As common in Ricci calculus, l1&® = Scal andR' = Scal®™'s, Then, fromF’ =
®~1F d we read off the transformation of the curvature components as
M= (@ HIRE,, orofef (4.5)

where theconjugationwith ®, the “outer” transformation, is encoded in the summation over
u andv, and the two other products with arise from the “inner” transformation of the two
vector slots ofR, or F at will. This way, of the inner transformation there is still left the
composition with¢, which is denotecﬁv’im.

Besidesg® = (qu)ggaﬁ(qu)g, for, if we multiply the right hand side with the well-
knowng,. = /G, PL, this reduces to
(013G 871Gy, L = (A5 DL = 2.
But then, we get
R =R = g""Rifm= (@ HEg" (071 (0 IR, Oy Of o}
where all thed-terms cancel ovan, n, andk, yielding
R =3 R = (0VRVxu) 09 =R{o 9 =Rog,

the assertion. N
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