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1 Introduction

Functional languages are promising candidates for parallel programming, because
of their high level of abstraction and, in particular, because of their referential
transparency. In principle, any sub-expression could be evaluated in parallel.
As this implicit parallelism would lead to too much overhead, modern parallel
functional languages allow the programmers to specify parallelism explicitly.
These lecture notes present Eden, a parallel functional programming language
which extends Haskell with constructs for the definition and instantiation of par-
allel processes. The underlying idea of Eden is to enable programmers to specify
process networks in a declarative way. Processes evaluate function applications
remotely in parallel. The function parameters are the process inputs and the func-
tion result is the process output. Thus, a process maps input to output values.
Inputs and outputs are automatically transferred via unidirectional one-to-one
channels between parent and child processes. Programmers need not think about
triggering low-level send and receive actions for data transfer between parallel
processes. Nevertheless, the programmer has direct control over evaluation site,
process granularity, data distribution, and communication topology, but need
not manage synchronisation and data exchange between processes. The latter
are performed by the parallel runtime system through implicit communication
channels, transparent to the programmer. Common and sophisticated parallel
communication patterns and topologies, i.e. algorithmic skeletons, are provided
as higher-order functions in a user-extensible skeleton library written in Eden.
Eden is tailored for distributed memory architectures, i.e. processes work within
disjoint address spaces and do not share any data. This simplifies Eden’s imple-
mentation as there is no need for global garbage collection. There is, however, a
risk of loosing sharing, i.e. it may happen that expression evaluations are dupli-
cated in parallel processes.
Although the automatic management of communication by the parallel runtime
system has several advantages, it also has some restrictions. This form of commu-
nication is only provided between parent and child processes, but e.g. not between
sibling processes. I.e. only hierarchical communication topologies are automati-
cally supported. For this reason, Eden also provides a form of explicit channel
management. A receiver process can create a new input channel name and pass
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this to another process. The latter can directly send data to the receiver pro-
cess via the received channel name. Moreover, many to one communication can
be modeled using a pre-defined (necessarily non-deterministic) merge function.
These non-functional Eden features make the language very expressive. Arbi-
trary parallel computation schemes like sophisticated master-worker systems or
divide-and-conquer computations can be defined in an elegant way.
Eden has been implemented by extending the runtime system of the Glasgow
Haskell compiler [42], the most mature and efficient Haskell implementation, for
parallel and distributed execution. The parallel runtime system (PRTS) uses
suitable middleware (currently PVM [39] or MPI [34]) to manage parallel execu-
tion. Recently, a special multicore implementation which needs no middleware
has been implemented. Traces of parallel program executions can be visualised
and analysed using the Eden Trace Viewer.
This tutorial gives an up-to-date introduction into Eden’s language constructs,
its programming methodology based on algorithmic skeletons, and its layered
implementation on top of the Glasgow Haskell compiler.

Plan of this tutorial.

It is assumed that the reader has a basic knowledge of programming in Haskell.
The first section introduces the basic constructs of Eden’s coordination language,
i.e. how parallelism can be expressed and managed. It is explained how simple
process networks like process farms, process rings, and master-worker systems can
be specified. The next section shows how more sophisticated algorithmic skeletons
can be implemented in Eden. Section 4 explains how Eden has been implemented.
Hints at more detailed material on Eden are given in Section 5. Related work is
shortly discussed in Section 6. Conclusions are drawn in Section 7. The appendix
contains a short explanation of how to compile, run, and analyse Eden programs.
In particular, it presents the Eden trace viewer EdenTV, an important tool to
analyse the behaviour of parallel programs. The tutorial refers to several case
studies and shows example trace visualisations. Most corresponding traces have
been produced on an Intel 8-core machine (2 × Xeon Quadcore @2.5GHz, 16 GB
RAM) machine. The program code of the case studies can be found on the Eden
pages, see

http://www.mathematik.uni-marburg.de/~eden/

2 The Basics of Eden

Eden uses Haskell as its computation language. It provides special coordination
constructs

• for defining and creating processes
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• for creating channels on the receiver side and using them on the sender side
— this is used for defining non-hierarchical process topologies

• for merging incoming streams into a single one — this is used to model
many-to-one communication.

2.1 Defining and Creating Processes

Eden provides two coordination constructs for the definition of processes: process
abstraction and instantiation:

process :: (Trans a, Trans b) => (a -> b) -> Process a b

( # ) :: (Trans a, Trans b) => Process a b -> a -> b

The purpose of function process is to convert functions of type a -> b into pro-
cess abstractions of type Process a b where the type context (Trans a, Trans

b) indicates that both types a and b must belong to the Trans class of trans-
missible values. Process abstractions are instantiated by using the infix operator
( # ). An expression (process funct) # arg leads to the creation of a remote
process for evaluating the application of the function funct to the argument arg.
The argument expression arg will be evaluated concurrently by a new thread
in the parent process and sent to the new child process. The child process will
evaluate the function application funct arg in a demand driven way, using the
standard lazy evaluation of Haskell. If the argument value is necessary to com-
plete its evaluation, the child process will suspend, until the parent thread has
sent it. The child process sends back the result of the function application to its
parent process. Communication is performed through implicit 1:1 channels that
are established between child and parent process on process instantiation, while
process synchronisation is achieved by exchanging data through the communi-
cation channels, as these have non-blocking sending, but blocking reception. In
order to increase the parallelism degree and to speed up the distribution of the
computation, process in- and outputs will be evaluated to normal form before
being sent (except for expressions with a function type, which are evaluated to
weak head normal form). This implements a pushing approach for communica-
tion instead of a pulling approach where remote data would have to be requested
explicitly.
Because of the normal form evaluation of communicated data, the type class Trans
is a subclass of the class NFData (Normal Form Data) which provides a function
rnf to force the normal form evaluation of data. Trans provides communication
functions overloaded for lists, which are transmitted as streams, element by ele-
ment, and for tuples, which are evaluated component-wise by concurrent threads
in the same process. An Eden process can thus comprise a number of threads,
which may vary during its lifetime. The type class Trans will be explained in
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more detail in Section 4. A channel is closed when the output value has been
completely transmitted to the receiver. An Eden process will end its execution as
soon as all its output channels are closed or are detected to be unnecessary (dur-
ing garbage collection). Termination of a process implies the immediate closure
of its input channels, i.e., the closure of the output channels in the corresponding
producer processes, thus leading to a termination cascade through the process
network.

Example: The following function creates a parallel sorting network which trans-
forms an input stream into a sorted output stream by subsequently merging
sorted sublists with increasing length:

mergeSort :: (Ord a, Trans a) => [a] -> [a]
mergeSort [] = []
mergeSort [x] = [x]
mergeSort xs = sortMerge (process mergeSort # xs1)

(process mergeSort # xs2)
where [xs1,xs2] = unshuffle 2 xs

Streams with at least two elements are split into two sub-streams using the aux-
iliary function unshuffle.

unshuffle :: Int -- ^ number of sublists
-> [a] -- ^ input list
-> [[a]] -- ^ distributed output

unshuffle n xs = [takeEach n (drop i xs) | i <- [0..n-1]]

takeEach :: Int -> [a] -> [a]
takeEach n [] = []
takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)

The sub-streams are sorted by recursive instantiations of mergeSort processes.
The sorted sublists are coalesced into a sorted result list using the function
sortMerge which is an ordinary Haskell function. The context Ord a ensures
that an ordering is defined on type a.

sortMerge :: Ord a => [a] -> [a] -> [a]
sortMerge [] ylist = ylist
sortMerge xlist [] = xlist
sortMerge xlist@(x:xs) ylist@(y:ys)

| x <= y = x : sortMerge xs ylist
| x > y = y : sortMerge xlist ys

The process system generated when mergeSort is applied to a list with more than
two elements is a binary tree. /

As the coordination functions process and ( # ) are usually used in combination,
one could instead use the following operation for parallel function application:
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($#) :: (a -> b) -> a -> b

f $# x = process f # x -- ( $# ) = ( # ) . process

Example: Using the ($#) operator the third case in the definition of mergeSort

(see above) can be rewritten as follows:

mergeSort xs = sortMerge (mergeSort $# xs1) (mergeSort $# xs2) /

2.2 Creating Farms of Processes

The laziness of Haskell has many advantages as we will see soon when considering
recursive process networks and stream-based communication. Even though, it is
also an obstacle to parallelism, because pure demand-driven (lazy) evaluation will
activate a parallel evaluation only when its result is already needed to continue
the overall computation, i.e. the main evaluation will immediately wait for the
result of a parallel sub-computation. Thus, sometimes it is necessary to produce
additional demand in order to unfold certain process systems. Otherwise, the
programmer may experience distributed sequentiality. This situation is illustrated
by the next example:

Example: Replacing the function application in the map function:

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

by a process instantiation, leads to a simple parallel map function, in which a
different process is created for each element of the input list:

parMap_distrSeq :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parMap_distrSeq f xs = [f $# x | x <- xs]

The operator ($#) determines that the input parameter x, as well as the result
value, will be transmitted via channels. The types a and b should therefore belong
to the class Trans.
The problem with this definition is that for instance the expression

sum (parMap distrSeq square [1..10])

will create 10 processes, but only one after the other as demanded by the sum

function which sums up the elements of a list of numbers. Consequently, the
computation will not speed up by “parallel” evaluation, but slow down because of
the process creation overhead added to the distributed, but sequential evaluation.

/

To avoid this problem the (predefined) Eden function spawn can be used to eagerly
and immediately instantiate a complete list of process abstractions with their
corresponding inputs. Neglecting demand control, spawn can be denotationally
specified as follows:
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spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

spawn = zipWith ( # ) -- definition without demand control

The variant spawnAt additionally locates the created processes on given processor
elements (identified by their number).

spawnAt :: (Trans a, Trans b) => [Int] -> [Process a b] -> [a] -> [b]

Now a really parallel variant of the function map can be defined as follows:

parMap :: (Trans a, Trans b) => (a->b) -> [a] -> [b]

parMap f = spawn (repeat (process f))

where the Haskell prelude function repeat :: a -> [a] yields a list infinitely
repeating the parameter element. This parMap function implements a very simple
form of data parallelism. The parameter function is applied in parallel to all
elements of a given input list. The number of created processes corresponds to
the length of the input list. A more flexible version of a parallel map allows to
adapt the number of processes to e.g. the number of available processing elements
(in Eden provided by the predefined constant noPe :: Int ). The following
function farm takes two additional function parameters: an input distribution
function and a result combination function. The input distribution function
distributes the input list into a list of lists the length of which determines the
number of processes to be created. The result combination function combines the
list of lists of results into a single result list. Of course, the distribution function
and the combination function should be inverse to each other, i.e.

combine . (map (map f)) . distribute = map f.

farm :: (Trans a, Trans b) =>
([a] -> [[a]]) -- ^ input distribution
-> ([[b]] -> [b]) -- ^ result combination
-> (a->b) -> [a] -> [b] -- ^ map interface

farm distribute combine f
= combine . (parMap (map f)) . distribute

The function farm implements a process farm with static task distribution. A
typical distribution function would be e.g. unshuffle noPe. A corresponding
combine function would be shuffle = concat . transpose.
The functions parMap and farm are simple examples for the definition of (algo-
rithmic) skeletons [13] in Eden. Skeletons define common parallel computation
patterns. In Eden they are simply defined as higher-order functions. Eden pro-
vides a library with many pre-defined skeletons. In Section 3 we will discuss some
more sophisticated skeleton definitions in Eden.

Case Study (Raytracer): The following central part of a ray tracer can easily be
parallelised using the farm skeleton.

7



��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��� �������� ��� ���� ������� ��� ���� ��� ���� ��� ���� ��� ����

	
��

	���

	���

	���

	���

	���

	���

	���

	���
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runtime 0.659667s
8 machines
9 processes
17 threads
48 conversations
20048 messages

Figure 1: Raytracer trace on 8 PE, farm with 8 processes

rayTrace scene viewpoint
= map impact rays
where rays = generateRays viewPoint

impact ray = fold earlier (map (hit ray) scene)

The complete program codes of case studies can be found on the Eden web pages.
By replacing the outer map by (farm (unshuffle noPe) shuffle) we achieve a
parallel ray tracer which creates as many processes as processing elements are
available. Each process computes the impacts of a couple of rays. The rays will
be computed by the parent process and communicated to the remote processes.
Each process receives the scene via its process abstraction. If the scene has not
been evaluated before the processes are created, each process will evaluate it.
Figure 1 shows the trace visualisation (processes’ activity over time) and some
statistics produced by our trace viewer EdenTV (see Section A.2). The trace
has been generated by a program run of the raytracer program with input size
100 on an Intel 8-core machine (2 × Xeon Quadcore @2.5GHz, 16 GB RAM)
machine. The result is disappointing, because most processes are almost always
blocked (red/dark grey) and show only short periods of activity (green/grey). 9
processes (the main process and 8 farm processes) and 17 threads (one thread per
farm process and 9 threads in the main process, i.e. the main thread and 8 threads
which evaluate and send the input for the farm processes) have been created. Two
processes have been allocated on machine 1. Alarming is the enormous number
of messages that is exchanged between the processes. When messages are added
to the trace visualisation, the graphic becomes almost black. It becomes obvious
that the extreme number of messages is one of the reasons for the bad behaviour
of the program. Most messages are stream messages. A stream is counted as
a single conversation. The number of conversations, i.e. communications over
a single channel, is much less than the number of total messages. In the next
section, we will show how to optimise process communication. ¦
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2.3 Process Communication

Eden processes exchange data via unidirectional one-to-one communication chan-
nels. The type class Trans provides implicitly used functions for this purpose.
As laziness enables infinite data structures and the handling of partially available
data, communication streams are modeled as lazy lists, and circular topologies
of processes are created and connected by such streams.

Example: The sequence of Hamming numbers 〈2i3j5k | i, j, k ≥ 0〉 can easily be
computed using the following process network:
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which can be expressed in Eden as follows:

hamming :: [Int]
hamming = 1: sm ((uncurry sm) $# ((map (*2) $# hamming,

(map (*3) $# hamming))
((map (*5) $# hamming)

The function sm is similar to the previously introduced function sortMerge but
eliminates duplicates when merging sorted lists.

sm :: [Int] -> [Int] -> [Int]
sm [ ] ys = ys
sm xs [ ] = xs
sm xl@(x:xs) yl@(y:ys)

| x < y = x : sm xs yl
| x == y = x : sm xs ys
| otherwise = y : sm xl ys

Four child processes will be created by the four applications of ($#). The main
process will evaluate the outer application of sm itself. Note that the process
network resulting from the above Eden definition does not exactly correspond to
the one shown above. The problem is that in Eden implicitly created communi-
cation channels are always established between parent and child processes. The
parent process of all Hamming child processes is the main process. Thus, the
output of the process computing (map (*2) hamming) will be sent to the main
process which passes it further to the process computing (uncurry sm ...). We
will later show how channels can be created explicitly to cope with this problem.

/
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2.3.1 Reducing Communication Costs: Chunking

The default stream communication in Eden produces a single message for each
stream element. This may lead to high communication costs and in many cases
it is advantageous to communicate a stream in larger segments. Note that this
chunking is not always advisable. In the Hamming network it is e.g. important
that elements are transferred one-by-one — at least at the beginning — because
the output of the network depends on the previously produced elements. If there
is no such dependency, the decomposition of a stream into chunks reduces the
number of messages to be sent and in turn the communication overhead. The
following definition shows how chunking can be defined for parallel map skeletons
like parMap and farm. The auxiliary function chunk decomposes a list into chunks
of a given size. The function chunkMap simply applies chunk on the input list and
afterwards concatenates the result chunks using the predefined Haskell function
concat :: [[a]] -> [a].

chunkMap :: Int
-> (([a] -> [b]) -> ([[a]] -> [[b]]))
-> (a -> b) -> [a] -> [b]

chunkMap size mapscheme f xs
= concat (mapscheme (map f) (chunk size xs))

chunk :: Int -> [a] -> [[a]]
chunk k [] = []
chunk k xs = ys : chunk k zs
where (ys,zs) = splitAt k xs

Chunking may substantially reduce communication costs, as the number of mes-
sages drops when chunking is used.

Case Study (Raytracer continued): Changing the raytracer program by

1. generating only noPe-1 farm processes to avoid that two processes have to
share a machine

2. reducing the number of messages by chunking the input and output streams
of processes

leads to better results (see Figure 2). Note that the input size is 5 times the
input size of the previously shown trace. It becomes clear that processes are now
active half of the time, but still blocked the rest of time waiting for input from
the main process. Only the main process is busy most of the time sending input
to the farm processes. The number of messages has drastically been reduced,
thereby improving the runtime behaviour a lot. However, the program behaviour
can still be improved. ¦
We can even act more radically and reduce communication costs further for data
transfers from parent to child processes.
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Figure 2: Raytracer trace on 8 PE, farm with 7 processes and chunking

2.3.2 Communication vs Parameter Passing:
Running Processes Offline

Eden processes have disjoint address spaces. Consequently, on process instantia-
tion, the process abstraction will be transferred to the remote processing element
including its whole environment, i.e. the whole heap reachable from the process
abstraction will be copied. This is done even if the heap includes non-evaluated
parts which may cause the duplication of work. A programmer is able to avoid
work duplication by forcing the evaluation of unevaluated sub-expressions of a
process abstraction before it is used for process instantiation.
There exist two different approaches for transferring data to a remote child pro-
cess. Either the data is passed as a parameter or sub-expression (without prior
evaluation unless explicitly forced) or data is communicated via a communication
channel. In the latter case the data will be evaluated by the parent process before
sending.

Example: Consider the function fun2proc defined by

fun2proc :: (a -> b -> c) -> a -> Process b c
fun2proc f x = process (\ y -> f x y)

and the following process instantiation:

fun2proc fexpr xarg # yarg

When this process instantiation is evaluated, the process abstraction fun2proc

fexpr xarg (including all data referenced by it) will be copied and sent to the
processing element where the new process will be evaluated. The parent process
creates a new thread for evaluating the argument expression yarg to normal form
and a corresponding outport (channel). Thus, the expressions fexpr and xarg
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will be evaluated lazily if the child process demands their evaluation, while the
expression yarg will immediately evaluated by the parent process. /

If we want to evaluate the application of a function h :: a -> b by a remote pro-
cess, there are two possibilities to produce a process abstraction and instantiate
it:

1. If we simply use the operator ($#), the argument of h will be evaluated by
the parent process and then passed to the remote process.

2. Alternatively, we can pass the argument of h within the process abstraction
and use instead the following remote function invocation.

rfi :: (a -> b) -> a -> Process () b
rfi h x = process (\ () -> h x)

Now the argument of h will be evaluated on demand by the remote process
itself. The empty tuple () (unit) is used as a dummy argument in the process
abstraction. If the communication network is slow or if the result of the argument
evaluation is large, instantiation via rfi h x # () may be more efficient than
using (h $# x). We say that the child process runs offline.
With this technique the previously defined farm can easily be transformed into
the following offline farm, which can equally well be used to parallelise map ap-
plications.

offline farm :: (Trans a, Trans b) =>
([a] -> [[a]]) -> -- input distribution
([[b]] -> [b]) -> -- result combination
(a->b) -> [a] -> [b] -- map interface

offline farm distribute combine f xs
= combine $ spawn (map (rfi (map f)) (distribute xs)) (repeat ())

Although the input is not explicitly communicated to an offline farm, chunking
may be useful, because it also causes the result stream to be sent in chunks.

Case Study (Raytracer continued 2): Using the offline farm instead of the farm in
our raytracer case study eliminates the explicit communication of all input rays to
the farm processes. The processes now evaluate their input by themselves. Only
the result values are communicated. Figure 3 shows that the farm processes are
now active during all their life time. The runtime is much smaller. ¦
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Figure 3: Raytracer trace on 8 PE, offline farm with 7 processes and chunking

2.3.3 Dynamic channels and Remote Data

With the Eden constructs introduced up to now, communication channels are
only (implicitly) established between parent and child processes during process
creation. These are called static channels and they build purely hierarchical
process topologies.

Example: Consider the following definition of a process ring in Eden. The number
of processes in the ring is determined by the length of the input list. The ring
processes are created using the parMap function.

ring :: (Trans i, Trans o, Trans r) =>
((i,r) -> (o,r)) --^ ring process function
-> [i] -> [r] --^ input - output mapping

ring f is = os
where
(os,ringOuts) = unzip (parMap f (lazyzip is ringIns))
ringIns = rightRotate ringOuts

lazyzip :: [a] -> [b] -> [(a,b)]
lazyzip [] _ = []
lazyzip (x:xs) ~(y:ys) = (x,y) : lazyzip xs ys

rightRotate :: [a] -> [a]
rightRotate [] = []
rightRotate xs = last xs : init xs

The auxiliary function lazyzip corresponds to the Haskell prelude function zip

but is lazy in its second argument (because of using the lazy pattern ~(y:ys)).
This is crucial because the second parameter ringIns will not be available when
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Figure 4: Topology of process ring (left: intended topology, right: actual topol-
ogy)

the parMap function creates the ring processes. Note that the list of ring inputs
ringIns is the same as the list of ring outputs ringOuts rotated by one element
to the right using the auxiliary function rightRotate.
Unfortunately, this elegant and compact ring definition will not produce a ring
topology but a star (see Figure 4). The reason is that the channels for com-
munication between the ring processes are not established in a direct way, but
only indirectly via the parent process. One could produce the ring as a chain of
processes when each ring process creates its successor but this approach would
cause the input from and output to the parent process to run through the chain
of predecessor processes. Moreover it is not possible to close this chain to form a
ring. /

To overcome this problem Eden provides functions to explicitly create and use
dynamic channel connections between arbitrary processes:

new :: Trans a => (ChanName a -> a -> b) -> b
parfill :: Trans a => ChanName a -> a -> b -> b

By evaluating new (\ name val -> e) a process creates a dynamic channel name
of type ChanName a in order to receive a value val of type a. After creation, the
channel should be passed to another process (just like normal data) inside the
expression result e, which will as well use the eventually received value val. The
evaluation of (parfill name e1 e2) in the other process has the side-effect that
a new thread is forked to concurrently evaluate and send the value e1 via the
channel. The overall result of the expression is e2.
These functions are rather low-level and it is not easy to use them appropriately.
Let us suppose that process A wants to send data directly to some process B
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by means of a dynamic channel. This channel must first be generated by the
process B and sent to A before the proper data transfer from A to B can take
place. Hence, the dynamic channel is communicated in the opposite direction to
the desired data transfer.

Example: Using dynamic channels the ring channels can be established in the
intended way. The ring definition must only slightly be modified. It suffices to
replace the application of the ring function f with a modified version plink f

which introduces dynamic channels to transfer the ring input. Instead of passing
the ring data via the parent process, only the channel names are now passed via
the parent process from successor to predecessor processes in the ring. The ring
data is afterwards directly passed from predecessors to successors in the ring.
Note the the orientation of the ring must now be changed which is done by using
leftrotate instead of rightrotate in the definition of ring.

ringDC :: (Trans i, Trans o, Trans r) =>
((i,r) -> (o,r)) -- ^ ring process function
-> [i] -> [r] -- ^ input - output mapping

ringDC f is = os
where
(os,ringOuts) = unzip (parMap (plink f) (lazyzip is ringIns))
ringIns = leftRotate ringOuts

leftRotate :: [a] -> [a]
leftRotate [] = []
leftRotate (x:xs) = xs ++ [x]

plink :: (Trans i, Trans o, Trans r) =>
((i,r) -> (o,r)) -- ^ ring process function
-> ((i, ChanName r)

-> (o, ChanName r)) -- ^ .. with dynamic channels
plink f (i, outChan)
= new (\ inChan ringIn ->

parfill outChan ringOut (o, inChan))
where (o, ringOut) = f (i, ringIn)

Each ring process creates an input channel which is immediately returned to the
parent process and passed to the predecessor process. Each ring process receives
from the parent a channel to send data to the successor in the ring. It uses this
channel to send the ring output ringOut to its successor process by a concurrent
thread created by the parfill function. The original ring function f is applied to
the parent’s input and the ring input received via the dynamic ring input channel.
It produces the output for the parent process and the ring output ringOut for
the successor process in the ring. In fact, the star topology is still used but only
to propagate channel names. The proper data is now passed directly from one
process to its successor in the ring.
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Although this definition leads to the intended topology, the correct and effective
use of dynamic channels is not obvious. /

A more abstract, more natural and easier-to-use way to define non-hierarchical
process networks like rings in Eden are remote data [1]. The main idea is to
replace the data to be communicated between processes by handles to it, called
remote data. These handles can then be used to convey the real data directly
to the desired target. Thus, a remote data of type a is represented by a handle
of type RD a with interface functions release and fetch. The function release

produces a remote data handle that can be passed to other processes, which will
in turn use the function fetch to access the remote data. The data transmission
occurs automatically from the process that releases the data to the process which
uses the handle to fetch the remote data.
Remote data can be defined in Eden as follows [15]:

type RD a = ChanName (ChanName a) -- remote data

-- convert local data into remote data
release :: Trans a => a -> RD a
release x = new (\ cc c -> parfill c x cc)

-- convert remote data into local data
fetch :: Trans a => RD a -> a
fetch cc = new (\ c x -> parfill cc c x)

Notice how the remote data approach preserves the direction of the communica-
tion (from process A to process B) by introducing another channel transfer from
A to B. This channel will be used by B to send its (dynamic) channel data to A,
and thus establish the direct data communication. More exactly, to release local
data x of type a, a dynamic channel cc of type RD a, i.e. a channel to transfer
a channel name. When a channel c (of type ChanName a) is received via cc, the
local data x is sent via c. Conversely, in order to fetch remote data, represented
by the remote data handle cc, a new (dynamic) channel c is created and the
channel name is sent via cc. The proper data will be received via the channel c.
The next simple example illustrates how the remote data concept is used to
establish a direct channel connection between sibling processes.

Example: Given functions f and g, the expression (g . f) a can be calculated
in parallel by creating a process for each function. One just replaces the function
calls by process instantiations

(g $# (f $# inp)).

This leads to the process network in Figure 5 (a) where the process evaluating
the above expression is called main. Process main instantiates a first process for
calculating g. In order to transmit the corresponding input to this new process,
main instantiates a second process for calculating f, passes its input to this process
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Figure 5: A simple process graph

and receives the remotely calculated result, which is passed to the first process.
The output of the first process is also sent back to main. As in the ring example the
drawback of this approach is that the result of the process calculating f is not sent
directly to the process calculating g, thus causing unnecessary communication
costs.
In the second implementation, we use remote data to establish a direct channel
connection between the child processes (see Figure 5 (b)):

(g . fetch) $# ((release . f) $# inp)

The output produced by the process calculating f is now encapsulated in a remote
handle that is passed to the process calculating g, and fetched there. Notice that
the remote data handle is treated like the original data in the first version, i.e. it is
passed via the main process from the process computing f to the one computing
g. /

Example: Also the process ring considered before can easily be re-defined using
the remote data concept:

ringRD :: (Trans i, Trans o, Trans r) =>
((i,r) -> (o,r)) --^ ring process function
-> [i] -> [r] --^ input - output mapping

ringRD f is = os
where
(os,ringOuts) = unzip (parMap (toRD f) (lazyzip is ringIns))
ringIns = rightRotate ringOuts

toRD :: (Trans i, Trans o, Trans r) =>
((i,r) -> (o,r)) -- ^ ring process function
-> ((i, RD r)

-> (o, RD r)) -- ^ .. with remote data
toRD f (i, ringIn) = (o, release ringOut)

where (o, ringOut) = f (i, fetch ringIn)
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Again the original ring function is embedded using the auxiliary function toRD

into a function which replaces the ring data by remote data and introducing calls
to fetch and release at appropriate places. The orientation of the original ring
can be kept. Note that the double number of channel names are now passed
to establish the intended ring topology. However, the remote data definition is
much easier than using dynamic channels directly. /

We conclude this subsection with another example which shows the definition
of the Hamming process network using remote data in order to establish the
intended process topology shown before.

Example: In order to introduce direct communication between the processes in
the Hamming process network, one has to introduce appropriate calls to fetch

and release where sibling processes should directly communicate:

hamming :: [Int]
hamming = 1: sm ((toRDuncurry sm) $# ((release.(map (*2))) $# hamming,

((release.(map (*3))) $# hamming))
((map (*5)) $# hamming)

toRDuncurry :: ([a] -> [a] -> [a]) -> ([RD a],[RD a]) -> [a]
toRDuncurry f (rd1, rd2) = f (fetch rd1) (fetch rd2)

The function uncurry is replaced with a special variant, which expects remote
data as input. The data must be fetched before the original parameter function
can be applied to it. Communication between parent and child processes need
not be done using remote data handles. /

The remote data concept enables the programmer to easily build complex topolo-
gies by combining simpler ones [15].

Case Study (Warshall’s algorithm): Warshall’s algorithm for computing shortest
paths in a graph given by an adjacency matrix can be implemented using a
process ring. Each ring process is responsible for the update of a subset of rows.
The whole adjacency matrix is rotated once around the process ring. Thus, each
process sees each other row of the whole adjacency matrix. The kernel of the
implementation is the iteration function executed by the ring processes for each
row assigned to them.

ring_iterate :: Int -> Int -> Int ->
[Int] -> [[Int]] -> ( [Int], [[Int]])

ring_iterate size k i rowk (rowi:xs)
| i > size = (rowk, []) -- Finish Iteration
| i == k = (rowR, rowk:restoutput) - send own row
| otherwise = (rowR, rowi:restoutput) - update row

where
(rowR, restoutput) = ring_iterate size k (i+1) nextrowk xs
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Runtimes are shown above. The other statistical information is for both versions
the same: input size 500, 8 machines, 9 processes, 41 threads, 72 conversations,
4572 messages

Figure 6: Warshall trace on 8 PE, ring with 8 processes and chunking

nextrowk | i == k = rowk -- no update, if own row
| otherwise = updaterow rowk rowi (rowk!!(i-1))

In the kth iteration the process with row k sends this row into the ring. During
the other iterations each process updates its own rows with the information of
the row received from its ring predecessor.
Unfortunately, a trace analysis reveals (see Figure 6(a)) that the parallel version
has a demand problem. In a first phase, an increasing phase of activity runs along
the ring processes, until the final row is sent into the ring. Then all processes
start to do their update computations. By forcing the immediate evaluation of
nextrowk, i.e. the update computation, the sequential start-up phase of the ring
can be compressed. The additional demand can be expressed by rnf nextrowk

‘pseq‘ which has to be included before the recursive call to ring iterate. This
demands the evaluation of nextrowk to normal form before the second argument
of pseq is evaluated. The effect of this small code change is enormous as shown
in Figure 6(b).

¦

2.3.4 Many-to-one communication:
Merging Communication Streams

Many-to-one communication is an essential feature for many parallel applications,
but, unfortunately, it introduces non-determinism and, in consequence, spoils the
purity of functional languages. In Eden, the predefined function

merge :: [[a]] -> [a]

merges (in a non-deterministic way) a list of streams into a single stream. Func-
tional purity can be preserved in most portions of an Eden program. It is e.g.
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Figure 7: Master-worker process topology

masterWorker :: (Trans a, Trans b) =>
Int -> Int -> (a->b) -> [a] -> [b]

masterWorker np prefetch f tasks
= orderBy fromWs reqs
where

fromWs = spawn workers toWs
workers = [process (tag_map f) | n <-[1..np]]
toWs = distribute np tasks reqs
newReqs = merge [[i | r <- rs] | (i,rs) <- zip [1..np] fromWs]
reqs = initReqs ++ newReqs
initReqs = concat (replicate prefetch [1..np])

Figure 8: Eden implementation of a simple master worker scheme

possible to use sorting in order to force a particular order of the results returned
by a merge application and thus to encapsulate merge in a deterministic context.
The merge function can be used to react quickly to requests coming in an unpre-
dictable order from a set of processes, and thus enable dynamic load balancing of
parallel programs in a master-worker scheme as shown in Figure 7. The master
process distributes tasks to worker processes, which solve the tasks and return
the results to the master.
The Eden function masterWorker (evaluated by the “master” process) (see Fig-
ure 8) takes four parameters: np specifies the number of worker processes that
will be spawned, prefetch determines how many tasks will initially be sent by
the master to each worker process, the function f describes how tasks have to be
solved by the workers, and the final parameter tasks is the list of tasks that have
to be solved by the whole system. The auxiliary pure Haskell function distribute

:: Int -> [a] -> [Int] -> [[a]] is used to distribute the tasks to the work-
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ers. Its first parameter determines the number of output lists, which become
the input streams for the worker processes. The third parameter is the request
list reqs which guides the task distribution. The request list is also used to sort
the results according to the original task order (function orderBy :: [[b]] ->

[Int] -> [b]):

distribute :: Int -- ^number of workers
-> [t] -- ^ task list
-> [Int] -- ^ request stream with worker IDs
-> [[t]] -- ^ each inner list for one worker

distribute np reqs tasks = [taskList reqs tasks n | n<-[1..np]]
where taskList (r:rs) (t:ts) pe

| pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe

taskList _ _ _ = []

orderBy :: [[r]] -- ^ nested input list
-> [Int] -- ^ request stream gives distribution
-> [r] -- ^ ordered result list

orderBy rss [] = []
orderBy rss (r:reqs)
= let (rss1,(rs2:rss2)) = splitAt r rss
in (head rs2): orderBy (rss1 ++ ((tail rs2):rss2)) reqs

Initially, the master sends as many tasks as specified by the parameter prefetch

in a round-robin manner to the workers (see definition of initReqs in Figure 8).
Further tasks are sent to workers which have delivered a result. The list newReqs

is extracted from the worker results tagged with the corresponding worker id
which are merged according to the arrival of the worker results. This simple
master worker definition has the advantage that the tasks need not be numbered
to re-establish the original task order on the results. Moreover, worker processes
need not send explicit requests for new work together with the result values.

Case Study (Mandelbrot): The kernel function of a program to compute a two-
dimensional image of the Mandelbrot set for given complex coordinates ul (upper
left) and lr (lower right) and the number of pixels in the horizontal dimension
dimx as a string can be written as follows in Haskell:

image :: Double -> Complex Double -> Complex Double -> Integer -> String
image threshold ul lr dimx
= header ++ (concat $ map xy2col lines)
where
xy2col :: [Complex Double] -> String
xy2col line = concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line
(dimy, lines) = coord ul lr dimx
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Figure 9: Mandelbrot traces on 25 PEs, offline farm with chunked tasks (left) vs
master-worker (right)

The first parameter is a threshold for the number of iterations that should be
done to compute the color of a pixel.
The program can easily be parallelised by replacing map in the expression map

xy2col lines by a parallel map implementation. Figure 9 shows two traces that
have been produced on a Beowulf cluster at Heriot-Watt University in Edinburgh
(32 Intel P4-SMP nodes @ 3 GHz 512MB RAM, Fast Ethernet). The Mandelbrot
program was evaluated with an input size of 2000 lines with 2000 pixels each using
25 PEs. The program that produced the trace on the left hand side replaced map

by offline farm (chunk (2000 ‘div‘ 25)) concat. The program yielding the
trace on the right hand side replaced map by masterWorker 25 8.
In the offline farm, all worker processes are busy during their life time, but we
observe an unbalanced workload which reflects the shape of the mandelbrot set.
To be honest, the uneven workload has been enforced by using chunk (2000

‘div‘ 25) for task distribution instead of unshuffle 25. The latter would even
lead to a well-balanced workload which is however a special property of this
example problem. In general, irregular parallelism cannot easily be balanced.
The master-worker system uses a dynamic task distribution. In our example
a prefetch value of 8 has been used to initially provide 8 tasks to each PEs.
The trace in Figure 9 reveals that the workload is better balanced, but worker
processes are often blocked waiting for new tasks. Unfortunately, the master
process on machine 1 (lowest bar) is not able to keep all worker processes busy. In
fact, the master-worker parallelisation needs more time than the badly balanced
offline farm. In addition, both versions suffer from a long end phase in which the
main or master process collects the results. ¦

3 Algorithmic Skeletons

Algorithmic skeletons [13] provide commonly used patterns of parallel evaluation
which can simply be used by programmers to parallelise their applications. This
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version number of processes task transfer task distribution
parMap number of tasks communication one per process

farm mostly noPe communication static
offline farm mostly noPe local selection static

masterWorker mostly noPe communication dynamic

Figure 10: Classification of parallel map implementations

facilitates the development of parallel programs. The functions parMap, farm, and
masterWorker defined above are simple examples for skeleton definitions in Eden.
In general, an algorithmic skeleton can be implemented in several ways. Im-
plementations may differ in the process topology created, in the granularity of
tasks, in the load balancing strategy or in the target architecture used to run
the program. These details are transparent to the skeleton user, but determine
the efficiency of the program. Nevertheless it is possible to predict the efficiency
of skeleton instantiations by providing a cost model for each particular skeleton
implementation [29].
While most skeleton systems provide pre-defined, specially supported sets of
skeletons, the application programmer has usually not the possibility of creat-
ing new ones. In Eden, skeletons can be used, modified and newly implemented,
because (like in other parallel functional languages) skeletons are no more than
polymorphic higher-order functions which can be applied with different types and
parameters. Thus, programming with skeletons in Eden follows the same princi-
ple as programming with higher-order functions. Moreover, describing both the
functional specification and the parallel implementation of a skeleton in the same
language context constitutes a good basis for formal reasoning and correctness
proofs, and provides greater flexibility.
In a way similar to the rich set of higher-order functions provided by Haskell’s
prelude, Eden provides a well assorted skeleton library. Next we present a small
selection of typical Eden skeletons.

3.1 Parallel Maps and Workpools

In Section 2 we have defined several parallel implementations of map, a simple
form of data parallelism. A given function has to be applied to each element of
a list. The list elements can be seen as tasks, to which a worker function has to
be applied. The parallel map skeletons we developed up to now can be classified
as shown in Figure 10. The simple parMap is mainly used to create a series of
processes evaluating the same function. The static task distribution implemented
in farm and offline farm is especially appropriate for regular parallelism, i.e.
when all tasks have same complexity or can be distributed in such a way that
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the workload of the processes is well-balanced. The master worker approach with
dynamic task distribution is suitable for irregular tasks.
The master worker skeleton defined above is a very simple version of a workpool
skeleton. It has a single master process with a central workpool, the worker
processes have no local state and cannot produce and return new tasks to be
entered into the workpool. Several more sophisticated workpool skeletons are
provided in the Eden skeleton library. We will here exemplarily show how a
hierarchical master worker skeleton can elegantly be defined in Eden. For details
see [6, 38]. As a matter of principle, a nested master-worker system can be defined
by using the simple master worker skeleton defined above as the worker function
for the upper levels. The simple master worker skeleton must only be modified
in such a way that the worker function has type [a] -> [b] instead of a -> b.
The nested scheme is then simply achieved by folding the zipped list of branching
degrees and prefetches per level. This produces a regular scheme. The proper
worker function is used as the starting value for the folding. Thus it is used at
the lowest level of worker processes.

mwNested :: (Trans a, Trans b) =>
[Int] -- ^ branching degrees per level
-> [Int] -- ^ prefetches per level
-> ([a] -> [b]) -- ^ worker function
-> [a] -> [b] -- ^ tasks, results

mwNested ns pfs wf = foldr fld wf (zip ns pfs)
where
fld :: (Trans a, Trans b) =>

(Int,Int) -> ([a] -> [b]) -> ([a] -> [b])
fld (n,pf) wf = masterWorker’ n pf wf

Case Study (Mandelbrot continued): Using a nested master-worker system helps
to improve the computation of Mandelbrot sets on a large number of processor
elements. Figure 11 shows an example trace produced for input size 2000 on 25
PEs with a two-level master worker system comprising four sub-masters serving
five worker processes each. Thus, the function mwNested has been called with
parameters [4,5] and [64,8]. The trace clearly shows that the work is well-
balanced among the 20 worker processes. Even the post-processing phase in
the main process (top-level master) could be reduced, because the results are
now collected level-wise. The overall runtime could substantially be reduced in
comparison to the simple parallelisations discussed previously (see Figure 9). ¦

3.2 Divide-and-conquer

Divide-and-conquer is a well-known algorithmic technique in sequential program-
ming: it divides or (splits) an instance of a problem into two or more smaller
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branching degrees [4,5]:
1 master, 4 sub-masters, 5 workers
per submaster
prefetches [64,8]:
64 tasks per submaster, 8 tasks per
worker

Figure 11: Mandelbrot trace on 25 PEs with hierarchical master-worker skeleton
(hierarchy shown on the right)

instances of the original problem. If these subproblems are trivial enough to be
solved directly, the solution of the original instance is obtained by combining the
sub-solutions. If the subproblems are still too large to be solved readily, they
are (recursively) divided into still smaller instances. The Haskell version of this
strategy is the following polymorphic higher-order function:

type DivideConquer a b
= (a -> Bool) -> (a -> b) -- ^ trivial? / solve

-> (a -> [a]) -> (a -> [b] -> b) -- ^ split / combine
-> a -> b -- ^ input / result

seqDC :: DivideConquer a b
seqDC is_trivial solve split combine = dc
where dc x = if trivial x then solve x

else combine x (map dc (split x))

The resulting structure is a tree of task nodes where successor nodes correspond
to the sub-problems, the leaves representing trivial tasks. Notice that the call
tree may be non-homogeneous, and that trivial solutions (i.e. leaves) may appear
at any level of the tree.
The most direct way to parallelise the seqDC scheme in Eden is to replace map

by parMap. An additional integer parameter d can be used to stop the parallel
unfolding at a given level and to use the sequential version instead:

parDC :: (Trans a, Trans b) =>
Int -> -- depth
DivideConquer a b

parDC 0 = seqDC
parDC d trivial solve split combine = pdc d
where
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Figure 12: Distributed expansion divide and conquer skeleton for a binary task
tree

pdc d x = if trivial x then solve x
else combine x results

where results = parMap (pdc (d-1)) (split x)

In this approach a dynamic tree of processes is created with each process con-
nected to its parent. With the default round robin placement of child processes,
the processes are not evenly distributed on the available PEs.

Example: If 8 PEs are available and if we consider a regular divide-and-conquer
tree with branching degree 2 and three recursive unfoldings, then 14 processes
will be created and allocated on PEs 1 to 7, as indicated by the following tree:

While no process is allocated on PE 8, PE 5 gets four processes, and three
processes are allocated on PEs 4 and 6 each. /

The following parallel divide-and-conquer implementation provides a better load
balance. It is assumed that every non-trivial task is split into a fixed number
of subtasks. Now the process tree is created in a distributed fashion: One of
the tree branches is processed locally, while the others are instantiated as new
processes, as long as processor elements (PEs) are available. These branches will
recursively produce new parallel subtasks, resulting in a distributed expansion of
the computation. Figure 12 shows the binary tree of task nodes produced by a
d&c strategy splitting each non-trivial task into two subtasks, in a context with
8 PEs. The boxes indicate which task nodes will be evaluated by each PE.
In this setting, explicit placement of processes is essential to avoid that too many
processes are placed on the same PE while leaving others unused.
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disDC :: (Trans a, Trans b) =>
Int -> [Int] -> -- branch degree / tickets
DivideConquer a b

disDC k [] = seqDC
disDC k tickets is_trivial solve split combine
= rec_disDC tickets
where
rec_disDC tickets =

if trivial x then solve x
else ... -- code for demand control omitted

combine x ( myRes:childRes ++ localRess )
where
-- child process generation
childRes = spawnAt childTickets childProcs procIns
childProcs = map (process . rec_disDC) theirTs
-- ticket distribution
(childTickets, restTickets) = splitAt (k-1) tickets
(myTs: theirTs) = unshuffle k restTickets
-- input splitting
(myIn:theirIn) = split x
(procIns, localIns) = splitAt (length childTickets) theirIn
-- local computations
myRes = rec_disDC myTs myIn
localRess = map seqDC is_trivial solve split combine localIns

Figure 13: Eden definition of distributed expansion divide-and-conquer skeleton

Figure 13 shows the code for the distributed expansion d&c skeleton for k-ary task
trees. Two additional parameter are needed: the branching degree and a ticket
list with PE numbers to place newly created processes. As explained above, the
left-most branch of the task tree is solved locally (myIn), other branches (theirIn)
are instantiated using the Eden function spawnAt (see Section 2).
Observe how the ticket list is used to control the placement of newly created
processes: First, the PE numbers for placing the immediate child processes are
taken from the ticket list; then, the remaining tickets are distributed to the
children in a round-robin manner using the function unshuffle :: Int -> [a]

-> [[a]] which distributes the elements of a given list into as many lists as
indicated by the first parameter. Computations corresponding to children will
be performed locally (localIns) when no more tickets are available. The explicit
process placement via ticket lists is a simple and flexible way to control the
distribution of processes as well as the recursive unfolding of the task tree. If too
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type LongInteger = (Int,[Int])
karat :: Int

-> LongInteger
-> LongInteger
-> LongInteger

karat depth is1 is2
= disDC 3 tickets

trivial
solve
split
combine
(is1,is2)

where tickets = [2..noPe]

Figure 14: Karatsuba trace on 9 PEs and code with distributed expansion dc
skeleton

few tickets are available, computations are performed locally. Duplicate tickets
can be used to allocate several child processes on the same PE.

Case Study (Karatsuba): Karatsuba’s algorithm [24] computes the product of
two large integers using a regular divide-and-conquer approach. An integer is
represented in base b as a list of “digits” di, where for all i we have 0 ≤ di < b.
If n is the length of the input integer representations, a divide step produces
three subproblems where integers of length n/2 have to be multiplied. This al-
gorithm perfectly fits into the regular divide-and-conquer scheme. In terms of
the C skeleton disDC, the Karatsuba algorithm can be implemented as shown in
Figure 14 where the functions trivial, split and combine are straightforward
Haskell formulations of the corresponding mathematical definitions. The granu-
larity of the three subtasks is not uniform, since the multiplications potentially
uses integers of different lengths. In addition, trivial nodes (number size below a
certain threshold) may appear at any depth in the tree.
Figure 14 shows the trace produced by the Karatsuba program parallelised with
the distributed expansion divide-and-conquer skeleton on 7 dual-core linux work-
stations with 2 GB RAM and a Fast Ethernet LAN. The input were 2 integers
with 32768 digits each.

¦
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3.3 Torus

The next skeleton is an example of skeleton that produces a particular process
topology. A torus is a two-dimensional topology in which each process is con-
nected to its four neighbours. The first and last processes in each row and column
are considered neighbours. In addition, each node has two extra connections to
send and receive values to/from the parent. This topology is an example of
systolic skeleton, where processes alternate parallel computation and global syn-
chronisation steps. At each round, every node receives messages from its left
and upper neighbours, computes, and then sends messages to its right and lower
neighbours.
The implementation that we propose in Eden uses lists instead of synchronization
barriers to simulate rounds. The remote data approach is used to establish direct
connections between the torus nodes. The torus function defined in Figure 15
creates the desired toroidal topology by properly connecting the inputs and out-
puts of the different ptorus processes. Each process receives an input from the
parent, and two remote handles to be used to fetch the values from its neighbours.
It produces an output to the parent and two remote handles to release outputs to
its neighbours. The shape of the torus is determined by the shape of the input.
The source code of the skeleton is shown in Figure 15.
The size of the torus will usually depend on the number of available processors
((noPe). A typical value is b√noPec. In this case each torus node can be placed
on a different PE. The first parameter of the skeleton is the worker function,
which receives an initial datum of type c from the parent, a list [a] from the left
neighbour and a list [b] from its upper neighbour, and produces a final result d

for its parent as well as results [a] and [b] for its right and lower neighbours,
respectively. Functions lazyzip3 and lazyzipWith3 are lazy versions of functions
of the zip family, the difference being that these functions use irrefutable patterns
for parameters, corresponding to the torus interconnections.

Case Study (Matrix Multiplication): A typical application of the torus skeleton is
the implementation of a block-wise parallel matrix multiplication [18]. Each node
of the torus gets two blocks of the input matrices to be multiplied sequentially.
It passes its blocks to the neighbour processes in the torus, the block of the first
matrix to the neighbour in the row and the block of the second matrix to the
neighbour in the column. It receives corresponding blocks from its neighbour
processes and proceeds as before. If each process has seen each block of the input
matrices which are assigned to its row or column, the computation finishes.
Figure 16 shows a trace of the torus parallelisation of matrix multiplication cre-
ated on the Beowulf cluster for input matrices with dimension 1000. Messages
are shown. It can be seen that all communication takes place in the beginning of
the computation. This is due to Eden’s push policy. Data is communicated as
soon as it has been evaluated to normal form. As the processes simply pass ma-
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torus :: (Trans a, Trans b, Trans c, Trans d) =>
-> ((c,[a],[b]) -> (d,[a],[b])) -- ^ node function
-> [[c]] -> [[d]] -- ^ input-output mapping

torus f inss = outss
where
t_outss = zipWith spawn (repeat (ptorus f)) t_inss
t_inss = lazyzipWith3 lazyzip3 inss inssA inssB
(outss, outssA, outssB) = unzip3 (map unzip3 t_outss)
inssA = map rightRotate outssA
inssB = rightRotate outssB

-- each individual process of the torus
ptorus :: (Trans a, Trans b, Trans c, Trans d) =>

((c,[a],[b]) -> (d,[a],[b])) ->
Process (c,RD [a],RD [b])

(d,RD [a],RD [b])
ptorus f = process \ (fromParent, inA, inB) ->

(toParent, release outA, release outB)
where
(toParent, outA, outB) = f (fromParent, fetch inA, fetch inB)

lazyzipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
lazyzipWith3 f (x:xs) ~(y:ys) ~(z:zs) = f x y z : mzipWith3 f xs ys zs
lazyzipWith3 _ _ _ _ = []

lazyzip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
lazyzip3 = lazyzipWith3 (:)

Figure 15: Eden torus skeleton

Figure 16: Trace of parallel matrix multiplication with torus skeleton
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trix blocks without manipulating them, communication takes place immediately.
Afterwards, the proper computations take place.

¦

4 Behind the Scenes: Eden’s Implementation

Eden has been implemented by extending the runtime system (RTS) of the Glas-
gow Haskell compiler (GHC) with mechanisms for process management and com-
munication. It shares its parallel runtime system (PRTS) with Glasgow paral-
lel Haskell [43] but due to the disjoint address spaces of its processes does not
need to implement a virtual shared memory and global garbage collection in
contrast to GpH. In the following, we abstract from low-level implementation
details like graph reduction and thread management which are explained else-
where [37, 43, 12, 26] and describe Eden’s implementation on top of EDI (Eden’s
implementation language) [9], a low-level coordination language, which provides
primitive monadic operations which have been used to implement the Eden con-
structs on a higher-level of abstraction.
Eden’s implementation has been organised in layers (see Fig. 17) to achieve more
flexibility and to improve the maintainability of this highly complex system. The
main idea has been to lift aspects of the runtime system (RTS) to the level of the
functional language, i.e. defining basic workflows on a high level of abstraction
in the Eden module and concentrating low-level RTS capabilities in a couple of
primitive operations (module ParPrim.hs). In this way, part of the complexity
has been eliminated from the imperative RTS level.
Every Eden program must import the Eden module, which contains Haskell defi-
nitions of Eden’s language constructs. These Haskell definitions use primitive op-
erations which are functions implemented in C that can be accessed from Haskell.
The extension of GHC for Eden is mainly based on the implementation of these
primitive operations, which provide the elementary functionality for Eden and
form a low-level coordination language by themselves. We called this language
EDI, the Eden implementation language.

4.1 Primitive Operations: Interface to the PRTS

The Eden module contains Haskell definitions of the high-level Eden constructs,
thereby making use of the primitive operations shown in Fig. 18. The primitive
operations implement basic actions which have to be performed directly in the
runtime system of the underlying sequential compiler GHC1.
Each Eden channel connects an outport of the sender process to an inport of the
receiver process. There is a one-to-one correspondence between the threads of

1Note that, in GHC, primitive operations and types are distinguished from common func-
tions and types by # as the last sign in their names.
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Eden Programs

Skeleton Library

Eden Module

Primitive Operations

Parallel Runtime System (PRTS)

Figure 17: Layer structure of the Eden system

Channel Administration:

• createC# creates a placeholder and a new import for a new commu-
nication channel

• connectToPort# connects a communication channel in the proper way

Communication:

• sendData# sends data on a communication channel

Thread Creation:

• fork# forks a concurrent thread

General:

• noPE# determines number of processing elements in current setup

• selfPE# determines own processor identifier

Figure 18: Primitive Operations for Eden
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a process and its outports. Each thread of a process evaluates some expression
to normal form and sends the result via its outport. The primitive channels
within the parallel runtime system are identified by three primitive integer values
identifying the receiver side, i.e. the inport connecting a channel with a process.
The three integers are (1) the processor element number, (2) the process number
and (3) a specific port number:

data ChanName’ a = Chan Int# Int# Int#

This type is only internally visible and used by the primitive channel adminis-
tration functions. The wrapper functions of the primitive operations have the
following types:

createC :: IO ( ChanName’ a, a )
connectToPort :: ChanName’ a -> IO ()

Note that the wrapper functions always yield a result in the IO monad. Function
createC creates a primitive channel and a handle to access the data received
via this channel. Function connectToPort connects the outport of the thread
executing the function call to a given channel i.e. the corresponding inport.
There is only a primitive for sending data but no one for receiving data. Receiving
is done automatically by the runtime system which writes data received via an
inport immediately into a placeholder in the heap. The wrapper function of the
primitive sendData# has the following type:

sendData :: Mode -> a -> IO ()
data Mode = Connect | Stream | Data | Instantiate Int

There are four send modi and corresponding message types. Note that the mes-
sages are always sent via the outport associated with the executing thread. A
Connect message is initially sent to connect the outport to the corresponding in-
port. This makes it possible to inform a sender thread when its results are no
longer needed, e.g. when the placeholders associated with the inport are identified
as garbage.
A Data message contains a data value which is sent in a single message. The
mode Stream is used to send the values of a data stream. The Instantiate i

message is sent to start a remote process on PE i.

4.2 The Type Class Trans

As explained in Section 2, the type class Trans comprises all types which can
be communicated via channels. It is mainly used to overload communication for
streams and tuples. Lists are transmitted in a stream-like fashion, i.e. element by
element. Each component of a tuple is communicated via a separate primitive
channel. This is especially important for recursive processes which depend on
part of their own output (which is re-fed as input).
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On the level of the Eden module, a channel is represented by a communicator,
i.e. a function to write a value into the channel:

newtype ChanName a = Comm (a -> IO())

This simplifies overloading of the communication function for tuple types. The
declaration of the Trans class is given in Figure 19. The context NFData (normal
form data) is needed to ensure that transmissible data can be fully evaluated
(using the overloaded function rnf (reduce to normal form)) before sending it. An
overloaded operation write :: a -> IO ()) is used for sending data. Its default
definition evaluates its argument using rnf and sends it in a single message using
sendData with mode Data.
The function createComm creates an Eden channel and a handle to access the
values communicated via this channel. The default definition creates a single
primitive channel. The default communicator function is defined using the aux-
iliary function sendVia which connects to the primitive channel before sending
data on it. Note that the communicator function will be used by the sender
process while the channel creation will take place in the receiver process. The
explicit connection of the sender outport to the inport in the receiver process
helps to guarantee that at most one sender process will use a channel.

class NFData a => Trans a where
write :: a -> IO ()
write x = rnf x ‘pseq‘ sendData Data x

createComm :: IO (ChanName a, a)
createComm = do (cx,x) <- createC

return (Comm (sendVia cx) , x)

-- Auxiliary send function
sendVia :: (NFData a, Trans a) =>

(ChanName’ a) -> a -> IO()
sendVia c d = do connectToPort c

sendData Connect d
write d

Figure 19: Type Class Trans

For streams, write is specialized in such a way that it evaluates each list element
to normal form and transmits it using sendData Stream:

instance Trans a => Trans [a] where
write list@[] = sendData Data list
write (x:xs) = do rnf x ‘pseq‘ sendData Stream x

write xs
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For tuples (up to 9 components), channel creation is overloaded as shown exem-
plarily for pairs:

instance (Trans a, Trans b) => Trans (a,b) where \\
createComm = do (cx,x) <- createC

(cy,y) <- createC
return (Comm (write2 (cx,cy)),(x,y))

-- auxiliary write function for pairs
write2 :: (Trans a, Trans b) =>

(ChanName’ a, ChanName’ b) -> (a,b) -> IO ()
write2 (c1,c2) (x1,x2) = do fork (sendVia c1 x1)

sendVia c2 x2

Two primitive channels are created. The communicator function creates two
threads to allow the concurrent and independent transfer of the tuple components
via these primitive channels. For tuples with more than 9 components, the Eden
programmer has to provide a corresponding Trans instance by himself or the
default communicator will be used, i.e. a 10-tuple would be sent in a single
message via a single channel.

4.3 The PA Monad: Improving Control over Parallel Ac-
tivities

The Eden module provides a parallel action monad which can be used to improve
the control of series of parallel actions. The parallel action monad wraps the IO
monad. In particular, it is advantageous to define a sequence of side-effecting
operations within the PA monad and unwrap the parallel action only once.

newtype PA a = PA { fromPA :: IO a }

instance Monad PA where
return b = PA $ return b
(PA ioX) >>= f = PA $ do
x <- ioX
fromPA $ f x

runPA :: PA a -> a
runPA = unsafePerformIO . fromPA

4.4 Process Handling: Defining process abstraction and
instantiation

Process abstraction with process and process instantiation with ( # ) are imple-
mented in the Eden module. While process abstractions define process creation
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on the side of the newly created process, process instantiation defines the activ-
ities necessary on the side of the parent process. Communication channels are
explicitly created and installed to connect processes using the primitives provided
for handling Eden’s dynamic input channels.

data (Trans a, Trans b) =>
Process a b = Proc (ChanName b -> ChanName’ (ChanName a) -> ())

process :: (Trans a, Trans b) =>
(a -> b) -> Process a b

process f = Proc f_remote
where
f_remote (Comm sendResult) inCC
= do (sendInput, invals) = createComm

connectToPort inCC
sendData Data sendInput
sendResult (f invals)

Figure 20: Haskell definitions of Eden process abstraction

A process abstraction of type Process a b is implemented by a function f remote

(see Fig. 20) which will be evaluated remotely by a corresponding child process.
It takes two arguments: the first is an Eden channel (comprising a communicator
function sendResult) via which the result of the process should be returned to
the parent process. The second argument is a primitive channel inCC (of type
ChanName’ (ChanName a)) to return its input channels (communicator function)
to the parent process. The exact number of channels between parent and child
process does not matter in this context, because the operations on dynamic chan-
nels are overloaded. The definition of process shows that the remotely evaluated
function, f remote, creates its input channels via the function createComm. More-
over, it connects to the primitive input channel of its parent process and sends the
communicator function of its input channels to the parent. Finally the process
output, i.e. the result of evaluating the function within the process abstraction f

to the inputs received via its input channels invals. The communicator function
sendResult will trigger the evaluation of the process result to normal form before
sending it.
Process instantiation by the operator ( # ) defines process creation on the parent
side. The auxiliary function instantiateAt implements process instantiation with
explicit placement on a given PE which are numbered from 1 to noPe. Passing 0 as
a process number leads to the default round robin placement policy for processes.
Process creation on the parent side works somehow dually to the process creation
on the child side, at least with respect to channel management. First a new input
channel for receiving the child process’ results is generated. Then a primitive
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( # ) :: (Trans a, Trans b) => Process a b -> a -> b
pabs # inps
= runPA $ instantiateAt 0 pabs inps

instantiateAt :: (Trans a, Trans b) =>
Int -> Process a b -> a -> PA b

instantiateAt pe (Proc f_remote) inps
= PA $
do (sendresult, result) <- createComm

(inCC, Comm sendInput) <- createC
sendData (Instantiate pe) (f_remote sendresult inCC)
fork (sendInput inps)
return result

Figure 21: Haskell definitions of Eden process instantiation

spawnAt :: [Int] -> [Process a b] -> [a] -> [b]
spawnAt pos ps is

= runPA $ sequence
[instantiateAt st p i |
(st,p,i) <- zip3 (cycle pos) ps is]

spawn = spawnAt [0]

Figure 22: Haskell definition of spawn

channel for receiving the child process’ input channel(s) is created. The process
instantiation message sends the application of the process abstraction function
f remote applied to the created input channels to the processor element where
the new child process should be evaluated. Finally a concurrent thread is forked
which sends the input for the child process using the communicator function
received from the child process. The result of the child process is returned to the
environment.

The functions spawnAt and spawn can easily be defined using the PA monad and
the primitive function instantiateAt, see Figure 22.
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4.5 Implementation of Remote Data

In Section 2, the remote data concept has been implemented using Eden’s dy-
namic channel operations. In fact, the implementation immediately uses the
primitive operations and provides definition variants in the PA monad:

type RD a = ChanName (ChanName a)

releasePA :: Trans a
=> a -- ^ The original data
-> PA (RD a) -- ^ The Remote Data handle

releasePA val = PA $ do
(cc, Comm sendValC) <- createComm
fork (sendValC val)
return cc

release :: Trans a => a -- ^ The original data
-> RD a -- ^ The Remote Data handle

release = runPA . releasePA

fetchPA :: Trans a => RD a -> PA a
fetchPA (Comm sendValCC) = PA $ do
(c,val) <- createComm
fork (sendValCC c)
return val

fetch :: Trans a
=> RD a -- ^ The Remote Data handle
-> a -- ^ The original data

fetch = runPA . fetchPA

The PA variants of fetch and release are especially useful if structured data
is to be released in such a way that there is a release for each data component.
Consider the following definitions for transforming a list of local data into a
corresponding remote data list and vice versa:

releaseAll :: Trans a
=> [a] -- ^ The original list
-> [RD a] -- ^ List of Remote Data handles,

-- ^ one for each list element
releaseAll as = runPA $ mapM releasePA as

fetchAll :: Trans a
=> [RD a] -- ^ The Remote Data handles
-> [a] -- ^ The original data

fetchAll ras = runPA $ mapM fetchPA ras
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Advanced Eden programmers are encourages to use the PA monad to improve
their control over sequences of parallel actions.

4.6 Implementation of Merge

The non-deterministic merge function is implemented using the nmergeIO ::

[[a]] -> IO [a] provided by Concurrent Haskell.

merge :: [[a]] -> [a]
merge xss = unsafePerformIO (nmergeIO xss)

5 Further Reading

Comprehensive and up-to-date information on Eden is provided on its web site
http://www.mathematik.uni-marburg.de/~eden.

Basic information on its design, semantics, and implementation as well as the
underlying programming methodology can be found in [30]. Details on the par-
allel runtime system and Eden’s concept of implementation can best be found in
[7, 9]. The technique of layered parallel runtime environments has been further
developed and generalised by Berthold, Loidl and Al Zain [3, 11]. The Eden trace
viewer tool EdenTV is available on Eden’s web site. A short introductory descrip-
tion is given in [10]. Another tool for analysing the behaviour of Eden programs
has been developed by de la Encina, Llana, Rubio and Hidalgo-Herreo [16, 17]
by extending the tool Hood (Haskell Object Observation Debugger) for Eden.
Extensive work has been done on skeletal programming in Eden. An overview
on various skeleton types (specification, implementation, and cost models) have
been presented as a chapter in the mentioned book by Gorlatch and Rabhi [29].
Several parallel map implementations have been discussed and analysed in [25].
An Eden implementation of the large-scale map-and-reduce programming model
proposed by Google [14] has been investigated in [5]. Hierarchical master-worker
schemes with several layers of masters and sub-masters have been presented in
[6]. A sophisticated distributed workpool has been presented in [33]. Definitions
and applications of further specific skeletons can be found in the following pa-
pers: topology skeletons [8], adaptive skeletons [19], divide-and-conquer schemes
[4, 35]. Special skeletons for computer algebra algorithms are developed with the
goal to define the kernel of a computer algebra system in Eden [28, 27]. An opera-
tional and a denotational semantics for Eden have been defined by Ortega-Mallén
and Hidalgo-Herrero [20, 21]. These semantics have been used to analyze Eden
skeletons [23, 22]. A non-determinism analysis has been presented by Segura and
Peña [36].
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6 Other Parallel Haskells (Related Work)

Several extensions of Haskell for parallel programming exist. The following enu-
meration follows the spectrum from explicit low-level approaches to implicit high-
level approaches:

Haskell plus MPI2 uses the foreign function interface (FFI) of Haskell to pro-
vide the MPI functionality in Haskell. It supports an SPMD style, i.e. the
same program is started on several PEs. The different instances can be
distinguished using their MPI rank and may exchange serializable Haskell
data structures via MPI send and receive routines.

Eden (as described in these lecture notes) abstracts from low-level sending and
receiving of messages. Communication via channels is automatically pro-
vided by the parallel runtime system. It allows, however, to define processes
and communication channels explicitly and thus to control parallel activity
and data distribution.

Glasgow parallel Haskell [43] and Multicore Haskell [32] share the same
language definition but differ in their implementations. While GpH shares
its parallel runtime system with Eden and can be executed on distributed
memory systems, Multicore Haskell is tailored to shared-memory multi-
core architectures. The language allows to mark expressions for parallel
evaluation. These are collected as sparks in a spark pool. The runtime
system decides which sparks will be evaluated in parallel. Access to local
and remote data is automatically managed by the runtime system. Evalu-
ation strategies [31] abstract from low-level expression marking and allow
to describe pattern for parallel behaviour on a higher level of abstraction.

Data Parallel Haskell [41] Data Parallel Haskell extends Haskell with support
for nested data parallelism with a focus to utilise multicore CPUs. It adds
parallel arrays and implicitly parallel operations on those to Haskell.

7 Conclusions

These lecture notes give an overview of achievements and the current status of the
Eden project. Several simple case studies reflect Eden’s programming methodol-
ogy which is based on the implementation and use of algorithmic skeletons. The
Eden project is ongoing. Current activities comprise the further development
of the Eden skeleton library as well as the investigation of alternative high-level
parallel programming constructs.

2See https://github.com/bjpop/haskell-mpi.
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A Compiling, Running, Analysing Eden Pro-

grams

The Eden compiler, an extension of the Glasgow Haskell compiler (GHC), is
available from the Eden homepage under URL

http://www.mathematik.uni-marburg.de/~eden

Prerequisites and installation instructions are provided. To compile Eden pro-
grams with parallel support one has to use the options -parpvm to use PVM3 or
-parmpi to use MPI4 as middleware. The option -eventlog leads to production
of trace files (event logs) when compiled Eden programs are executed. All GHC
options, e.g. optimisation flags like -O2, can equally well be used with the Eden
version of GHC.

A.1 Runtime Options

A compiled Eden program accepts in addition to its arguments runtime system
options enclosed in

+RTS <your options> -RTS

With these options one can control the program setup and behaviour, e.g. on
how many (virtual) processor elements (PEs) the program should be executed,
which process placement policy should be used etc. The following table shows
the most important Eden specific runtime options. All GHC RTS options can
also be used. By typing ./myprogram +RTS -? a complete list of available RTS
options is given.

RTS option effect default
-N<n> set number of PEs number of PVM/MPI nodes

-MPI@<file> specify MPI hostfile mpihosts

-qQ<n> set buffer size for messages 32K
-ls enable event logging5

-qrnd random process placement round-robin placement

A.2 EdenTV: The Eden Trace Viewer

The Eden trace viewer tool (EdenTV) [10] provides a post-mortem analysis of pro-
gram executions on the level of the computational units of the PRTS. The latter is
instrumented with special trace generation commands activated by the compile-
time option -eventlog and the run-time option +RTS -ls. In the space-time
diagrams generated by EdenTV, machines (i.e. processor elements), processes
and threads are represented by horizontal bars, with time on the x-axis.

3http://www.epm.ornl.gov/pvm/
4http://www.open-mpi.org/
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The machines diagrams correspond to the view of profiling tools observing the
parallel machine execution, if there is a one-to-one correspondence between vir-
tual and physical processor elements which will usually be the case. The processes
per machine diagrams show the activity of Eden processes and their placement
on the available machines. The threads diagrams show the activity of all created
threads, not only the threads of Eden processes but also internal system threads.
The diagram bars have segments in different colours, which indicate the activi-
ties of the respective logical unit (machine, process or thread) in a period during
the execution. Bars are green when the logical unit is running, yellow when it is
runnable but currently not running, and red when the unit is blocked. If trace vi-
sualisations are shown in greyscale, the colors have the following correspondences:
light grey = yellow, grey = green, dark grey = red. In addition, a machine can
be idle which means that no processes are allocated on the machine. Idleness
is indicated by a small blue bar. The thread states are immediately determined
from the thread state events in the traces of processes. The states of processes
and machines are derived from the information about thread states.
Figure 23 shows examples of the machines, processes and threads diagrams for a
divide-and-conquer program implementing the bitonic-merge-sort algorithm [2].
The trace has been generated on 8 Linux workstations connected via fast Ether-
net. The program sorted a list of 1024 numbers with a recursion depth limit of
4.
The example diagrams in Figure 23 show that the program has been executed on
8 machines (virtual processor elements). While there is some activity on machine
1 (where the main program is started) during the whole execution, machines 6
to 8 are idle most of the time (smaller blue bar). The corresponding processes
graphic (see Figure 23(b)) reveals that several Eden processes have been allocated
on each machine. The activities in Machine 2 have been caused by different
processes. The diagrams show that the workload on the parallel machines was
low — there were only small periods where threads were running. The yellow-
colored periods indicate system activity in the diagrams. The threads view is not
readable because too many threads are shown. It is possible to zoom the diagrams
to get a closer view on the activities at critical points during the execution.
Messages between processes or machines are optionally shown by grey arrows
which start from the sending unit bar and point at the receiving unit bar (see
Figure 23(d)). Streams can be shown as shadowed areas. The representation of
messages is very important for programmers, since they can observe hot spots
and inefficiencies in the communication during the execution as well as control
communication topologies.
When extensive communication takes places, message arrows may cover the whole
activity profile. For this reason, EdenTV allows to show messages selectively, i.e.
between selectable (subsets of) processes. EdenTV provides many additional
information and features, e.g. the number of messages sent and received by pro-
cesses and machines is recorded. More information is provided on the web pages
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(a) Machines View (b) Processes View

(c) Thread View (d) Processes with Message Overlay

Figure 23: Examples of EdenTV Diagrams

of EdenTV:
http://www.mathematik.uni-marburg.de/~eden/?content=trace main&navi=trace
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Fernando Rubio, Lidia Sánchez-Gil, Clara Segura, Pablo Roldan Gomez (Uni-
versidad Complutense de Madrid) and Silvia Breitinger, Mischa Dieterle, Ralf
Freitag, Thomas Horstmeyer, Ulrike Klusik, Dominik Krappel, Oleg Lobachev,
Johannes May, Bernhard Pickenbrock, Steffen Priebe, Björn Struckmeier, Nils
Weskamp (Philipps-Universität Marburg). Last but not least, thanks go to Hans-
Wolfgang Loidl, Phil Trinder, Kevin Hammond, and Greg Michaelson for many
fruitful discussions, successful cooperations, and for giving us access to their Be-
owulf clusters.

43



References

[1] M. Alt and S. Gorlatch. Adapting Java RMI for grid computing. Future
Generation Computer Systems, 21(5):699–707, 2004.

[2] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS
Spring Joint Computer Conference, volume 32, pages 307–314, 1968.

[3] J. Berthold. Towards a Generalised Runtime Environment for Parallel
Haskells. In Computational Science — ICCS’04, LNCS 3038. Springer,
2004. (Workshop on Practical Aspects of High-level Parallel Programming
— PAPP 2004).

[4] J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Distributed Memory
Programming on Many-Cores A Case Study Using Eden Divide-&-Conquer
Skeletons. In ARCS 2009, Workshop on Many-Cores. VDE Verlag, 2009.

[5] J. Berthold, M. Dieterle, and R. Loogen. Implementing Parallel Google
Map-Reduce in Eden. In Europar’09, LNCS 5704, pages 990–1002. Springer,
2009.

[6] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical Master-
Worker Skeletons. In Practical Aspects of Declarative Languages (PADL
2008), LNCS 4902, pages 248 – 264. Springer, 2008.

[7] J. Berthold, U. Klusik, R. Loogen, S. Priebe, and N. Weskamp. High-level
Process Control in Eden. In EuroPar 2003 – Parallel Processing, LNCS 2790,
pages 732–741. Springer, 2003.

[8] J. Berthold and R. Loogen. Skeletons for Recursively Unfolding Process
Topologies. In Parallel Computing: Current & Future Issues of High-End
Computing, ParCo 2005, pages 835–842. NIC Series, Vol. 33, 2006.

[9] J. Berthold and R. Loogen. Parallel Coordination Made Explicit in a Func-
tional Setting. In Implementation and Application of Functional Languages
(IFL 2006), Selected Papers, LNCS 4449, pages 73–90. Springer, 2007.
(awarded best paper of IFL’06).

[10] J. Berthold and R. Loogen. Visualizing Parallel Functional Program Runs
– Case Studies with the Eden Trace Viewer –. In Parallel Computing: Ar-
chitectures, Algorithms and Applications, ParCo 2007, pages 121–128. NIC
Series, Vol. 38, 2007.

[11] J. Berthold, A. A. Zain, and H.-W. Loidl. Scheduling light-weight parallelism
in ArtCoP. In Practical Aspects of Declarative Languages (PADL 2008),
LNCS 4902, pages 214 – 229. Springer, 2008.

44



[12] S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Par-
allel) Eden: An Implementation Point of View. In PLILP’98, volume 1490
of LNCS, pages 318–334. Springer, 1998.

[13] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. MIT Press, 1989.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[15] M. Dieterle, T. Horstmeyer, and R. Loogen. Skeleton Composition Using
Remote Data. In Practical Aspects of Declarative Programming 2010 (PADL
2010), LNCS 5937, pages 73–87. Springer, 2010.

[16] A. Encina, L. Llana, F. Rubio, and M. Hidalgo-Herrero. Observing Interme-
diate Structures in a Parallel Lazy Functional Language. In Principles and
Practice of Declarative Programming (PPDP 2007), pages 109–120. ACM,
2007.
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