
Prof. Dr. R. Loogen, M. Dieterle,

T. Horstmeyer, B. Pickenbrock

Central European Functional Programming School, June 2011:
Eden Lab Session, Friday, June 16, 9–11am

Example programs are provided via the Eden web page

http://www.informatik.uni-marburg.de/˜eden

Navigate to CEFP!

Working with the Eden system

General: For extended descriptions on Eden, the Eden compiler, the skeleton library,
the trace viewer and additional material visit the Eden web pages (see above).

Compile and run Eden programs: You have to use the command ’edenenv’ to set
the necessary environment variables on your lab machines. Use ghc --make with
the option -parmpi (or -parpvm). Eden programs have to import the module
Control.Parallel.Eden.
Eden programs work on basis of the parallel middleware MPI (or PVM, respec-
tively). Eden programs use the RTS-options MPI@<hostfile> to define the hosts
of the parallel machine (default is mpihosts), -N<n> to set the number of virtual
machines (default is 1 VM per host), -qQ<X>M to set the size of the message buffer
and -H<X>M for the initial heap-size. If a program crashes, you probably have to
increase the message buffer.

Runtime-tracing of Eden programs: Compile a program with the option -eventlog

and start it with the runtime option -ls to create a runtime profile which can be
visualized with the Eden trace viewer EdenTV. A sample MPI hostfile is provided
on the web page.

Exercises

1 Parallel map-reduce in Eden

(a) Develop a parallel version of the following higher-order Haskell function

mapReduce :: (a → b) → (b → b → b) → b → [a] → b
mapReduce mapF redF n list = foldl redF n (map mapF list)

Assume that the parameter function redF is associative and that n is the neutral
element of redF.

(b) Use your parallel map-reduce skeleton to parallelise the program sumEuler.hs.

(c) Run your parallel program on i machines, where i ∈ {1, 2, 4, ...} (runtime option
-Ni).

Use the Eden trace viewer to analyse the parallel program behaviour.

see next page



2 Load Balancing
Write parallel versions of the Julia-Set program using

(a) the parMap skeleton.

(b) the farm skeleton and the un-/shuffle function for task distribution.

(c) the workpoolSorted skeleton.

Use EdenTV to analyse the runtime behavior of the different versions.

3 Matrix multiplication according to Gentleman
Write a parallel version of the matrix multiplication program gentleman.hs given
on the Eden pages. The program uses a torus skeleton. Write your own parallel
torus skeleton (with Remote Data or simply using communication through the caller
process) or use the skeleton of the latest skeleton library version (not installed, but
available on the Eden pages).

In a simple version, all matrix elements are calculated by a different process. In a
more sophisticated version, processes manage sub-matrices. The algorithm works
similar when each process multiplies sub-matrices and sends the sub-matrices to
their neighbors.

You can use

spawnPss :: (Trans a, Trans b) ⇒ [[Process a b]] → [[a]] → [[b]]

to instantiate a matrix of processes and

fetchRDss :: Trans a ⇒ [[RD a]] → [[a]]

to fetch a matrix of Remote Data.


