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Abstract. This paper discusses the pros and cons of using a functional
language for implementing a computer algebra system. The contributions
of the paper are twofold. Firstly, we discuss some language–centered
design aspects of a computer algebra system — the “language unity”
concept. Secondly, we provide an implementation of a fast polynomial
multiplication algorithm, which is one of the core elements of a com-
puter algebra system. The goal of the paper is to test the feasibility of
an implementation of (some elements of) a computer algebra system in
a modern functional language.
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1 Introduction

With the flow of the history of computing, exact methods gained more and more
importance. It was clear since almost the beginning, that imprecise, numerical
operations may and will fail. The Wilkinson Monster

∏20
j=1(x−j) is a nice – and

old! [45,46] – example for the thesis “the way we compute it matters”. One of the
crucial points of computer algebra systems (CAS) is the implementation of fast
algorithms. One of the core algorithms is fast multiplication, be it of numbers
or of polynomials. Current approaches include methods by Karatsuba, Toom
and Cook [20, 44, 24] and Schönhage and Strassen [38, 37]. An implementation
of the latter in the functional language Haskell [33] is presented in this paper
to test the suitability of functional languages for implementing computer alge-
bra algorithms. Our vision is an open-source flexible computer algebra system,
that can easily be maintained, extended and optimised by the computer alge-
bra community. The mainstream computer algebra systems like Maple [34] or
Mathematica [47] provide highly optimised routines with interesting but hidden
implementation details. However, the closed–source nature of such systems does
not enable us to analyse their internals. On the contrary, the following mod-
ern CAS are examples for systems with freely available source code: CoCoA [8],
DoCon [27], GAP [11], and GiNaC [16,13]. Our approach follows the philosophy of
the GiNaC library, which extends a given language (C++) by a set of algebraic
capabilities, instead of inventing a separate interface language for that purpose.
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We plan to implement a computer algebra system in a modern functional lan-
guage like Haskell. Several features of such languages, like lazy evaluation, im-
prove numerical computations [5,6]. Lazy evaluation is also helpful for designing
algorithms in scientific computing [22]. Other features could as well be useful for
a CAS [28]. Incidentally, both functional programming languages [25,42,29,2,35]
and computer algebra systems [15, 14, 18, 39] are present in the field of parallel
and distributed computing.

Plan of the Paper
The second section discusses the benefits of functional languages for implement-
ing computer algebra algorithms. Section 3 pushes the language unity concept
for CAS, i.e. choosing the same language for implementing and using a CAS.
Section 4 presents a few case studies. We

a) compare different Haskell implementations of polynomial multiplication,
b) compare Haskell and imperative implementations for computing factorials,
c) consider the FFT–based implementation of polynomial multiplication by

Schönhage and Strassen.

Section 5 concludes the paper. Code samples are presented in Figures 3 and 4
in Section 4.

2 Advantages of Functional Languages

We consider Haskell [33] as a base of our thoughts. Some of the key features of
most functional programming languages, all of them found in Haskell, are:

– Lazy evaluation means that no expression is evaluated if it is not required.
This can be combined with memorisation, when no expression is evalu-
ated more than once. We should think of lazy evaluation as of a double–
edged sword. Indeed it reduces the amount of required computations and
the end user of the CAS has the freedom of writing his/her own programs
in a way more corresponding to standard mathematical nomenclature. How-
ever, worse performance will be observed, if lazy evaluation fails to out-
weigh its overhead by skipping evaluations. A detailed comparison is beyond
the scope of this paper. However nice applications of lazy evaluation in the
context of scientific computing can be found in papers by Jerzy Karczmar-
czuk [21, 22, 23]

– Functional languages provide infinite data structures, notably: lists. Such
lists can be easily implemented with lazy evaluation. Infinite data struc-
tures enable “more mathematical” definitions of e. g. sequences and series.
On the one hand, this means “more conforming to the current mathemat-
ical nomenclature” as in e.g. factorial n = product [1..n] and, on the
other hand, “nice in describing typical mathematical concepts” including in-
finite sequences. A classical example for this is fibs = 0 : 1 : zipWith
(+) fibs (tail fibs)1.

1 See http://haskell.org/haskellwiki/The_Fibonacci_sequence for a sublinear
time implementation of the same sequence.
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– Referential transparency enables a “more mathematical” semantics: for func-
tion f, f(5) has the same value, whenever it is evaluated, pretty much as
f(5) in a mathematical notation. Consider an example in C.

int i = 5;
i = ++i + i++;

This example is rather unnatural, but the result value of i depends on the
implementation – try it in any imperative language of your choice. In a pure
functional language, such dubious definitions are not possible.

– In the context if a CAS strong typing gives some benefits. For example, it
is possible to produce an error at compile time for a product of matrices
of incompatible dimensions. On the other hand, type inference is possible.
However there are some problems with Haskell type system in a computer
algebra context. For instance, if you define a factor ring over a commutative
ring, it may or may be not a field: it depends on the properties of the ideal. If
rings, domains, etc. are defined as types, the Haskell type system would not
be able to determine at compile time, whether this instance of type “factor
ring” is a field or not. Papers by S. Mechveliani, for instance [26], discuss
this problem and suggest an appropriate solution.

– Haskell’s hierarchical module system, being a rather software engineering
issue, provides the possibility to structure large programs efficiently.

– Another benefit of modern functional languages is the possibility to prove
the correctness of implementations.

3 The Two Languages of a CAS

Computer algebra systems possess two different languages, we shall call them in
this paper as follows. The internal language of a CAS is the language the system
is written in, the implementation language. Since the end user of the CAS wants
to perform some kind of programming, there is also a second language. The
external language of a CAS is the language for user interaction, the interface
language. The idea of “language unity” is to utilise the same language for both
purposes, i.e. as internal and as external language.

It is desirable to write as much as possible of the CAS itself in its external
language. This gives the user the opportunity to inspect and (if needed) to
modify some external functions of the CAS. However, for several reasons, this is
impossible in most CAS. Firstly, the external language of most CAS is “weaker”
than their internal one in the sense that some technical things may be hard
or even impossible. On the other hand, the external language is better suited
for the typical computer algebra operations: we may expect, e. g. polynomials
and matrices as native objects or an interesting handling of lists, non–existent
in the internal language of the CAS if this language is imperative. Especially
advanced features like type safety and generic programming are desired in the
external language. A recent development is to utilise a general purpose dynamic
language like Ruby [10], Groovy [3] or Python [43] for interconnecting different
programs, building a composite computer algebra system [40].
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Secondly, unfortunately, the external language of most CAS is not as fast as
the internal one. The cause may be the interpreted origin of these languages
or their very high level nature. This is often avoided by compiling the input
files to some kind of byte code. Other speedup approaches compromise the
extensibility. The implementation of the S programming language for statis-
tical computations, GNU R, utilises a Scheme dialect as its external language.
The whole R system could be implemented in Scheme. But because of perfor-
mance lack in core operations, these are replaced with function calls from the
bundled C library. These functions can still be overloaded and replaced by the
user’s own version, but one cannot simply look into the routines, which are
sped up this way. There is also a third option: to use a functional language
and to perform optimisations in the language compiler typical for a functional
language. This way our external language could be feature–rich and reasonably
fast, but it will have the price of writing a, say, LISP interpreter in an imperative
language.

An interesting approach in this field was taken by Christian Bauer, Alexan-
der Frink, Richard Kreckel et al., the developers of GiNaC [4,13]. This computer
algebra system was written in C++ and it maintains C++ as its main interface.
It is made in a very simple way: GiNaC is rather a computer algebra library,
than a complete system. So the primary use of GiNaC is to give one a pos-
sibility of writing his/her own C++ programs, while using arbitrary precision
numbers, polynomials, matrices, expression evaluation and other nice and fast
computer algebra functions, offered by the GiNaC library. As the authors of
GiNaC state:

Its design is revolutionary in a sense that contrary to other CAS it does
not try to provide extensive algebraic capabilities and a simple program-
ming language, but instead accepts a given language (C++) and extends
it by a set of algebraic capabilities.

This approach is very interesting and powerful, but the interactive front end
program of GiNaC, the ginsh, is less powerful due to a rather weak language. It
was, however, never intended to be a complete GiNaC interface. The possibility
to use all the GiNaC features at an interactive prompt requires a C++ interpreter.
While interpreting C++ is not very nice (although possible: see e.g. [9])2, it is much
easier with Haskell: aside from the glorious Glasgow Haskell Compiler [12],
we have Hugs, the Haskell interpreter. Also GHC itself offers an interactive
version, GHCi. The latter is capable of loading pre-compiled object files into the
interpreted environment. With this achievement one has the possibility to write
a computer algebra system, whose external interface language equals its internal
implementation language, and this language is a functional one.

The idea of GiNaC was not born in vain: most long CAS–supported compu-
tations are run in “batch mode”, with no user interaction. It seems plausible not
to wait in front of a command prompt for the result for hours, days or even
2 There is also a third party GiNaC interface language project,
http://swiginac.berlios.de/
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months.3 On the other hand, most of CAS–based development is done in an
interactive environment, in a “shell”. If one could use the same language both
for developing and for lengthy computations, this would be a major success in
saving developers’ work time [32] and gaining stability of computations.

Now why not just make both: a compiler and an interpreter of CAS’ external
language? The problem is, that despite many efforts, the external languages of
computer algebra systems are slow. On the other hand, we already have a fast
language in our CAS–developing project. This is the language, the CAS itself
is written in, the internal language. One may oppose, however, the whole game
with computer algebra system’s external language was started, because the in-
ternal language was not high–level enough for vectors, matrices, polynomials
and all the other expressions, which are eagerly wanted in a full–fledged CAS.
Now we come back to the beginning of this paper. Functional languages are
complicated and high–level enough to have all the aforementioned objects and
properties [33,41,27,7,17]. Functional languages have very compact code size and
rapid development times [32]. Most functional languages have very interesting
data structures and language design features, which benefit both featuring them
as an internal or as an external language, see [31] for details. And some modern
functional languages already have an efficient compiler and an interpreter im-
plemented, which leads us to the future goal of internal and external language
fusion. Haskell is an example of a such language.

Concluding: an implementation of a CAS in a functional language utilising
the above “language unity” concept will greatly reduce code size and improve
readability, at the same time it shall not reduce the performance significantly. In
order to test the feasibility of these assumptions we consider several case studies.

4 First Case Studies

Now as we have seen some theoretical reasons for a CAS to be implemented
in Haskell, let’s take a look at some examples. At first we shall examine the
univariate polynomials. One can hardly imagine a computer algebra system
without them, polynomials are used in thousands of higher–level algorithms and
the operations with the polynomials should be fast. Unfortunately as of today
neither of available Haskell software packages implementing univariate polyno-
mials uses sub–quadratic algorithms like Karatsuba4, Toom–Cook or Schönhage–
Strassen algorithms. As one of the examples we demonstrate an implementation
of Schönhage–Strassen algorithm in Haskell. But first we look at the schoolbook
case.

3 In this case one might think of porting his/her CAS–based program to some low–
level language and let, say, FORTRAN run the number–crunching mills. However this
is a highly interactive and bug–ridden process. And the FORTRAN program is to be
tested for errors again, before the real computations may begin: the thoroughly
tested CAS–routines are not enough!

4 Although an implementation of this algorithm in Haskell was presented in [19,36].
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Fig. 1. Multiplication of univariate polynomials of degree n − 1. Runtime comparison
of naive implementations.

All the testswere run on the samemachine5 with the same compiler –GHC6.8.2.
For the same n, each test was run ten times and the mean value of measured execu-
tion time has been determined. We utilise standard Haskell lists for representing
the polynomials. The complete system would use some kind of generalisation layer,
probably based on type classes, to abstract the implementation from the given rep-
resentation. It would be sufficient to redefine the few standard functions on lists to
obtain the implementation of the same algorithm for yet another data structure.
No modification of the presented code would then be required.

4.1 Naive Polynomial Multiplication

We have tested four different O(n2) implementations:

1. our own naive implementation with lists of integers
2. our naive implementation, modified à la Numeric Prelude,
5 AMD Athlon 64 X2 4000+ CPU with 1 Gb RAM, running Gentoo Linux.
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3. the implementation from Haskell for Math [1],
4. the implementation from Numeric Prelude [41].

We multiply two dense univariate (n − 1)–grade polynomials with random co-
efficients. The coefficients are random signed 32–bit integers: what we test here
are the polynomial multiplication implementations, not the hardware multiplica-
tion of small integers, nor even different libraries for arbitrary precision integers.
Nor do we test the quadratic algorithms – they all represent pretty the same
“school” multiplication – or compiler options, but the impact of the particular
implementation decisions on the performance. The naive implementation uses
a “dumb” list of Ints, the other implementations build a chain of types sim-
ilar to the algebraic objects. One can e.g. define addition and subtraction for
elements of the additive group, multiplication for elements of this group em-
bedded into a ring, and finding an inverse for invertible elements of this ring
embedded into a field. An overview of test results is provided in Figure 1. Time
is measured in seconds. The Numeric Prelude implementation is much better
than the other implementations which show similar runtimes. Note that the
simplest implementation is not the fastest one and that the type hierarchy en-
ables optimisations. Nevertheless, we conclude the strong need for sub–quadratic
implementations.

4.2 Computing Factorial

We would like to discuss briefly another example. We take a well–known and very
quickly growing function on integers: the factorial. We have tested the famous
Haskell one–liner factorial n = product [1..n], and two C++ implementa-
tions. Both C++ versions are based on the CLN [16] – the arbitrary precision
library used in GiNaC. One implementation uses the built–in factorial function
from the CLN. It makes use of table look–ups and computes some parts of the
factorial value in divide and conquer fashion. The other C++ implementation is
not optimised, but it still uses CLN built–in multiplication and large integers.
We find this implementation comparable with the naive Haskell implementa-
tion. Arbitrary long integers are provided in Haskell out of the box. We are not
willing to discuss the details of arbitrary precision arithmetic implementation
in Haskell compiler runtime, our focus is to demonstrate how competitive the
functional approach is. The graphical representation of the obtained results is
shown in Figure 2. The timings of the Haskell version lie in between both C++
versions.

This small example shows that Haskell implementations, even in their sim-
plest and primitive form are competitive with implementations in some industry–
used programming language which are more sophisticated in programming effort.
The optimised version outperforms both naive versions, thus motivating us to
create implementations of fast algorithms in Haskell.
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Fig. 2. Computing the factorial

4.3 Fast Polynomial Multiplication

The essence of Schönhage and Strassen’s method for fast polynomial multiplica-
tion6 is the way a convolution is performed. A convolution in C[x] corresponds
to multiplication, as in “each with every”. A convolution in Fourier–transformed
space is just a component–wise multiplication. So if we want to compute a prod-
uct of two polynomials, we compute their Fourier transformed (e. g. with the
routine in Figure 3), then multiply the transformed functions component wise
and then, with the inverse Fourier transformation, transform the product back
to a polynomial (Figure 4). The presented version performs twice as well as
the full version at the price of not computing the complete product. However,
the current implementation for computing the full product can be easily ob-
tained from this code. The functions zipWith, splitAt, length, concat and
transpose are provided by Haskell standard libraries. zipWith “zips” two lists
with a supplied binary function, e.g. zipWith (+) [1,2,3] [4,5,6] results in
[5,7,9]. splitAt splits a list into two parts at the provided offset. length re-
turns the length of a list. concat concatenates a list of lists to a list. transpose,
6 . . . over the domains supporting the fast Fourier transform, just like complex num-

bers C. If the domain does not support FFT, the fast multiplication is still possible,
through an implicit algebraic extension of the original domain. For details please
refer to the original paper [38] or a standard book on this topic [44].
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fft :: [Complex Double] -> [Complex Double]
fft f = mix [fft (l @+ r), fft ((l @- r)@* w)]

where (l, r) = splitAt (length f ‘div‘ 2) f
mix = concat . transpose
(@+) f g = zipWith (+) f g -- @-, @* analog
-- w is list of powers of an n-th primitive root of unity.

Fig. 3. Implementation of Cooley–Tukey algorithm in Haskell

(%*%) :: (Num a) => [a] -> [a] -> [a]
(%*%) f g = unlift $ ifft ((fft $ lift f) @* (fft $ lift g))

-- where lift :: (Num a) => [a] -> [Complex Double]
-- unlift :: [Complex Double] -> [Int]
-- ifft is the inverse fft, basicly the same fft with
-- different twiddle factors.
-- And (@*) is still element-wise multiplication

Fig. 4. FFT–based multiplication modulo xn − 1 in Haskell

as the name says, transposes a list of lists. The functions lift, unlift, ifft
and (@*) are part of our implementation. The inverse Fourier transformation
is nothing spectacular and is pretty much the forward Fourier transformation
with different values. As the fast Fourier transform (FFT) for a polynomial in
C[x] of degree n − 1 can be performed in O(n log n) time and the component–
wise multiplication in O(n), we can multiply two polynomials of degree n − 1 in
C[x] in O(n log n) time [44]. Due to limitations of the naive implementation we
receive the remainder of the product after the division through xn − 1. But it
is still possible to compute the whole product without changing the asymptotic
complexity, for example, applying one step of the Karatsuba algorithm first, or
just padding both arguments to the length of the product.

The technical representation of a polynomial in our case is a list of coeffi-
cients. The Cooley–Tukey decimation in frequency algorithm is utilised, using a
divide–and–conquer approach for computing the Fourier transform. This is the
simplest FFT algorithm, there exist some more sophisticated variants [44, 30].
Figure 5 presents the results, we used the same kind of input as in Figure 1. A
sub–quadratic method for polynomial multiplication is definitely superior. The
bottom line is the FFT–based multiplication algorithm, we compute the whole
product. It is clearly visible, that the current FFT algorithm is relying on the
fact, that the length of its input is a power of two. The rapidly ascending lines
correspond to the values shown in Figure 1. Unfortunately, we have no explana-
tion for the decreasing values of the FFT-based algorithm for n ∈ [16000..20000].

Now we have seen a fast polynomial multiplication in Haskell. By using ad-
vanced algorithms we significantly increase the performance, the implemented
functions can be used by any other Haskell program, as we have not tweaked
the compiler. The size of the code base is modest for the task it accomplishes.
This case study shows that it is possible to extend Haskell with further imple-
mentations of fast computer algebra algorithms, obtaining in the end a computer
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Fig. 5. Multiplication of dense univariate polynomials of degree n − 1 revised. Naive
Implementations vs. FFT–based. The left side of the plot corresponds to the Figure 1.

algebra library. The main interface to this system is the language itself, direct
interaction with the library is possible with an interpreter.

5 Related Work

Writing a computer algebra system in a functional programming language is
not a really new idea. The first generation CAS named Macsyma was written in
LISP 1.5 dialect called MACLISP, and LISP is considered to be the first functional
language ever. Axiom CAS has some interesting aspects. It features an embedded
(although detachable) functional programming language [7]. In addition, it uses
a hierarchical structure of mathematical objects (like: monoid – group – ring –
integrity domain – field) to specify and perform operations on them.

The DoCon computer algebra library [27] is at the first glance very similar to
our intention. It utilises Haskell as implementation language. Being a library,
it also has Haskell as an interface language. However, DoCon pursues a different
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goal. DoCon is an algebra framework, implementing different mathematical ob-
jects and their relations, thereby heavily dependent on Haskell’s type system.
For instance, it is easy to define a residue domain modulo some polynomial ideal
in DoCon. However, we focus on the computer algebra algorithms. We would like
to have e.g. a fast polynomial multiplication, while representing the polynomials
as simply as possible. Moreover, we are interested in parallelising our algorithm
implementations. Because of high communication costs, we need to keep the un-
derlying data structures as “dumb” as possible. It will be interesting to utilise
the DoCon approach in our own work and to share our results with the current
DoCon implementation.

6 Conclusions and Future Work

We propose to unify the internal implementation and the external interface lan-
guage of computer algebra systems and to use a functional language to achieve
this integration. The usage of a functional language in a computer algebra field
drastically reduces the size of the source code. Secondly, it does not affect the
performance. Hence, is not required to mix two different languages in an imple-
mentation of a CAS. We have shown that functional programs are competitive
with mainstream imperative programs and significantly easier to develop.

Concerning the performed case studies, a possible direction of the future work
would be the optimisation of the fast Fourier transform. Some practical tests in
the parallel context indicate an optimisation potential in switching to decimation
in time. From the theoretical viewpoint, it will be interesting to reconstruct the
Fourier transformed values in special cases, the so–called pruned FFT algorithm.
It would also be of interest to try other FFT algorithms, for example, the r–radix
implementations.

Concerning the future goals of this work: Modern functional languages and
computer algebra are two rapidly developing research areas, an intersection of
these two areas is highly interesting. A third component to mix into this “cock-
tail” of computational algebra and functional programming topics is parallelism.
Computer algebra applications tend to be quite resource hungry and functional
languages have great potential in parallelism, which is being currently quite
extensively investigated. With respect to our gradually evolving practical imple-
mentation, modern algorithms of computer algebra should be implemented in
relevant Haskell software packages, as a naive implementation typically leads
to asymptotically bad complexity. One should carefully design such implemen-
tations, as design choices play a significant role for the execution times in the
same complexity class. Such choices gain even more on importance in the parallel
setting. The aforementioned algorithms should provide

– fast polynomial multiplication – tackled in this paper,
– fast integer multiplication – our current approach is to use fast polynomial

multiplication,
– efficient Euclid’s algorithm for polynomials,
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– efficient vector and matrix computations,
– framework for symbolic computation and object manipulation.

Such foundation will be a solid base for more complex research areas, including

– algorithms of numerical number theory,
– implementation of public key cryptography,
– algorithms of computational algebraic geometry, based on Gröbner bases,
– symbolic integration and summation,
– parallel computations.

As for FFT–based multiplication, we provide our Haskell implementation of
polynomial multiplication, a multiplication routine for arbitrary long integers
based on top of it and an interface script to SCSCP [39] on request.

Acknowledgement

We would like to thank to anonymous referees for their helpful and detailed
comments.

References

1. Amos, D.: Haskell for Math program,
http://www.polyomino.f2s.com/david/haskell/codeindex.html

2. Armstrong, J.: Programming Erlang. In: The Pragmatic Programmers, LLC (2007)
3. Barclay, K., Savage, J.: Groovy Programming: An Introduction for Java Develop-

ers. Morgan Kaufmann Publishers Inc, San Francisco (2006)
4. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC Framework for Sym-

bolic Computation within the C++ Programming Language. J. of Symbolic Com-
putation 33, 1–12 (2002)

5. Benouamer, M.O., Michelucci, D., Peroche, B.: Error-free boundary evaluation
based on a lazy rational arithmetic: a detailed implementation. Computer Aided
Design 26(6), 403–416 (1994)

6. Bird, R.S., Jones, G., De Moor, O.: More haste, less speed: lazy versus eager
evaluation. J. of Functional Programming 7(5), 541–547 (1997)

7. Bronstein, M., Davenport, J., Fortenbacher, A., et al.: AXIOM – the 30 year horizon
(2003), http://portal.axiom-developer.org/public/book2.pdf

8. Capani, A., Niesi, G.: CoCoA 3.0 User’s Manual. Dipartimento di Matematica,
Università di Genova, Via Dodecaneso, Genova (Italy), vol. 35, I-16146 (1995)

9. Cint, the C/C++ interpreter, version 5.16.19,
http://root.cern.ch/root/Cint.html

10. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly, Se-
bastopol (2008)

11. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10
(2008)

12. The Glorious Glasgow Haskell Compilation System User’s Guide (February 2008),
http://www.haskell.org/ghc/docs/latest/users_guide.pdf

13. GiNaC program, http://www.ginac.de



Towards an Implementation of a CAS in a Functional Language 153

14. HPC-Grid for Maple program,
http://www.maplesoft.com/products/toolboxes/HPCgrid/index.aspx

15. gridmathematica2 program,
http://www.wolfram.com/products/gridmathematica/

16. Haible, B., Kreckel, R.: CLN, a class library for numbers manual (2005),
http://www.ginac.de/CLN/cln.ps

17. Hall, C., Hammond, K., Jones, S.P., Wadler, P.: European Symposium On Pro-
gramming. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 241–256.
Springer, Heidelberg (1994)

18. Hammond, K., Al Zain, A., Cooperman, G., Petcu, D., Trinder, P.: Symgrid: a
framework for symbolic computation on the grid. In: EuroPar 2007 – European
Conf. on Parallel Processing. LNCS, vol. 4703. Springer, Heidelberg (2007)

19. Herrmann, C.A., Lengauer, C.: HDC: A Higher–Order Language for Divide–and-
Conquer. Parallel Processing Letters 10(22), 239–250 (2000)

20. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by auto-
matic computers. Doklady Akad. Nauk SSSR 145, 293–294 (1962); Translation
in Physics–Doklady 7, 595–596 (1963)

21. Karczmarczuk, J.: The most unreliable technique in the world to compute pi (1998)
22. Karczmarczuk, J.: Scientific computation and functional programming. Computing

in Science & Engineering 1(3), 64–72 (1999)
23. Karczmarczuk, J.: Functional differentiation of computer programs. Higher–Order

and Symbolic Computation 14(1), 35–57 (2001)
24. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 2. Addison–Wesley

(1998)
25. Loogen, R., Ortega-Mallén, Y., Peña-Marí, R.: Parallel Functional Programming

in Eden. Journal of Functional Programming 15(3), 431–475 (2005)
26. Mechveliani, S.D.: Haskell and computer algebra. Pereslavl-Zalessky, Russia

(manuscript, 2000)
27. Mechveliani, S.D.: DoCon. The Algebraic Domain Constructor Manual. Program

Systems Institute, Pereslavl–Zalessky, Russia, Version 2.11 (2007)
28. Milmeister, G.: Functional kernels with modules. Master’s thesis, ETH Zürich

(1995)
29. Nikhil, R.S., Arvind, L.A., Hicks, J., Aditya, S., Augustsson, L., Maessen, J., Zhou,

Y.: pH Language Reference Manual, Version 1.0. Massachusetts Institute of Tech-
nology, Computation Structures Group Memo No. 396 (1995)

30. Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms. Springer,
Berlin (1981)

31. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1998)

32. Jones, M.P., Hudak, P.: Haskell vs. Ada vs. C++ vs. awk vs.. . . An experiment
in software prototyping productivity, Yale University, Department of Computer
Science (July 1994)

33. Jones, S.P. (ed.): Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

34. Redfern, D.: The Maple Handbook: Maple V Release 4. Springer, Heidelberg (1995)
35. Van Roy, P. (ed.): Multiparadigm Programming in Mozart/Oz. In: Van Roy, P.

(ed.) MOZ 2004. LNCS, vol. 3389. Springer, Heidelberg (2005)
36. Schaller, C.: Elimination von Funktionen höherer Ordnung in Haskell–

Programmen. Master’s thesis, Universität Passau (September 1998)



154 O. Lobachev and R. Loogen

37. Schönhage, A.: Asymptotically fast algorithms for the numerical multiplication and
division of polynomials with complex coefficients. In: Calmet, J. (ed.) ISSAC 1982
and EUROCAM 1982. LNCS, vol. 144, pp. 3–15. Springer, Heidelberg (1982)

38. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Comput-
ing 7(3–4), 281–292 (1971)

39. Symbolic Computation Infrastructure for Europe project,
http://www.symbolic-computation.org/

40. Stein, W.: Sage: Open Source Mathematical Software (Version 2.10.2) The Sage
Group (2008), http://www.sagemath.org

41. Thurston, D., Thielemann, H.: Haskell Numeric Prelude program,
http://darcs.haskell.org/numericprelude/

42. Trinder, P.W., Barry Jr., E., Davis, M.K., Hammond, K., Junaidu, S.B., Klusik,
U., Loidl, H.-W., Jones, S.L.P.: GpH: An Architecture–Independent Functional
Language. In: Glasgow Functional Programming Workshop, Pitlochry, Scotland
(September 1998)

43. van Rossum, G.: The Python Language Reference Manual. Network Theory Ltd.
(2006)

44. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

45. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice Hall, Englewood
Cliffs (1963)

46. Wilkinson, J.H.: The perfidious polynomial. In: Golub, G.H. (ed.) Studies in Nu-
merical Analysis, Mathematical Association of America, Washington, D.C, vol. 24,
pp. 1–28 (1984)

47. Wolfram, S.: Mathematica: a system for doing mathematics by computer. Wolfram
Research, Inc. (1991)


	Introduction
	Advantages of Functional Languages
	The Two Languages of a CAS
	First Case Studies
	Naive Polynomial Multiplication
	Computing Factorial
	Fast Polynomial Multiplication

	Related Work
	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


