
Dynamic Chunking in Eden

Jost Berthold

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

berthold@informatik.uni-marburg.de

Abstract. Parallel programming generally requires awareness of the
granularity and communication requirements of parallel subtasks, since
without precaution, the overhead for parameter and result communica-
tion may outweigh the gain of parallel processing. While this problem
is often solved explicitly at the language level, it can also be alleviated
by optimising message passing mechanisms in the runtime environment.
We describe how a simple buffering mechanism introduces dynamic list
chunking in the runtime environment of the parallel functional language
Eden. We discuss design and implementation aspects of dynamic chunk-
ing and compare its effects to the original version in a set of measure-
ments. Our optimisation is justified by a simple cost model, measure-
ments analyse the overhead and illustrate the impact of the changed
message passing mechanism.

1 Introduction

A major issue in parallel programming is to consider the granularity and com-
munication need of parallel algorithms [6]. Regardless of the underlying language
paradigm, communication latency in parallel algorithms may limit the achiev-
able speedup. On the other hand, sending more data at a time can spoil the
parallel system’s synchronisation and lead to distributed sequential execution.
In the field of lazy functional languages, a second obstacle is the conflict be-
tween demand-driven evaluation and parallelism [18]. Parallelism control in the
coordination language generally has to balance between lazy evaluation and fast
parallel startup.

The parallel functional language Eden [3] offers means to define parallel pro-
cesses and control their execution and granularity explicitly at the language
level. As investigated in [9], ingenious programming with respect to the partic-
ular language semantics of Eden coordination constructs leads to significantly
better speedup, but such optimisations force the programmer to write far from
obvious code and thus fail to meet the main intention of the functional paradigm
in parallel programming: “[to] eliminate [...] unpleasant burdens of parallel pro-
gramming...” ([8], foreword) by high abstraction. Benchmark programs often
use a chunking technique to increase the size of messages between two processes;
which we would like to call the message granularity, as opposed to the task
granularity, which refers to the complexity of processes (as a general term, gran-
ularity of computation units is reciprocal to their number). However, the data

communication of a parallel program is strongly influenced by the particular
hardware and network setup. A common issue for benchmarking programs is to
first experiment with different granularities in order to balance communication
latency against synchronisation lacks, and then hand-tune the explicitly con-
trolled (message) granularity from the experimental pre-results. The hand-tuning
of programs involves severe program restructuring which decreases readability
and maintainability. Simple lists are e.g. replaced by lists of lists, which requires
complex and error-prone conversions. These problems could however be avoided
by optimising the message passing mechanism in the runtime environment.

Such an optimisation should be located at a very low level in the communica-
tion facilities of the runtime system, thereby making it completely independent
of the language semantics. The main idea in the optimisation is to save communi-
cation cost by automatically gathering successive messages to the same receiver.
Several messages will thus be dynamically chunked in one single big message; as
opposed to explicit static chunking of the data itself in the program’s granularity
control.

In this paper, we describe the implementation and the effects of this simple
buffering mechanism in the runtime environment of the parallel functional lan-
guage Eden. The paper is organised as follows: After a short introduction to the
language Eden and its implementation in Section 2, we describe the aim of the
optimisation as well as some design and implementation aspects in Section 3.
The effect of our optimisation is described by a simple cost model in Section 4.
Finally, we show measurements which analyse the overhead and the impact of
the changed message passing mechanism. Section 5 concludes.

2 Parallel processing with Eden

2.1 Language Description

Eden extends Haskell [14] with syntactic constructs for explicitly defining pro-
cesses, providing direct control over process granularity, data distribution and
communication topology [3, 10]. Its two main coordination constructs are process
abstraction and instantiation.

process::(Trans a, Trans b)=> (a -> b) -> Process a b

embeds functions of type a->b into process abstractions of type Process a b where
the context (Trans a, Trans b) states that both types a and b belong to the
type class Trans of transmissible values. A process abstraction process (\x -> e)

defines the behavior of a process with parameter x as input and expression e as
output.
A process instantiation uses the predefined infix operator

(#)::(Trans a,Trans b)=> Process a b -> (a -> b)

to provide a process abstraction with actual input parameters. The evaluation
of an expression (process (\ x -> e1)) # e2 leads to the dynamic creation of a

process together with its interconnecting communication channels. The instan-
tiating or parent process is responsible for evaluating and sending e2, while the
new child process evaluates the expression e1[x->e2] and sends the result back
to the parent. The (denotational) meaning of the above expression is identical
to that of the ordinary function application ((\ x -> e1) e2).

Both input and output of a process can be a tuple, in which case one con-
current thread for each output channel is created, so that different values can be
produced independently. Whenever one of their outputs is needed in the overall
evaluation, the whole process will be instantiated and will evaluate and send
all its outputs eagerly. This deviation from lazy evaluation aims at increasing
the parallelism degree and at speeding up the distribution of the computation.
Local garbage collection detects unnecessary results and stops the evaluating
remote threads. In general, Eden processes do not share data among each other
and are encapsulated units of computation. All data is communicated eagerly
via (internal) channels, avoiding global memory management and data request
messages, but possibly duplicating data.

2.2 Stream and List Processing

Data communicated between Eden processes is generally evaluated to normal
form by the sender. Lists are communicated as streams, i.e. each element is sent
immediately after its evaluation. This special communication property can be
utilised to profit from lazy evaluation, namely by using infinite structures and
by reusing the output recursively, as e.g. in the workpool skeleton [10]. Another
obvious effect is the increased responsiveness of remote processes and the inter-
leaving of parameter supply and parallel computation. Processing long lists of
data is a prime example for functional parallel programs, e.g. in a simple parallel
sorting program:

Example: The following function sorts a list of values in parallel by distributing
it to child processes, which sort the sublists using a sequential sorting algorithm.
Finally, the sorted sublists are merged together by the parent.

parsort :: (Trans a, Ord a) => ([a] -> [a]) -> [a] -> [a]

parsort _ [] = []

parsort seqsort xs = lmerge [(process seqsort) # sublist |

sublist <- unshuffleN noPe xs] ‘using‘ spine

The sublists are created by a split function unshuffleN :: Int -> [a] -> [[a]]

which uses the system value noPe to determine the number of available PEs
in the parallel setup. The function lmerge merges the returned sorted sublists
sequentially in a tree-shape manner. The evaluation strategy spine [16] is applied
in order to start all processes simultaneously as soon as the result is needed. /

In the child processes, work is done essentially by comparing several inputs.
The Eden sending policy leads to a large number of very small messages be-
tween the parent and the sorting processes and slows them down (note that the
message passing latency also affects the evaluation in Eden, since values are sent

eagerly after evaluation, whereas with lazy communication and global memory,
data transmission does not affect the evaluation). If the program does not ex-
ploit stream communication, it is favourable to send more data together, ideally
without disturbing the interleaving between parameter supply and evaluation.

We could modify the parallel sorting function, so that the sorter processes
receive their input in bigger chunks instead of element per element:

Example:(cont.d)

parsortchunk :: (Trans a, Ord a) => Int -> ([a] -> [a]) -> [a] -> [a]

parsortchunk size seqsort xs =

lmerge [process (seqsort . concat) # (chunk size sublist) |

sublist <- unshuffleN noPE xs] ‘using‘ spine

-- simple list chunking

chunk :: Int -> [a] -> [[a]]

chunk _ [] = []

chunk k xs = (take k xs) : chunk k (drop k xs)

The chunking function aggregates every size elements to a sub-sublist, which is
deconstructed by the receiver, so we reduce the number of messages. But this
second version is much less intuitive, and it is far from obvious which parameter
for size would be best. Another, even more obscure variant restructures the
parallel sorting algorithm and chunks the output as well:

parsortchunk2 size seqsort xs =

lmerge [lmerge (process (map seqsort) # (chunk size sublist) |

sublist <- unshuffleN noPE xs] ‘using‘ spine

In this version, each child process sorts several smaller lists, and the caller merges
both each child’s results and the final result. This overhead for the caller is the
price for less communication and a much better overlap of parallel evaluation
and communication. We cannot tell the best size parameter for either variant
without excessive tests, but it is clear that both variants perform better by saving
communication. /

An improvement to this enigmatic optimised code is to use special skeletons
for specific tasks as e.g. mapping a function to a huge list in parallel. Skeletons
are generic patterns of parallelism which take the specific working functions as
arguments, as described and discussed for Eden in [10]. Since a skeleton is im-
plemented in a predefined library, it can do chunking implicitly and hidden from
the programmer. Programs using skeletons are often easier to read, but skeletons
are always restricted to their respective pattern of parallelism. In our example,
a map-fold skeleton could do the work, but we are still free to spoil the perfor-
mance by choosing an inappropriate chunk size, unless the skeleton developer
has chosen one for us. Anyway, the chunk size would always be statically fixed.

The idea of this paper is to investigate the effects of an automatic chunking
mechanism inside the runtime system of Eden, i.e. modifying the communication
layer to send data messages in a packet. Such a feature in the runtime system ap-
parently makes programming much easier and chooses the right chunking amount
automatically, but will of course introduce a considerable overhead.

3 Dynamic Chunking in the Eden Runtime Environment

Eden’s implementation extends the Glasgow-Haskell-Compiler (GHC, [13]) by a
parallel runtime environment, which is explicitly controlled by a small number
of primitive operations. Using these primitives, high-level process coordination
is specified in a functional module. The runtime system itself provides means to
instantiate new remote processes and to create and use the (now explicit) chan-
nels between them. Apart from that, it synchronises computations and controls
process termination. The Eden runtime system as a whole has been described in
the past (e.g. in [2, 1]) and will thus be omitted in this paper, the Eden message
protocol being the only detail of topical interest, together with the more general
properties of its message passing mechanisms shared with GUM [17].

3.1 Eden Message Protocol and Its Penalties

Message Protocol Eden processes communicate via 1:1 channels, which are
represented by a link from an outport to an inport, structures which the RTS
uses to address messages correctly. As a general rule, every message between
processes contains these two ports. Eden processes send the following message
types:

Msg.-Type Sender (Port) Receiver(Port) [Data]

Create Process instantiates a process at the receiver PE.
Terminate stops a remote thread which sends data to a closed inport.
Value sends a single value as a subgraph in normal form.
Head sends an element (subgraph in normal form) of a list.

In addition, we also have messages to and from the system manager program
SysMan.c, a stand-alone C + PVM program which controls the startup and
shutdown of all PEs. Those messages do not belong to the Eden protocol, but
to the system’s communication as a whole, since they are sent between the PEs
and not between processes.

Ready Announces a PE to SysMan (no data)
Task-Ids From SysMan. Contains the addresses of all PEs started (in PVM)

for the parallel computation.
Finish From SysMan: Stops the parallel system. (no data)

From one of the PEs to SysMan: initiate system stop.

The message Create Process is sent by a thread in the generator (parent)
process as an effect of the primitive operation createProcess#. The receiver un-
packs the included subgraph into its heap and starts a new process by creating
a thread to evaluate the subgraph.

Terminate is sent by the runtime system after garbage collection (and not
by a process), when the marking of a garbage collection does not reach a syn-
chronisation node which represents data evaluated remotely.

Messages Value and Head are the interesting ones for the work presented
here. They both transmit evaluated data (as single values or as stream data)
between processes. The included subgraph in normal form replaces a synchroni-
sation node in the receiver’s heap, which is linked to the receiving inport. This
is a direct replacement for single values, while for stream data, a new Cons clo-
sure is created and its references filled with the received subgraph and a new
synchronisation node for the rest of the stream/list.

Simple Cost Analysis Following the concept of stream communication in the
language specification, if a child process receives or sends back a very long list,
every element is sent in a separate Head message. Since data transmission is
eager in Eden, the amount of messages is not limited by the demand-driven
evaluation (as it would be in GUM, the GpH runtime environment). Sending
a message always implies a certain penalty for the required actions in the un-
derlying communication middleware. This penalty has been quantified by using
special test primitives in a debug runtime system.

In the test program, we extract the time for all actions directly related to
the message passing subsystem by repeatedly linearising a graph structure of
variable size and either sending it or not – the difference indicates time spent for
sending actions. The test program does not care about receiving those linearised
subgraphs, so network latency is not involved. To quantify the influence of data
sizes sent, we use a simple linear model, where sending time is estimated as basic
time λ for each message plus variable time linearly growing with the message
size in words, weighted by a factor β.

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500

Ti
m

e
(u

se
c)

Data Size (machine words)

Eden Message Sending Overhead

Eden: Sending time
Estimated Time

Fig. 1. Message sending penalty measurement and linear model: time = λ+β ·datasize

Fig. 1 show results of the measurements and the time estimation obtained
by linear regression. The obtained values are λ = 63.34 µsec and β = 0.1 µsec,

showing that the amount of data has only a small impact on the time needed to
send a message to another PE, compared to the basic sending action itself. We see
that the linear model is not completely correct (influence of a step function, due
to properties of the underlying message-passing middleware PVM and TCP/IP),
but this deviation is not relevant to what we want to show.

3.2 Concept of Dynamic Low-level Chunking

Summing up, dynamic chunking aims at decreasing the defacto number of stream
data messages between the PEs automatically by collecting “messages” sent by
one process to another one in a send buffer. Messages in the buffer are then
sent together in a “packet”1. This drastically reduces the amount of packets,
while their data size increases. As explained, reducing the number of messages
should be transparent to the language design and thus have no effect on language
properties. It is obtained by introducing a new low-level layer of communication
in the runtime system, whose particular functionality is explained in this section.

Collecting messages in the runtime system needs send buffers of sufficient
size in every PE of the parallel system. Their size is at least the maximum
size of one message plus additional room for administrative fields. We maintain
one send buffer per communication partner, which is every PE in the system.
Alternatives would be to have either only one send buffer or one buffer per
channel (i.e. sending thread). Both solutions have obvious disadvantages, either
in the administration of the buffers or in the achievable effects.

As well as the sender, the receiver of a packet must buffer it for processing
to make the change transparent to the next layer of abstraction, the message
processing unit of the runtime environment. We would in fact only need one
single buffer to receive packets, if we processed the whole packet at once. On
the other hand, having an own receive buffer for each PE makes it very easy to
implement a fair processing manner, since we can choose between several buffers
without losing data. The receive buffers are simply processed in a round robin
manner and one message at a time, realising a fair PE communication.

Buffering other messages than the Head message would slow down the com-
putation globally by artificial latency, which is absolutely clear for Create Pro-
cess and Terminate, but also valid for Value messages, since no other message
will follow a single value. To prevent deadlock situations (two PEs holding back
each other’s messages), the scheduler must as well force packets to be sent when
there are no runnable threads.

In total, the criteria to send a packet are:

– if the packet contains an urgent message.
– before adding a message, if this message is bigger than the remaining space

in the packet.

1 In the following, we refer to “message” and “packet” in the sense that a packet is
sent by the MP-System and contains several messages, where (virtually) “sending a
message” means to add it to the packet.

– immediately after adding a message, if no other message can fit into the
packet any more. The minimum message size in Eden is two ports.

– during scheduling, if the packet age is more than a given timeout value. The
maximum age is a runtime system parameter accessible to the user.

– when the whole PE does not have any runnable threads (send all packets)

As well as the specific timeout value for packets (adjustable in milliseconds),
information about all actions related to sending packets can be collected for
statistical purpose. The methods which decide about sending packets are the
place where all information about the buffering mechanism is brought together,
e.g. average and maximum packet sizes, no. of timeouts, packets forced etc.

3.3 Implementation Remarks

The existing runtime system for GpH and Eden provides two communication
layers (files HLComms and LLComms), but in the current implementation, this
separation only structures the code and differentiates between the high-level
message protocol of the virtual machine and the concrete message passing. As
depicted in Fig. 2, HLComms defines methods to send, receive and process mes-
sages conforming to the described message protocol (different for GUM and
Eden), while LLComms provides basic methods to map these abstract sending
and receiving operations to the message passing system (MP-System), currently
PVM [15]. So we find a 1:1 relation between (abstract) messages sent by a pro-
cess and (concrete) messages in the MP-System, which had to be given up for
our modification.

LLComms.c

HLComms.c

Layer

PE-/PVM-
Comm.

Process-

Comm.

Process instantiation ,

Data , Termination

Process::Outport

¯¯¯¯

Process::Inport

System

Communication

MessagesCommunication

PEs 1-n/ PVM-PEs(Start, Stop)

Module

PVM-Messages

Fig. 2. Two Layers Model of the Communication modules

The message buffering system is implemented in a changed module LLComms
which provides a slightly modified interface. All methods in the interface of LL-
Comms do not access the MP-System itself any more, but new internal functions.
The former behaviour remains unchanged to keep the new layer transparent with
respect to communication routines, which are shared with the GUM system.
Message buffering could be used for GUM without any changes, but data is only
sent on demand in GUM, and GpH does not use any concepts comparable to the
stream channel communication in Eden, so there is no need for dynamic chunk-
ing in GUM at all. On the contrary, Hammond/Loidl dismiss message buffering
for GUM entirely in [11], since each additional latency would definitely lead to
a slow-down.

Functionality provided by HLComms sends and processes messages according
to the Eden protocol and uses the MP-System only by the interface of LLComms.
Therefore, only a slight modification was necessary to force urgent messages
immediately.

Receiving message packets only requires changes in internal methods of LL-
Comms in order to work on the receive buffers instead of with the MP-System.
Modifications have been made to the receiving routine, to the selector for sender
and message type and to the unpacking method. Furthermore, we had to im-
plement a separate method for a blocking receive. Sending messages has been
discussed above in the concept. As explained, we need an additional method to
force packet sending and have to administer the send buffers in the low-level
module.

We shall not digress too much on this low-level implementation, but need to
say some words about the startup and system messages, which, of course, must
be adapted to message buffering, too. The system messages (Ready, Finish,
Task-Ids) are sent and processed by the same methods as data messages, but the
startup messages should be sent and processed before the other message buffers
are completely set up. Furthermore, message buffering allows us to receive system
messages from SysMan with priority. We therefore introduced a special handling
for system messages to and from SysMan.

As already mentioned, the message buffering mechanism introduces a middle-
layer into the communication subsystem of GUM and Eden. This also has an
architectural aspect: Fig. 3 shows the modified communication system, which
now abstracts from the concrete underlying message-passing system (currently
PVM2). Internal functions inside LLComms still use PVM, but they have been
moved away from the interface and concentrated in the internals. As they are
completely independent of the GHC runtime system as a whole, this section can
easily be placed in an additional module, thereby facilitating the port to other
MP-systems.

LLComms.c

LLComms.c

HLComms.c

Layer

PE-

Comm.

Process-

Comm.

Process instantiation,

Data, Termination

Process::Outport

¯¯¯¯

Process::Inport

System-

Communication

MessagesCommunication

Simple data

(C-Integer)

(virtual/real) PEs

(pvm_tids)

PVM-Comm.

Eden-Packets(virtual) PEs

1-n

(Start, Stop)

Module

Fig. 3. New Three-Layer-Model of Communication in the runtime system

The dependencies in every other file than LLComms have been eliminated,
so that the layer concept in the shared communication system is consequently

2 GUM has recently been ported to MPI, but in a different version and manner than
what we describe here[19].

implemented. The system management by SysMan is an exception, since it uses
more specific functionality from the MP system, e.g. notification of errors on
child PEs and PE placement on the physical machines. It is reasonable to keep
the system management closely associated with the concrete MP-system, since a
generic version could never anticipate needed functions for particular platforms
and will always provide only a reduced functionality.

4 Results

4.1 Expected Effects of Dynamic Chunking

As already motivated in Section 3.1, we can expect considerably decreased run-
time particularly when the measured program sends small elements of a long list.
The effect depends on the size of the sent data and might be consumed by the
additional overhead for the buffer administration. In the following simplifying
model, we estimate the runtime change for message buffering in dependency of
the global data size and number of messages.

As explained in Section 3.1, all sending operations of a parallel algorithm
(put together in one formula) require the constant cost λ per message (assume
Nmsg messages) and a factor β for cost related to the total data size (taken
over all messages, number of copy operations not taken into account). Without
message buffering, we get the following estimation:

Tunbuf.d = λ · Nmsg + β · size (1)

By dynamic chunking, we collect the messages in Npacket packets and send those
packets instead of single messages. This requires an additional copy operation
when sending a packet (depending roughly on size, since the amount of data is
the same, but the operation copies much more data in one call). Simplifying in
this way, we get:

Tbuf.d = λ · Npacket + (β + Tcopy) · size + Overhead (2)

where the Overhead describes additional actions required for our buffering mech-
anism. It consists of a constant part for the administration of the buffers on
startup and variable cost for preparing the buffer and checking it every time we
add a new message to it. The check as well as the preparation are very simple and
will be estimated by an upper bound. As we cannot argue about the scheduling
loop, where this check is also needed, we postulate a constant number of passes
per message (since sending must always be preceded by an evaluation). In all,
we get:

Overhead ≤

startup
︷ ︸︸ ︷

NPEs · Talloc +Nmsg ·

Buffer operations
︷ ︸︸ ︷

(const′ · Tcheck + Tprepare) (3)

= const + Nmsg · Tvar (4)

where the additional cost Tvar indicates variable cost per message.

Assuming we save N = Nmsg − Npacket messages by dynamic chunking, we
decrease the time for sending messages by:

Tunbuf.d − Tbuf.d ≥ λ · N − (Tvar · Nmsg + Tcopy · size + const)

or, considering N = Nmsg − Npacket:

Tunbuf.d − Tbuf.d ≥ (λ − Tvar) · N − Tvar · Npacket − Tcopy · size− const (5)

We see that savings of (λ − Tvar) · N stand vis-à-vis to additional costs which
depend on the amount of data (size) and the number of packets (Npacket) (ne-
glecting the constant). As per definition, Tvar ·Npacket decreases in the same way
as N increases. Postulating an optimal use of the message buffers, the remaining
cost is size · Tcopy. It must be said that Tcopy only gives a rough estimation of
the real cost, since the number of copy operations is considerably smaller than
for the unbuffered variant, at least reduced by N = Nmsg − Npacket. Therefore,
we can expect that dynamic chunking has a strong impact when messages are
small enough and the program optimally synchronised, while for bigger messages,
runtime will increase in a moderate way with bigger amounts of data.

Determining N in practice is a different matter, since it does not only depend
on known factors as buffer size and timeout, but also on the global synchroni-
sation, i.e. data dependencies in the computation and speed differences between
different machines. And it is even harder to talk about the overhead introduced
for receiving packets.

4.2 Measurements

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

Ti
m

e
(u

se
c)

Data Size (machine words)

Buffering Overhead Analysis

Eden: Sending time
Eden:Est.d Time

Buffered: Sending Time
Buffered: Est.d Time

Fig. 4. Overhead measurement corresponding to Fig. 1

Overhead test Fig. 4 shows results of the test setup described in Section 3.1,
applied to the Eden implementation which uses dynamic chunking. In this test,
the sending operations simulate single-value transmission. Messages are never
buffered, but sent immediately using the implemented buffering mechanism, so
we get a good estimate of the overhead variables in 5. A linear regression yields
a constant λ′ = 99.6 µsec and a variable β′ = 0.12 µsec, resulting in Tcopy =
0.02 µsec and Tvar = 36.26 µsec for the cost model we sketched.

System test The pure effect of dynamic chunking can be observed with a simple
system test which does not perform any remote evaluation, but only echoes its
input list.

echo :: Trans a => Process [a] [a]

echo = process id

Fig. 5 shows the runtime for echoing a list of 10000 items of the determined
size (in machine words, 32 bit). As expected, runtime is much faster with small
messages, but not excessively longer for big ones. A characteristic value for this
system setup and program is around 300 words per message, where overhead
and savings are equal. This size may vary, according to different machine and
network setup and to the time spent on computation (zero for echo).

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

0.5

1

1.5

2

R
un

tim
e

(s
ec

)

R
at

io
 b

uf
.d

/u
nb

uf
.d

Data Size (machine words)

Echoing 10000 data items

Normal system
Dyn. Chunking

Ratio

Fig. 5. Measurement with echo process, 10000 messages of variable data size
(2 non-dedicated Linux PCs, PC-Pool, Univ. of Marburg)

A variable parameter, besides buffer size, is the buffer timeout for packets,
which can be adjusted by a runtime parameter. The system test with echo can-
not give results for this parameter, since it does not perform any computation
on child side and only depends on network speed and synchronisation effects. In

all, it is clear that a high buffer timeout may increase the charge of the packets,
but it introduces an additional message latency. Only by experiments, the com-
plex dependencies between process synchronisation and message latency can be
optimised using this parameter. The implemented runtime statistics on dynamic
chunking can help to find the right runtime parameters.

Benchmark programs Dynamic chunking has been tested with the simple
sorting functions shown in Section 2.2, as well as with different other benchmark
programs: a simple ray-tracer and a Mandelbrot Set visualisation. We used up
to eight nodes of a Beowulf Cluster connected through 100MBit Ethernet.

Program Problem size Normal Dyn. Chunking
parsort (8 PEs) 100K Integers 37.9 sec 13.7 sec

mandelbrot (8 PEs) 300x300 pixels 38.3 sec 20.3 sec
raytracer (8 PEs) huge scene 27.3 sec 26.9 sec

The differences between dynamic chunking and the previous runtime environ-
ment are evident. Dynamic chunking applied to a straight-forwardly expressed
parallel algorithm, as e.g. the parsort program, can speed up runtimes massively
(e.g by factor 3 for the sorting program with 100K Integers as input). The Man-
delbrot Set visualisation runs up to 40 % faster with dynamic chunking, while
the ray-tracer, which is highly hand-optimised and already chunks pixels to lines,
has nearly equivalent runtimes.

Unsurprisingly, the sorting program exhibits a rather poor speedup curve,
which is due to the sequential start and end phase of the algorithm and to the
fast sequential merge sort used. A slower sorting function such as insertion sort

would show better speedups by totally degrading the overall performance. The
Mandelbrot Set visualisation and the raytracer both use predefined implemen-
tation skeletons for map and show better speedups.

For a fair comparison, we also have to consider hand-tuned variants with
static chunking. Fig. 6 shows the impact of these modifications for selected chunk
sizes. Apparently, the program runs much faster with the appropriate chunking
parameter. Additionally, since the hand-tuning has modified (and improved) the
structure of the parallel algorithm, the version parsortchunk2 outperforms the
other one by far.

Measuring programs with static chunking and a runtime system which sup-
ports dynamic chunking mixes two effects. The results show that the dynamic
chunking mechanism does not replace explicit optimisations, but it does not dis-
turb them either. Hand-tuned programs may run faster with dynamic chunking
if their parameters are not optimally chosen. Another interesting point is that
the version parsortchunk, where only the input to child processes is chunked,
exposes rather unstable behaviour when run without dynamic chunking. Since
the input arrives much faster, the child processes start working earlier and flood
the caller with their results (each element in single message) resulting in high
network traffic and affecting other actions on the network. Dynamic chunking

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(s
ec

)

Chunk Size

Version: parsortchunk

Normal
with dyn. Ch.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(s
ec

)

Chunk Size

Version: parsortchunk2

Normal
with dyn. Ch.

Fig. 6. Influence of static chunking on runtimes in the sorting program
(Beowulf Cluster, Heriot Watt University, Edinburgh, 8 nodes)

reduces the number of replies and leads to a much better synchronisation, which
is why the runtime is considerably smaller, whereas for the second version, dy-
namic chunking has almost no effects when bigger static chunk sizes are chosen.

5 Related Work and Conclusion

We have introduced a message buffering mechanism into the runtime environ-
ment for the language Eden, which performs list chunking dynamically and
adapts itself to the respective program behaviour. Although dynamic chunk-
ing is tailored precisely to a specific property of Eden’s semantics, the buffering
mechanism is generic and can easily be exploited for other parallel Haskell di-
alects.

Coordination languages and implementations which would profit from using
message buffering are those in which PEs communicate much, but often exchange
only small data. Necessarily, the impact is limited to languages with (at least
partly) explicit communication. When data is only transmitted on demand and
separated from evaluation, the implementation can freely choose different strate-
gies, and performance will degrade by message buffering, since it introduces an
artificial latency into the communication subsystem. The problem of dynamic
chunking for Eden is rather specific and message buffering is usually a concern
for more basic software such as message-passing middleware and alike [15, 12, 7],
where it is commonly used with success. We are not aware of comparable work
in parallel functional languages, but partly related topics are the discussion of
different data fetching strategies for GUM in [11] and the SCL subsystem for
the data-parallel Nepal [5, 4], which implements a customised library for generic
space-efficient vector transmission.

Our measurements show that dynamic buffering massively improves straight-
forward parallelised Eden programs, while hand-optimised programs do not
profit as much, due to the (nevertheless acceptable) overhead of buffer adminis-
tration. For programs which are already highly hand-optimised, dynamic chunk-
ing affects program performance only in a moderate way. In particular, dynamic
chunking performs well for parallel computations with few processors, where
the administrative overhead is smaller. The measurements show that dynamic
chunking does not completely replace optimisation by static chunking on the
language level, but it produces much better results for intuitive straight-forward
parallelisations. Programs can remain unchanged, and runtime statistics can give
the programmer hints to suitable chunking parameters.

An additional advantage of message buffering in the Eden runtime environ-
ment is the new modularity of the communication subsystem. This independence
of the concrete MP-system should be exploited for future ports to new platforms
and advanced middleware, as well as the general idea of modularity and aspect
orientation in the parallel runtime system can be extended to the design of a
generic and flexible platform for parallel languages using Haskell as a sequential
base.

Acknowledgements. We would like to thank the colleagues from Heriot-Watt
University, Edinburgh, for the opportunity to use their Beowulf Cluster and
especially Phil Trinder for reviewing a document on the same subject. We also
thank Rita Loogen and the IFL workshop attendants for fruitful discussions and
suggestions.

References

1. J. Berthold, U. Klusik, R. Loogen, S. Priebe, and N. Weskamp. High-level Process
Control in Eden. In H. K. et al., editor, EuroPar 2003 — Intl. Conf. on Parallel
and Distributed Computing, volume 2790 of LNCS, Klagenfurt, Austria, 2003.

2. S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Parallel)
Eden: An Implementation Point of View. In PLILP’98, LNCS 1490, pages 318–334.
Springer, 1998.

3. S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña Maŕı. The Eden Co-
ordination Model for Distributed Memory Systems. In HIPS’97 — Workshop on
High-level Parallel Progr. Models, pages 120–124. IEEE Comp. Science Press, 1997.

4. M. Chakravarty and G. Keller. How Portable is Nested Data Par-
allelism ? In W. Cheng and A. Sajeev, editors, PART’99, Mel-
bourne, Australia, 1999. RMIT University, Springer-Verlag. Available at
http://www.cse.unsw.edu.au/˜chak/papers/CK99.html.

5. M. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal — Nested
Data-Parallelism in Haskell. Technical report, University of New South Wales,
2000. http://www.cse.unsw.edu.au/˜chak/papers/ndp-haskell.ps.gz.

6. I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.
http://www.mcs.anl.gov/dbpp/.

7. G. Geist, J. Kohl, and P. Papadopoulos. PVM and MPI: a Comparison of Features.
Calculateurs Paralleles Vol. 8 No. 2 (1996), 8(2), May 1996.

8. K. Hammond and G. Michaelson, editors. Research Directions in Parallel Func-
tional Programming. Springer-Verlag, 1999.

9. U. Klusik, R. Loogen, and S. Priebe. Controlling Parallelism and Data Distribution
in Eden. In SFP’00, Trends in Functional Programming, pages 53–64, Univ of St.
Andrews, Scotland, July 2000. Intellect.

10. U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation Skeletons in Eden
— Low-Effort Parallel Programming. In IFL’00, volume 2011 of LNCS, pages
71–88, Aachen, Germany, Sept. 2000. Springer.

11. H.-W. Loidl and K. Hammond. Making a Packet: Cost-Effective Com-
munication for a Parallel Graph Reducer. In IFL’96, volume 1268 of
LNCS, pages 184–199, Bad Godesberg, Germany, September 1996. Springer.
http://www.cee.hw.ac.uk/˜dsg/gph/papers/ps/packet.ps.gz.

12. MPI-2: Extensions to the Message-Passing Interface. Technical report, University
of Tennessee, Knoxville, July 1997.

13. S. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The Glasgow
Haskell Compiler: a Technical Overview. In JFIT’93, pages 249–257, March 1993.

14. S. Peyton Jones and J. Hughes. Haskell 98: A Non-strict, Purely Functional Lan-
guage, 1999. Available at http://www.haskell.org/.

15. Parallel Virtual Machine Reference Manual, Version 3.2. University of Tennessee,
August 1993.

16. P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algorithm + Strategy
= Parallelism. J. of Functional Programming, 8(1):23–60, 1998.

17. P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones.
GUM: a Portable Parallel Implementation of Haskell. In PLDI’96, pages 78–88.
ACM Press, May 1996.

18. P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and Distributed Haskells.
J. of Functional Programming, 12(4&5):469–510, 2002.

19. A. A. Zain. Heriot-Watt University, Edinburgh. personal contact, July 2003.

