
Iterating Skeletons

Structured Parallelism by Composition

Mischa Dieterle1, Thomas Horstmeyer1, Jost Berthold2, and Rita Loogen1

1 FB Mathematik und Informatik, Philipps-Universität Marburg, Germany
{dieterle,horstmey,loogen}@informatik.uni-marburg.de
2 Dept. of Computer Science, University of Copenhagen, Denmark

berthold@diku.dk

Abstract. Algorithmic skeletons are higher-order functions which pro-
vide tools for parallel programming at a higher abstraction level, hiding
the technical details of parallel execution inside the skeleton implemen-
tation. However, this encapsulation becomes an obstacle when the actual
algorithm is one that involves iterative application of the same skeleton
to successively improve or approximate the result. Striving for a gen-
eral and portable solution, we propose a skeleton iteration framework in
which arbitrary skeletons can be embedded with only minor modifica-
tions. The framework is flexible and allows for various parallel iteration
control and parallel iteration body variants. We have implemented it in
the parallel Haskell dialect Eden using dedicated stream communication
types for the iteration. Two non-trivial case studies show the practi-
cality of our approach. The performance of our compositional iteration
framework is competitive with customised iteration skeletons.

1 Introduction

Modern hardware shows an increasing degree of parallelism at multiple levels.
Graphics processing units (GPUs) and modern multicore CPUs offer numerous
processing elements on one chip; cloud computing solutions promise to scale com-
pute clusters up to previously inconceivable node counts with ease. It therefore
becomes more and more difficult to effectively program these complex large-scale
platforms at a convenient level of abstraction, especially when the programmer
is not a parallelism expert. Research in parallel programming has developed a
range of concepts and models for skeleton-based parallel programming to facili-
tate parallel programming and separate algorithm and parallelism concerns in
this increasingly parallel computer landscape.

Algorithmic skeletons implement the parallel behaviour for applications of an
algorithm class [Col89], represented directly as higher-order functions in func-
tional languages. A concrete algorithm can be parallelised simply by applying
the appropriate skeleton to function parameters which define the details of this
algorithm, entirely hiding parallelism aspects in the skeleton implementation.

This approach of “parallel building blocks” constitutes a problem when the
parallel algorithm involves iterations – applying the same skeleton repeatedly to

Preprint, to appear in Ralf Hinze and Andy Gill (Eds.), IFL 2012, 24th Symposium on
Implementation and Application of Functional Languages, Revised Selected Papers, Springer
LNCS (to appear), 2013. c© 2013 Springer-Verlag Berlin/Heidelberg
The final publication is available at link.springer.com.

link.springer.com

successively improving data. Each skeleton incurs a certain overhead of thread
and process creation, termination detection and communication/synchronisa-
tion. Repeatedly using one and the same skeleton leads to a repetition of this
parallel overhead for every skeleton instantiation.

Example. Consider a simple genetic algorithm which computes the development
of a population of individuals under some mutation until a termination criterion
is met. The flowchart in Figure 1 shows the iterated steps of the algorithm.

initial population

test

select

recomb

rate

terminate

Fig. 1: Flowchart

type Individual = (Genome, Rating)
test :: Individual → Bool -- terminate?
select :: [Individual] → [(Genome, Genome)]

-- parents for next gen.
recomb :: (Genome, Genome) → [Genome]

-- generate offspring
rate :: Genome → Individual -- evaluation

A straightforward parallel version of the algorithm using
recursion is listed beneath. It tests whether at least one
individual of a given population fulfills the termination cri-
teria. If not, genomes are selected based on their fitness
(i.e. their relative rating) and paired as parents for the next
generation. A parallel map implementation (parMap) is used
to recombine the parents (already distributed into n sub-

lists, one for each processing element (PE)) and rate the offspring – working
on each sublist of the population in an own parallel process. The results of all
processes are gathered and passed to a recursive call of the main function ga.
The algorithm terminates when one of the new individuals passes the test.

ga :: [[Individual]] → Individual
ga pop = case (test_select pop) of

Left parentss → ga $ parMap recomb_rate parentss
Right solution → solution

test_select :: [[Individual]]
→ Either [[(Genome, Genome)]] Individual

recomb_rate :: [(Genome, Genome)] → [Individual]

In this parallel implementation, new parMap processes are created for each
recursive call of ga. However, it would be much better to reuse processes, initial-
isation data, and communication channels across the different parMap invoca-
tions, especially when running the parallel program in a distributed environment.
Also, if processes were reused, they would work on localised data and could even
share a local state across the entire computation.

As the parallel behaviour is encapsulated inside a skeleton’s implementation,
it is generally very hard to optimise the repeated use of a skeleton without mod-
ifying the skeleton itself. On the other hand, a solution that involves rewriting
parallel skeletons for every concrete sequence of applications is not favourable;

2

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

we seek a more general method to compose skeletons for iterative computations,
which we call skeleton iteration3 subsequently.

Our Approach. We propose a general functional iteration scheme iter which is
a meta-skeleton (combinator) using an iteration control and an iteration body
function as parameters, and streams for exchanging data between both. Specific
control and body functionality can be freely combined to express a wide range
of iterative algorithmic patterns. We show how to lift ordinary skeletons in a
systematic way to work on communication streams such that they can be used
as iteration bodies in our iteration scheme. The central idea is to replace the
repeated instantiations of the same body skeleton in an iteration with the single
instantiation of a lifted body skeleton, the iteration body, which works on a
stream of input values instead and produces a stream of output values. The
control function transforms the output stream into the input stream which thus
depends on the output stream, yielding a circular program, i.e. a program which
uses such a self-referential data structure [Bir84]. Each value on the input stream
corresponds to an instantiation of the original skeleton, i.e. to an iteration step.

To improve programming comfort and safety we introduce special types for
the communication streams as these replace iterative processing. Special support
is provided for iteratively processing distributed data structures.

We have implemented our iteration framework in the parallel Haskell dialect
Eden [LOMP05,Loo12]. The functional approach makes it easy to precisely state
interfaces and to identify conceptional requirements from our implementation.
Using two non-trivial case studies, K-means and N-body, we compare the per-
formance of implementations using our framework to that of straightforward
recursion-based implementations, and, for K-means, to a monolithic customised
parMap iteration skeleton [PR01]. The K-means case study shows that our frame-
work performs much better than a straightforward recursion-based version with
repeated process instantiation, and that it is competitive with the specialised
monolithic skeleton. In the N-body case study, the framework-based implemen-
tation scales better and reduces overhead compared to the recursive version.
However, when run on a small number of processors, the latter has slightly bet-
ter overall runtimes.

In total, our skeleton iteration framework allows for targeted optimisations
of iterative algorithms, with respect to minimising data transfers and controlling
dependencies. It drastically improves code structure and readability and provides
an acceptable performance with low effort.

Plan of Paper. In the next section, we introduce the proposed skeleton iteration
framework gradually, starting with the Haskell prelude function for iteration.
The performance evaluation follows in Section 3. Sections 4 and 5 provide a
discussion of related work and conclusions.

3 Skeleton iteration should not be confused with parallel for-loops or parallel map,
where a sequential block is executed in parallel by multiple threads, instead of several
times. We focus on computations defined by algorithmic skeletons which are by
themselves already parallel and will be executed several times in sequence.

3

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

2 Iterating Skeletons

The Haskell prelude function iterate defines the iteration of a parameter func-
tion f, producing an infinite list (or: stream) of all intermediate results of the
iteration: [x,(f x),(f (f x)),...]. The same stream can be defined in a
self-referential way, using the map function and a feedback of the result stream
instead of a recursive function call (this technique of circular programs has been
used by Bird [Bir84] to improve data structure traversals).

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

streamIterate :: (a → a) → a → [a]
streamIterate f x = xs

where xs = x : map f xs

We are especially interested in the case where the parameter f of map, which
we call iteration body in the following, is a parallel skeleton, the body skeleton,
i.e. when evaluation of f involves the creation of threads or processes and com-
munication of data between them. Both the iterate function and the variant
streamIterate above would in this case repeatedly construct and destroy the
parallel process system evaluating f in every iteration step. As an illustrative ex-
ample, consider the case where the body skeleton is a parallel map (parMap), i.e.
creates one parallel process per input list element to apply a parameter function
to it. The following specialised version of streamIterate implements this:

iterateParMap0 :: (a → a) → [a] → [[a]]
iterateParMap0 g xs = xss

where xss = xs : map (parMap g) xss

Note that, in the result type of iterateParMap0, type [[a]] denotes a
stream of lists, i.e. the outer list is infinite, while the inner lists are finite and
computed in parallel (by the iteration body parMap g of type [a] → [a]).

As the iteration body (parMap g) is always the same, it would be desirable
to use just one set of processes for all iterations, instead of creating a new set of
processes in each step. This can be achieved by first transposing the input into
a list of streams and then applying parMap (map g) to it; and finally restor-
ing the original order with a second transposition. The transposition function
transposeS fixes the length of its result list to the length of the first inner list
of its input. This guarantees that parMap is applied to a finite list.

iterateParMap1 :: (a → a) → [a] → [[a]]
iterateParMap1 g xs = xss

where xss = xs : transposeS (parMap (map g) (transposeS xss))

Now the iteration via map takes place within the processes created by parMap

only once, saving the process creation overhead. In this simple example, it is
sufficient to replace the iteration map (parMap g) with the composition

transposeS ◦ (parMap (map g)) ◦ transposeS.

4

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

It is by virtue of streaming and the use of map to express the iteration that we
can lift the body skeleton parMap to work on streams and push the iteration
(expressed by map) inside the processes. Just swapping map and parMap in the
definition (leading to parMap (map g) xss) would instead lead to a pseudo-
parallelisation over the stream instead of over the lists. In the absence of a
distinction between lists (for parallelism) and streams (for iteration), types do
not indicate this mistake. In the following, we will propose special types and
mechanisms to generalise this approach and make a clear distinction between the
iteration stream and the list of inputs to the parallel processes. We will also add
special control functions for the iteration to improve locality and performance.

2.1 Iteration Type and Body

In this subsection, we introduce the iteration type used to distinguish between
streams and lists and we show how to lift body skeletons, which can then be
embedded in the iteration scheme discussed in the subsequent subsection.

Implementation Language and Process Types. We use the parallel Haskell
dialect Eden to present our language-independent concept. Eden is geared to-
wards distributed memory settings, but works equally well on shared memory
system [Loo12]. In Eden, the parMap skeleton

parMap :: (Trans b, Trans c) ⇒ (b → c) → [b] → [c]

creates a parallel process for every element of the input list, which eagerly eval-
uates the application of the parameter function (mapping input of type b to
output of type c). Processes are distributed among the available processing ele-
ments (PEs) (i.e. cores of a multicore or nodes of a compute cluster); and their
inputs (the list elements) and process outputs (elements of the result list) are
sent implicitly to and from these processes.

Communication-related properties of Eden processes are determined by types,
using overloaded communication functions in the type class Trans for transmis-
sible data. As a principle, data transmitted between processes will be evaluated
to normal form prior to sending, which introduces additional strictness into
Haskell in favour of parallelism. Furthermore, instances for Trans determine dif-
ferent send modes: while the default mode is to fully evaluate and send data as
a single item, product types (tuples) can be decomposed and sent concurrently,
and recursive types (such as lists) can be transmitted as streams, element by
element. The important aspect here is that the type of a process determines the
communication mode for its input and output data.

Special Stream Type for Iteration. In our iterateParMap definitions above,
streams were modeled as lists, leading to a potential pseudo-parallelisation of the
algorithm when parallelisation is applied at the outer level. In order to have a
clear distinction of the (sequential) iteration stream and the (parallel) input to
the iteration body, we introduce a special iteration type Iter (see Figure 2),
which is isomorphic to lists but different with respect to the communication

5

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

newtype Iter a = Iter {fromIter :: [a]}
instance Functor Iter where

fmap f = Iter ◦ map f ◦ fromIter

distribWith :: (a → [b]k)→ Iter a → [Iter b]k

distribWith f = map Iter ◦ transposeS ◦ map f ◦ fromIter

combineWith :: ([b]k→ a) → [Iter b]k→ Iter a
combineWith f = Iter ◦ map f ◦ transposeS ◦ map fromIter

Fig. 2: Iter type and auxiliary functions

mode. This enables the programmer and the type checker to identify iteration
inputs and outputs in type signatures and thereby increases readability and type
safety. Furthermore, the intended streaming behaviour can be defined in a tar-
geted manner by an appropriate Trans instance for Iter, while other lists can
be communicated as single items4. The functor instance of Iter provides fmap,
lifting a function of type a → b to iteration streams, Iter a → Iter b.

Aside from the new data type, Figure 2 shows auxiliary functions for com-
mon uses of Iter data when defining efficiently iterable skeletons. Function
distribWith splits a single iteration stream into many iteration streams, where
the i’th element of each output stream is generated from the i’th element of the
input stream. The function parameter f produces a list of output elements for
each element of the input iteration stream; these lists are then distributed into
a list of output streams using map Iter ◦ transposeS. Consider the special
case of f = id, which implies a = [b] and merely interchanges an outer Iter
and an inner list. One subtle detail here is that f must produce lists of identical
length k for all its arguments (elements of the iteration stream) as indicated by
the superscript k of the list result type of f5. The number of output streams,
which defines the parallelism degree, is determined by the first incoming stream
element and thus equal to the size of the result lists of f, again indicated by
superscript k in the list type. Finally, the function combineWith defines the
inverse transformation.

Lifting Body Skeleton parMap. With these tools at hand, it is easy to de-
fine the efficient iterable version of parMap in a more readable and type-safe
way (see Figure 3). The lifted skeleton simpleParMapIter transforms inputs of
type Iter [b]k, i.e. streams of fixed-length lists, element by element into out-
puts of type Iter [c]k. It creates k map processes, each transforming a stream
of values of type b into a stream of values of type c. The auxiliary functions
distribWith and combineWith are applied to the identity function id and

4 The original Eden definition specifies that top-level lists are communicated as
streams. In this work, we use a modified Trans class which gives programmers
more control of streaming through separate stream types.

5 The superscripts in our types are merely annotations to indicate implicit constraints
on the list lengths. Fixed sized lists could however be implemented e.g. using the
recent Haskell library Vec, see http://hackage.haskell.org/package/Vec

6

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

simpleParMapIter :: forall b c. (Trans b, Trans c)
⇒ (b → c) → Iter [b]k→ Iter [c]k

simpleParMapIter f bss = css where
bss’ = distribWith id bss :: [Iter b]k

css’ = parMap (fmap f) bss’ :: [Iter c]k

css = combineWith id css’

Fig. 3: Parallel map as an iteration body

thus reduce to type conversions and transpositions. Consequently, the behaviour
of simpleParMapIter corresponds to the iteration body of iterateParMap1:
transposeS ◦ (parMap (map g)) ◦ transposeS.

In iterateParMap1, the output stream was simply fed back into the iteration
body. Instead, an iteration control function should be used to decide about
termination. In the following, we propose an iteration scheme which combines
an iteration body, i.e. a lifted body skeleton, with such an iteration control.

2.2 Iteration Scheme and Iteration Control

A Generic Iteration Scheme. Iteration control links together the output and
input iteration streams of the body skeletons, to produce new input and decide
termination. The body skeleton’s input stream must be started with initial data,
and the result stream must be conditionally fed back to the body skeleton, or
terminated by closing the input stream and returning a final result. This can be
defined in terms of the following generic iteration scheme:

simpleIter :: (a → Iter c → (Iter b,d)) --control
→ (Iter b → Iter c) --body
→ a → d --in/out

simpleIter control body a = d where
(iterB,d) = control a iterC
iterC = body iterB

con-
trol body

Iter b

Iter c

a

d

The meta-skeleton simpleIter takes two function parameters: an iteration con-
trol function which produces initial input and handles the two loose ends of the
iteration stream, also determining the final result, and an iteration body func-
tion. While not restricted to it, the iteration body is typically an iterable skeleton
like simpleParMapIter. All parallelism is encapsulated in these two parameter
functions, simpleIter only deals with the interconnection, and thereby provides
a very liberal interface to combine iteration control and body functions.

Iteration Control Functions. The iteration body is allowed to transform
input of type Iter b to a different type Iter c. Thus, output cannot be fed
back directly by the control function, but needs to be transformed back from
Iter c to Iter b, in an element-wise fashion. The iteration control function
must be carefully defined to ensure progress in the circular iteration scheme. It
has to provide the initial input for the iteration body, it needs to check a ter-
mination condition, and to produce the final output from the iteration body’s
output upon termination. Two common examples for iteration control functions

7

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

are loopControl, which performs exactly n iterations by forwarding n inputs
without any transformation, and whileControl, which takes a function param-
eter checkNext to transform the initial input and iteration output of type a to
a new iteration input of type b (Left alternative). It stops the iteration with a
result of type d (Right alternative). The lazy patterns ˜(...:_) in both control
functions are necessary because the corresponding pattern matching can only be
performed after the final iteration step. Note that the rest stream matching the
underscore pattern _ is empty. Both control functions ensure progress because
they provide their second argument a as initial input and essentially pass the
elements of the output stream (or at least parts of them) to the input stream
until the number of iterations is reached or the termination condition is fulfilled.

loopControl :: Int → a → Iter a → (Iter a, a)
loopControl n a (Iter as) = (Iter as’, a’) where

(as’,˜(a’:_)) = splitAt n (a:as)

whileControl :: (a → Either b d) → a → Iter a → (Iter b,d)
whileControl checkNext a (Iter as) = (Iter $ lefts bs, d) where

(bs,˜(Right d:_)) = (break isRight ◦ map checkNext) (a:as)

In whileControl, the parameter function checkNext only considers the out-
put of a single iteration step to decide termination or to compute the input for
the next step. The general control function type in simpleIter is much more
liberal, in fact it is not even required that the control function generates exactly
one iteration body input for each iteration body output. Often, it appears more
suitable to use a state-based control function like the one shown here:

whileControlS :: (a → State s (Either b d)) → s
→ a → Iter a → (Iter b, d)

Its first parameter function is a state transformation for a single iteration step,
thereby combining safety (i.e. guaranteed progress) and flexibility. We have im-
plemented generic stateful control functions and used them in our measurements,
but present our work in terms of the stateless interface due to space constraints.

Running Example. The genetic algorithm presented earlier is an example of
a parallel map iterated with a conditional control function:

gaBody :: Iter [[(Genome, Genome)]]k→ Iter [[Individual]]k

gaBody = simpleParMapIter recomb_rate

gaControl :: [[Individual]]k→ Iter [[Individual]]k

→ (Iter [[(Genome, Genome)]]k, Individual)
gaControl = whileControl test_select

gaIter :: [[Individual]]k→ Individual
gaIter = simpleIter gaControl gaBody

8

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

The iteration body is constructed from recomb_rate by simpleParMapIter,
and iteration control uses the test_select function inside whileControl. Func-
tion simpleIter combines gaControl and gaBody to implement the genetic
algorithm with parallel recombination and rating.

2.3 Performance Tweaking

The main potential for optimisation of iteration steps lies in reducing communi-
cation overhead. One obvious bottleneck is that data is gathered in the control
function and then redistributed to the iteration body in each step. One approach
to optimise communication is to keep all data distributed between the iterations.
In Eden, this can be done using remote data [DHL10]. We can create a remote
data handle from local data and fetch the data remotely using functions:

release :: Trans a ⇒ a → RD a
fetch :: Trans a ⇒ RD a → a

When data is released, an intermediate data handle of type RD a is created,
which can be forwarded between several processes at negligible communication
cost, until the destination process fetches the real data. release and fetch

establish a direct connection between a producer and a consumer process.
In our scenario of iterative algorithms, termination can often be decided from

only a small fraction of data, while most of the data remains unmodified across
several iteration steps. When the iteration body’s inputs and outputs are lifted
to remote data, data will be passed directly from the output of a process to its
input for the following iteration step. It is straightforward to define a variant
of the simpleParMapIter skeleton for remote data, by lifting its parameter
function to the remote data interface:

parMapIterRD :: (Trans b, Trans c)
⇒ (b → c) → Iter [RD b]k→ Iter [RD c]k

parMapIterRD f = simpleParMapIter (release ◦ f ◦ fetch)

This variant can now be combined with control function loopControl n to it-
erate a computation n times on input (already supplied as remote data), and
data will never be gathered and re-distributed in-between the iteration steps.
In every iteration step, input for each process will be fetched for local pro-
cessing using function f, and released afterwards, only to be fetched within
one and the same process in the next iteration step. Other control functions,
like e.g. whileControl, need to gather data in-between iteration steps to decide
termination and provide input for further iteration steps. Therefore, a parallel
iteration control skeleton should be used to achieve locality and save communica-
tion without compromising abstraction by a manual decomposition of iteration
data.

2.4 Parallel Iteration Control Skeletons

In many cases where the iteration body uses a skeleton to work on distributed
data, a corresponding control skeleton with parallel processes can be used to

9

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

Control Body

Input

Output

Distributed
iteration input

Distributed
iteration output

(a) Iteration scheme

a

d

Iter b

Iter c

(b) local control

a
d

Iter b

Iter c

communication

(c) global control

Fig. 4: Parallel iteration control

localControl :: (Trans a, Trans b, Trans c, Trans d)
⇒ (a → Iter c → (Iter b, d)) -- process-local control
→ [RD a]k -- initial Input
→ Iter [RD c]k -- output of loops
→ (Iter [RD b]k, [RD d]k) -- input for loops, final result

Fig. 5: Local iteration control skeleton

inspect the distributed data, exchanging only the parts of it that are needed
globally (see Figure 4a). In addition, corresponding processes of control and
body can be placed on the same processing element to avoid communication6.
This concept can be used with arbitrary distributed data structures, in our im-
plementation we focus on the special case of iterations over distributed lists (lists
of remote data). Two different types of parallel iteration control can be distin-
guished: local and global iteration control, with respect to the data dependencies
within the control processes.

Local Iteration Control means that no data exchange with other control
processes is necessary – data dependency is local, as depicted in Figure 4b. Oth-
erwise, a global data exchange is necessary, as depicted in Figure 4c. The type of
a local iteration control skeleton for lists of remote data is given in Figure 5. The
implementation is similar to the implementation of parMapIterRD, but takes the
two input values and the tuple output into account. The control processes will
connect both to their predecessor processes that produce the distributed list be-
forehand and to the processes of the iteration body, fetching data on-demand, or
else passing on the RD handles. Functionality in each process is described by the
process-local control function which transforms the initial input and the output
of a process in the iteration body (stream-wise) in the respective control process.
This skeleton can implement several common iteration control variants simply

6 Eden supports explicit placement of computations in a multi-node parallel system.
We have omitted placement aspects from our code for simplicity throughout.

10

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

by partially applying the control skeleton to a suitable control function. E.g.
a variant of whileControl where termination can be decided from local data
would be:

localWhileCtrl :: (a → Either b d) →
[RD a]k→ Iter [RD a]k→ (Iter [RD b]k,[RD d]k)

localWhileCtrl checkNext = localControl (whileControl checkNext)

The control function checkNext works on the local part of a distributed list
(of type [RD a]), and either produces input for the next iteration or the final
output (again a distributed list).

a
d

Iter b

Iter c

sct

cmb

sct

cmb

sct

cmb

I
t
e
r

c

It
er
 s
c

Fig. 6: all-gather control

Global Iteration Control If the
control function needs information
from multiple processes to calculate
the next input for the body or to de-
termine termination, the processes
of the control skeleton need to ex-
change these data. As an example
of this kind of control skeleton, con-
sider an all-gather pattern where all
processes gather selected data from
all other processes in a distributed manner (see Figure 6). We only discuss the
signature of the skeleton here:

allGatherControl::(Trans a, Trans b, Trans c, Trans d, Trans sc)
⇒ (a → Iter c → Iter sc) --select
→ (Int → a → Iter c → Iter [sc]k→ (Iter b, d)) --combine
→ [RD a]k→ Iter [RD c]k→ (Iter [RD b]k, [RD d]k) --controlType

Aside from the iteration body output (distributed list of type [RD c], iterated),
the input for the next iteration and the final result (distributed lists [RD b]

and [RD d]) depend on additional synchronisation data (of type sc, iterated).
Combine function cmb produces the local next input and result, but considers
the entire list of synchronisation data (iterated) and the own position in the
list of processes (Int). Select function sct yields the local synchronisation data
which will be communicated to all other control processes.
A skeleton allGatherWhileCtrl can be defined as a specialisation of skeleton
allGatherControl with simpler interface, where type a=c.

allGatherWhileCtrl :: (Trans a, Trans b, Trans d, Trans sc)
⇒ (a → sc) --select
→ (Int → a → [sc]k→ Either b d) --combine
→ [RD a]k→ Iter [RD a]k→ (Iter [RD b]k, [RD d]k) --controlType

allGatherWhileCtrl sct cmb = allGatherControl sct’ cmb’ where
sct’ a (Iter as) = Iter $ map sct (a:as)
cmb’ self a (Iter as) (Iter scss) = (Iter $ lefts bs,d) where

(bs,˜((Right d):_)) = break isRight $
zipWith (cmb self) (a:as) scss

11

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

The select and combine function of this skeleton work on single elements of the
iteration stream. The encoding of the termination condition in cmb is similar to
the simple whileControl function presented in Section 2.2.

Running Example. The genetic algorithm described earlier needs to consider
the entire population to decide about termination (test) and produce input for
the next iteration step (select). Therefore, it uses a global control variant when
implemented with parallel iteration control.

gaBodyRD :: Iter [RD[(Genome,Genome)]]k→ Iter [RD[Individual]]k

gaBodyRD = parMapIterRD recomb_rate

gaControlRD :: [RD [Individual]]k→ Iter [RD [Individual]]k

→ (Iter [RD [(Genome,Genome)]]k, [RD Individual]k)
gaControlRD = allGatherWhileCtrl id cmb where

cmb self _ pop = case test_select pop of
Left next → Left $ next !! self
Right res → Right res

gaIterRD :: [RD [Individual]]k→ Individual
gaIterRD = head ◦ fetchAll ◦ simpleIter gaControlRD gaBodyRD

Iteration control is constructed from allGatherWhileCtrl, broadcasting the
local population (sct=id) to all sibling processes, such that every process can
use the whole global population in function cmb. The latter calls test_select to
either terminate (yielding Right res) or produce the next input (Left next)
for all body processes. Each process then selects (by !! self) its own next
input from the list.

2.5 Inlining the Iteration Streams

Up to now, we derived the type Iter and with iterSimple the signature of
iterated skeletons. We introduced remote data to achieve direct communication
among processes and used streams of parallel inputs (Iter [RD x]) to connect
the processes of iteration control and body. This has two drawbacks: (1) In the
skeleton definitions, we have to drag the iteration stream from the outside of the
iterated list to its elements. (2) The channel connections between the processes
of the body and the control skeleton have to be rebuilt in every iteration step.
Instead of having a stream of parallel inputs, we will use parallel input streams,
leading to type [RD (Iter x)]. The transpositions implied by distribWith

and combineWith are now obsolete. Further, streams of data will be communi-
cated over remote data connections established only once. The following parMap

variant with modified interface implements these static remote data connections:

parMapIter :: (Trans b, Trans c)
⇒ (b → c) → [RD (Iter b)]k→ [RD (Iter c)]k

parMapIter f = parMap (release ◦ fmap f ◦ fetch)

12

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

Notice that we can express the iterable skeleton simply by transforming the func-
tion parameter. We observed that the transformation of more complex topology
skeletons, such as allToAllRD and allReduceRD (both developed in the context
of remote data [DHL10]), are similarly easy, only involving the respective func-
tion parameters (all transformations done by the nodes are function parameters
to these skeletons).
The iteration streams to and from all processes have to be processed by a control
function or skeleton which exactly matches the particular distributed data shape.
This constraint can be fulfilled by adjusting the type signature of simpleIter
to reflect the change from a stream of parallel inputs to a parallel input stream:

iterD :: (a → [RD (Iter c)]k→ ([RD (Iter b)]m,d)) --control
→ ([RD (Iter b)]m→ [RD (Iter c)]k) --body
→ a → d --in/out

iterD = ... -- code from simpleIter

We need to define specialised versions of local and global iteration control cor-
respondingly, which again are simplifications of the existing implementations.

2.6 Unifying the Interface

The adjusted signature of iterD of the last section is not compatible with the
simpleIter function, even though their implementations are identical. It is easy
to specify a more general type for the iteration combinator,

type generalIter = (a → iterC → (iterB,d))
→ (iterB → iterC)
→ a → d

but we lose type safety when dropping the type of the Iter streams. This prob-
lem can be addressed using a type family which describes iteration types used to
interconnect iteration control and body. We want to have special instances for
distributed data types. As an example we define a special type for distributed
finite lists.

type family Iterated a :: ∗

newtype DList a = DList [RD a] --Distributed List
type instance Iterated (DList a) = DList (Iter a)

The distributed list type DList a is defined, containing a list of remote data
which represent the distributed elements of type a. Exchanging the iteration
stream and the distribution by [RD _] is now done automatically in the type
instance for DList of the Iterated type family, which yields DList (Iter a) –
isomorphic to type [RD (Iter a)]. Other distributed data types and Iterated

instances can be defined in the same way, e.g. distributed trees or matrices.
We use the simple type mapping type instance Iterated a = Iter a to

define the types of iterations for ordinary types. It is not possible to allow over-
lapping instances for type families, so we have to define these instances for every

13

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

iter :: (b → c --b/c to typecheck Iterated b/c
→ a → Iterated c → (Iterated b,d)) --control

→ (Iterated b → Iterated c) --body
→ a → d --in/out

iter iterControl iterBody a = d where
(iterB,d) = control undefined undefined a iterC
iterC = body iterB

Fig. 7: General iteration skeleton

base-type separately. Quite advisedly, we have defined DList a as newtype, so
an instance for lists can be defined without overlapping Iterated (DList a):

type instance Iterated [a] = Iter [a]

The type family approach enables us to finally define a generic but type-safe
iteration skeleton iter (see Figure 7) which subsumes all previously presented
definitions. It works for both DLists and for any other reasonable type instance
of Iterated. A small caveat is that two dummy parameters b and c need to
be used in the control function, in order for the typechecker to check the types
Iterated b and Iterated c. This is needed to determine the types, because
the type family mapping might not be injective.

3 Evaluation

We measured the performance of our iteration framework on a 32 node Beowulf
cluster at the Heriot-Watt University Edinburgh, each node with 2 x 4-core@2.00
GHz Intel Xeon E5504 processors, connected by gigabit Ethernet. Eden runtime
system instances were co-located on the nodes to make use of all processor
cores (which we further refer to as processors). The cluster provides a total of
256 processors. However, as it could not be used exclusively, measurements are
limited to a maximum of 128 processors. All program versions where tested on
2i processors with i ranging from 0 to 7. The reported runtimes are mean values
of 5 program runs. They are presented in diagrams with logarithmically scaled
axes, with runtimes corresponding to a linear speedup indicated by dotted lines.
In the following we present measurement results for two non-trivial case studies:
k-means and n-body.

K-means clustering is a heuristic method to partition a given data set of n
d-dimensional vectors into k clusters. In an iterative approximation, the method
identifies clusters such that the average distance (a metric such as the euclid-
ian or Manhattan distance) between each vector and its nearest cluster centroid
is minimal [Mac03]. The algorithm proceeds as follows: (1) randomly choose k
vectors from the data set as starting centroids, (2) define clusters by assigning
each vector to the nearest centroid, (3) compute the centroids of these clusters,
and (4) repeat the last two steps until the clusters do not change anymore. The
iteration body takes a list of cluster centroids as input and computes the list of

14

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

new centroids as output. The iteration continues until two subsequent iteration
results are equal or their differences fall below a threshold. The cluster assign-
ment and part of the centroid computation can be parallelised using parMap.
Each parallel process receives a subset of the vectors, and the whole list of cen-
troids. Every process then computes a list of weighted sub-centroids which are
combined to the list of new centroids by the iteration control.

We measured the runtimes of this parallel k-means algorithm with a data
set of 600000 vectors and k = 25 cluster centroids. The whole computation
comprised 142 iterations. Three different implementations were compared:

– recursive parMap is a näıve implementation which creates new processes and
re-distributes not only the centroids but also the (unchanged) list of vectors
in each iteration step. As the parallel processes are newly created for each
step, there is no way to share the vector list across iterations.

– untilControl/simpleParMapIter uses our iteration scheme with stateful ver-
sions of untilControl7 and simpleParMapIter. Only the centroids are
gathered and distributed for each iteration step, while the data vectors are
once distributed and then kept in the worker states during the iteration.

– monolithic iterUntil uses a special monolithic iteration skeleton iterUntil

presented in [PR01]. Like the composed version above, it uses a stable process
system and holds the data set in local states. While a perfect match for the
parallel k-means, other iterative algorithms would require a complete re-
design and re-write of the skeleton.

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

T
im

e
 (

s
)

Processors

recursive parMap
untilControl/parMapIter

monolithic iterUntil
linear speedup

Fig. 8: Runtimes for k-means with 600000 vec-
tors, 25 clusters, 142 iterations

Figure 8 shows the mean
runtimes plotted against the
number of processors. The
modular skeleton untilControl/
simpleParMapIter performs
as well as the specialised
monolithic iterUntil version.
Both scale well, showing an
almost linear speedup up to
8 processors. On more than
32 processors, initialising and
distributing the vectors in-
creasingly influences runtime,
leading to lower speedup.

The näıve recursive parMap
version performs dramatically worse. The overhead of distributing the vectors
for every iteration enormously slows down the computation.

N-body. The n-body problem is to simulate the movement of n particles in a
3-dimensional space, taking into account their mutual gravitational forces. In a
straightforward parallel N-body algorithm, particles are distributed to processes

7 Similar to whileControl, but forwards the initial input directly to the iteration
body, thus doing at least one iteration before termination.

15

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

and each process computes the new velocity and position for its own particles. To
update its particles’ velocities, each process needs position and mass (but not ve-
locity) of all other particles. This information needs to be exchanged in-between
the iterations, leading to considerable communication between the parallel pro-
cesses, in contrast to the parallel k-means algorithm described earlier.

We have used variants of the skeleton allToAll to parallelise the iteration
body. Each process holds a subset of the particles and processes exchange particle
information in every iteration step in a distributed manner using the all-to-all
topology. We implemented the following versions:

– recursive allToAllRD recursively instantiates the skeleton allToAllRD. As
the corresponding processes are allocated on the same processor in each
iteration, all data transfers occur between processes on the same processors.
The Eden runtime system optimises this processor-local communication by
passing references to existing data instead of serialising and sending it. I.e.
processor-local communications do not incur any overhead. Thus, the only
remaining overhead consists of the repeated process creations.

– loopControl/allToAllIter instantiates our iteration scheme with the skele-
tons loopControl for the iteration control and allToAllIter (allToAllRD
lifted to the Iter type) for the body.

In the first setting, we ran the n-body simulation for 10 iterations with 15000
bodies. This constitutes a relatively high workload and large amounts of data
have to be exchanged in every iteration. Runtimes against number of processes
are plotted in Figure 9.

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

T
im

e
 (

s
)

Processors

recursive allToAllRD
loopControl/allToAllIter

linear speedup

Fig. 9: Runtimes for n-body with 15000 bodies,
10 iterations

Surprisingly, the recursive
allToAllRD version performs
slightly better on up to 32
processors, showing even a
super-linear speedup on 2
and 4 processors. Only on
64 and 128 processors, the
loopControl/allToAllIter ver-
sion is faster than the re-
cursive version. An analysis
of runtime behaviors revealed
that the recursive allToAllRD
has no disadvantage in the
communication steps due to
the optimised local communi-
cations, but the computation phases seem to be shorter, although sharing the
same sequential code base with the iteration scheme version. Pending further
investigation, we assume that the differences originate from the runtime system,
maybe the garbage collection does not work as effectively for the data streams
in our iteration scheme version. In any case, our measurements show that the
loopControl/ allToAllIter version scales better than the recursive version.

16

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128

T
im

e
 (

s
)

Processors

recursive allToAllRD
loopControl/allToAllIter

linear speedup

Fig. 10: Runtimes for n-body with 1500 bodies,
100 iterations (overhead measurement)

In the second setting, we
reduced the workload and
amount of data to be com-
municated for every iteration
step, in order to measure
the parallelism overhead. We
used only 1500 bodies but in-
creased the number of itera-
tion steps to 100. This time,
version loopControl/allToAll-
Iter clearly outperforms the
recursive version independent
of the number of processors.

4 Related Work

The original skeleton work by Murray Cole [Col89] contains a chapter on an
iterative completion, parallelised on a grid of processes, but does not generalise
iteration as we do. Slightly more general is the iteration skeleton proposed in
earlier Eden skeleton work [PR01], realising an iteration of a stateful parallel
map. This work lays the grounds for our investigation, but does not generalise
iteration bodies and types, nor does it consider parallel control skeletons.

Many skeleton libraries, especially those based on imperative programming
languages, provide the constructs while for conditional iteration or for for fixed
iteration and support skeleton nesting, see e.g. the Scandium library [LP10],
which uses Java as computation language. However, no indications are made
about whether iterated body skeletons will be optimised with respect to process
creation overhead. A slightly larger corpus of related work can be found in the
cloud computing community but usually restricted to map-reduce [DG08,BDL09]
computations, like e.g. [ZGGW12][ELZ+10]. HaLoop [BHBE12] is another Map-
Reduce extension, which mainly capitalises on caching mechanisms for unmodi-
fied data and reduction results across several iterations of one map-reduce com-
putation over the same dataset. A small API extension is provided to specify
how existing map-reduce (Hadoop) computations should be iterated.

None of these publications addresses parallel iteration as a general concept or
distills out algorithmic patterns as we do. This generalising conceptual angle is
present in very recent work in the data-flow framework Stratosphere [ETKM12].
The authors propose the concept of ”incremental” iteration and ”microsteps”
to exploit sparseness of data dependencies and optimise read-only data accesses,
but thereby break up the iterative nature of the computation.

5 Conclusions and Future Work

Iteration is one of the main building blocks of programming. In this work, we
developed a general approach to describing iteration that works not only in the
common sequential setting but also in the case where the iterated computation

17

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

is highly parallel and executed in a distributed setting. We allow for arbitrary
parallel body skeletons and supply some parameterised control functions includ-
ing step counting and termination conditions on local and global data. We have
shown how body skeletons can be transformed in such a way that the body
processes will be re-used for all iterations, how to handle streams of input and
output data, and how to optimise communication between distributed processes
in a parallel execution. Runtime measurements for two non-trivial example appli-
cations, k-means and n-body, clearly show that our framework performs similar
to monolithic iteration skeletons and better than directly programmed iterations
where the iterated skeletons are repeatedly instantiated.
We will further investigate the field of skeleton composition in the future. In
particular, we plan to extend the work at hand by adding other distributed
data structures, to augment programming comfort for such distributed data by
suitable indexed types and type classes.

Acknowledgements. The authors thank the anonymous referees for their help-
ful comments on a previous version of this paper. Jost Berthold was partially
supported by DSF under contract number 10-092299 (Hiperfit).

References

[BDL09] J. Berthold, M. Dieterle, and R. Loogen. Implementing Parallel Google
Map-Reduce in Eden. In Euro-Par 2009, LNCS 5704, pages 990–1002.
Springer, 2009.

[BHBE12] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. The HaLoop approach
to large-scale iterative data analysis. VLDB Journal, 21(2):169–190, 2012.

[Bir84] R.S. Bird. Using circular programs to eliminate multiple traversals of data.
Acta Informatica, 21:239–250, 1984.

[Col89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. MIT Press, 1989.

[DG08] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. CACM, 51(1):107–113, 2008.

[DHL10] M. Dieterle, Th. Horstmeyer, and R. Loogen. Skeleton composition using
remote data. In PADL 2010, LNCS 5937, pages 73–87. Springer, 2010.

[ELZ+10] J. Ekanayake, H. Li, B. Zhang, Th. Gunarathne, S. Bae, J. Qiu, and G. Fox.
Twister: a runtime for iterative mapreduce. In HPDC ’10. ACM, 2010.

[ETKM12] St. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative
data flows. PVLDB, 5(11):1268–1279, 2012.

[LOMP05] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Pro-
gramming in Eden. J. of Functional Programming, 15(3):431–475, 2005.

[Loo12] R. Loogen. Eden – Parallel Functional Programming in Haskell. In CEFP
2011, LNCS 7241, pages 142–206. Springer, 2012.

[LP10] M. Leyton and J. M. Piquer. Skandium: Multi-core programming with
algorithmic skeletons. In PDP. IEEE Computer Society, 2010.

[Mac03] D. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge Univ. Press, 2003. See chapter 20, p.284ff.

[PR01] R. Peña and F. Rubio. Parallel Functional Programming at Two Levels of
Abstraction. In PPDP’01, pages 187–198. ACM, 2001.

[ZGGW12] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: A Distributed Com-
puting Framework for Iterative Computation. JOGC, 10:47–68, 2012.

18

Dieterle, Horstmeyer, Berthold, Loogen, Iterating Skeletons In: IFL 2012, LNCS (to appear).
c© 2013 Springer Berlin/Heidelberg. The final publication is available at link.springer.com.

link.springer.com

