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Abstract. Master-worker systems are a well-known and often applica-
ble scheme for the parallel evaluation of a pool of tasks, a work pool. The
system consists of a master process managing a set of worker processes.
After an initial phase with a fixed amount of tasks for each worker, fur-
ther tasks are distributed in reply to results sent back by the workers. As
this setup quickly leads to a bottleneck in the master process, the paper
investigates techniques for hierarchically nesting the basic master-worker
scheme. We present implementations of hierarchical master-worker skele-
tons, and how to automatically calculate parameters of the nested skele-
ton for good performance.

Nesting master-worker systems is nontrivial especially in cases where
newtasksaredynamically created fromprevious results (typically breadth-
ordepth-firsttreesearchalgorithms).Wediscusshowtohandledynamically
growing pools in a hierarchy and present a declarative implementation for
nested master-worker systems with dynamic task creation.

The skeletons are experimentally evaluated with two typical test pro-
grams. We analyse their runtime behaviour and the effects of different
hierarchies on runtimes via trace visualisations.

1 Introduction

Parallelising an algorithm implemented as a functional program starts by identi-
fying a set of largely independent evaluations. These tasks have to be assigned to
nodes of a parallel computer, to gain high speedups by simultaneous evaluation.
If the tasks are regular and their number is statically known, mapping them
to the parallel nodes is trivial. The everyday situation, however, faces us with
irregular tasks of varying and unknown complexity. The static task distribution
should be replaced by a dynamic one.

...
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Fig. 1. Master-worker scheme

The master-worker scheme is a parallel skele-
ton for a task pool with dynamic task distri-
bution. A master process distributes tasks to
a set of subordinate worker processes, and col-
lects the results. Many-to-one communication
enables the master to evenly supply a new task
to each worker every time it sends back a re-
sult. Worker idle-time in the period between
sending a result and receiving a new task can
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be avoided by pre-assigning a configurable amount (prefetch) of tasks to all
workers. The prefetch parameter determines the behaviour of the skeleton, be-
tween a completely dynamic (prefetch 1) and a completely static distribution
(prefetch ≥ no. of tasks

no. of workers ).
So far, we have assumed a statically fixed task pool, which, in essence, results

in a parallelised map function with dynamic assignment. Again, more realistic
are dynamic settings where results might imply additional new tasks at run-
time. This changes the scene completely: Tasks are not only irregular and of
unknown number, but also carry an unknown ’task productivity’. This weakens
the influence of the prefetch parameter.

A master-worker scheme essentially relies on a double functionality of the
master process: it is responsible for collecting (possibly large) results, and it emits
new tasks to idle workers. When a large number of workers is used, the single
master process quickly becomes a bottleneck which paralyses the whole scheme.
On the other hand, using more coarse-grained work requests, and consequently
tasks, would restrict the dynamic adaption to the workload. As a remedy, we
conceptually investigate techniques to nest the basic master-worker skeleton in
a master-worker hierarchy. The master process at the top distributes tasks to
several lower submasters, each of which manages a (smaller) worker set of its
own, or possibly another level of submasters in a deeper hierarchy.

The hierarchical master-worker system as a whole is tree-shaped, with worker
processes at the leaves and submasters as the inner nodes. The optimal hierarchy
layout depends on the nature of the tasks, and on the number and performance of
processing elements (PEs). The basic skeleton mechanism of tasks and requests
remains the same at all tree levels, but at higher levels of the tree, skeleton
parameters and distribution policies have to be adjusted to achieve good perfor-
mance. In the case of a dynamic task pool, another question we investigate is
whether submasters at one level should forward new tasks to upper levels, or keep
them for their own worker set. A simple hierarchical scheme for master-worker
systems has been presented in [7]. While we concentrate on the hierarchies, the
focus of [7] has been a modified master process, which enables a transformation
of the dynamically evolving task queue considering global information.

The paper is organised as follows: Section 2 presents non-hierarchical and
hierarchical master-worker skeletons for a static task pool; the essential mecha-
nism for nesting the basic skeleton, and how to automatically compute suitable
skeleton parameters. In Section 3, we extend the skeleton for the case of dy-
namic task sets, and show the more complex nesting mechanisms needed for
this skeleton variant. Each section includes experiments with an example ap-
plication, discussing the behaviour for different hierarchy layouts and prefetch
values. Section 4 discusses related work, Section 5 concludes.

2 Static Task Pools

In this section, we consider master-worker systems with a static task pool, i.e. no
tasks are created during processing. The task pool is a list of tasks which can also
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mw :: (Trans t, Trans r) => Int -> Int -> (t -> r) -> [t] -> [r]
mw n prefetch wf tasks = ress
where (reqs, ress) = (unzip . merge) (spawn workers inputs)

-- workers :: [Process [t] [(Int,r)]]
workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate prefetch [0..n-1])

-- task distribution according to worker requests
distribute :: Int -> [t] -> [Int] -> [[t]]
distribute np tasks reqs = [taskList reqs tasks n | n<-[0..np-1]]
where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe
taskList _ _ _ = []

Fig. 2. Eden master-worker skeleton with a static task pool

be provided as a stream, the total number of tasks does not have to be known in
advance. System termination depends, however, on closing this task stream.

2.1 The Basic Master-Worker Skeleton

We perform our experiments in the parallel Haskell extension Eden [4] which
allows to specify many different variants of the general master-worker schemes in
an elegant and concise way. Figure 2 shows the Eden implementation of the basic
master-worker skeleton. The task pool tasks is distributed to n worker processes,
which, for each task, apply the worker function wf and return a pair consisting of
the worker number and the result of the task evaluation to the master process,
i.e. the process evaluating mw. The worker numbers are interpreted as requests for
new tasks. The master uses a function distribute to send tasks to the workers
according to the (n*prefetch) requests initially created and the ones received
from the workers.1 Care must be taken that distribute is incremental, i.e. it
can deliver partial result lists without the need to evaluate requests not yet
available. The skeleton uses the following Eden functions:

– process ::(Trans a, Trans b) => (a -> b) -> Process a b

wraps a function into a process abstraction which shifts function evaluation
to a remote processing element. The Trans context ensures the existence of
internal communication functions.

– spawn :: [Process a b] -> [a] -> [b]

starts processes on remote machines eagerly.
– merge :: [[r]] -> [r]

nondeterministically merges a set of streams into a single one.
1 Because the input for Eden processes is evaluated by concurrent threads in the gener-

ator process, separate threads for each worker evaluate the local function tasklist.
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An additional merge phase would be necessary to restore the initial task order
for the results. This can be accomplished by adding tags to the task list, and
passing results through an additional function mergeByTags (not shown) which
merges the result streams from all workers (each sorted by tags, thus less complex
than a proper sorting algorithm). We will not go into further details.

In the following, we will investigate the properties and implementation is-
sues of hierarchical master-worker skeletons. As proclaimed in the introduction,
this should enable us to overcome the bottleneck in the master when too many
workers must be served.

2.2 Nesting the Basic Master-Worker Skeleton

To simplify the nesting, the basic skeleton mw is modified in such a way that it
has the same type as its worker function. We therefore assume a worker function
wf :: [t] -> [r], and replace the expression (map wf) in the worker process
definition with wf. This leads to a slightly modified version of mw, denoted by
mw’ in the following. An elegant nesting scheme (taken from [7]) is defined in
Figure 3. The parameters specify the branching degrees and prefetch values
per level, starting with the root parameters. The length of the parameter lists
determines the depth of the generated hierarchical system.

mwNested :: (Trans t, Trans r) =>
[Int] -> [Int] -> -- branching degrees/prefetches per level
([t] -> [r]) -> -- worker function
[t] -> [r] -- tasks, results

mwNested ns pfs wf = foldr fld wf (zip ns pfs)
where fld :: (Trans t, Trans r) =>

(Int,Int) -> ([t] -> [r]) -> ([t] -> [r])
fld (n,pf) wf = mw’ n pf wf

Fig. 3. Static nesting with equal level-wise branching

The nesting is achieved by folding the zipped branching degree and prefetches
lists, using the proper worker function, of type [t] -> [r], as the starting value.
The folding function fld corresponds to the mw’ skeleton applied to the branching
degree and prefetch value parameters taken from the folded list and the worker
function produced by folding up to this point.

The parameters in the nesting scheme above allow to freely define tree shape
and prefetch values for all levels. As the mw skeleton assumes the same worker
function for all workers in a group, it generates a regular hierarchy, one cannot
define different branching or prefetch within the same level. It is possible to
define a version of the static nestable work pool which is even more flexible (not
considered here), yet more simple skeleton interfaces are desirable, to provide
access to the hierarchical master-worker at different levels of abstraction. We can
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define an interface that automatically creates a regular hierarchy with reasonable
parameters for a given number of available processing elements.

mwNest :: (Trans t, Trans r) =>
Int -> Int -> Int -> Int -> (t -> r) -> [t] -> [r]

mwNest depth level1 np basepf f tasks
= let nesting = mkNesting np depth level1
in mwNested nesting (mkPFs basepf nesting) (map f) tasks

In this version, the parameter lists are computed from a given base prefetch,
nesting depth and top-level branching degree by auxiliary functions. These fewer
parameters provide simple control of the tree size and shape, and prefetch ad-
justed to the task granularity.

Auxiliary function mkNesting computes a regular nesting scheme from the top-
level branching degree level1 and the nesting depth, which appropriately maps to
np, the number of processing elements (PEs) to use. It calculates the branching
list for a hierarchy, where all intermediate levels are binary. The number of
workers per group depends on the number of remaining PEs, rounded up to
make sure that all PEs are used. Please note that this possibly places several
worker processes on the same PE. Workers sharing the same PE will appear as
slow workers in the system, but this should be compensated by the dynamic task
distribution unless the prefetch is too high.

ld =

⎡
⎢⎢⎢⎢⎢⎢⎢

np −

total # subm.s︷ ︸︸ ︷
l1 · (2d−1 − 1)
l1 · 2d−2

︸ ︷︷ ︸
# lowest subm.s

⎤
⎥⎥⎥⎥⎥⎥⎥

⇒ Branching list: l1 : 2 : 2 : . . . : ld︸ ︷︷ ︸
d levels

A central problem for the usage of the nested scheme is the choice of appro-
priate prefetch values per level, specified by the second parameter. A submaster
with m workers requiring prefetch p should receive a prefetch of at least m · p
tasks to be able to supply p initial tasks to its child processes. Given a worker
(leaf) prefetch of pf and a branching list [l1, ..., ld−1, ld], this leads to the following
minimum prefetch at the different levels:

⎡
⎣

d−1∏
j=k

lj ∗ pf | k ∈ [1 . . . d − 1]

⎤
⎦ = [(l2 · l3 · l4 · pf), (l3 · l4 · pf), (l4 · pf), pf ]

A reserve of one task per child process is added to this minimum, to avoid the
submaster running out of tasks, since it directly passes on the computed prefetch
amount to its children. The list of prefetch values is computed by a scanr1.

2.3 Experimental Results

We have tested the presented nesting scheme with different branching and
prefetch parameters, with an application that calculates a Mandelbrot set
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(a) Non-hierarchical, , pf 60

(b) branching [4], , pf 60

(c) branching [4], , pf 120

(d) branching [2,2], , pf 60

Fig. 4. Mandelbrot traces, with different nesting and varying prefetch

visualisation of 5000 × 5000 pixels. All experiments use a Beowulf cluster of the
Heriot-Watt University Edinburgh, 32 Intel P4-SMP nodes at 3 GHz with 512
MB RAM and Fast Ethernet. The timeline diagrams in Figure 4 visualise the
process activity over time for program runs with different nesting and prefetch.
Blocked processes are red (dark), and active/runnable processes green/yellow
(light).

Flat vs. Hierarchical Master-worker System. The hierarchical system shows bet-
ter runtime behaviour than the flat, i.e. non-hierarchical version. Although fewer
PEs are available for worker processes, the total runtimes decrease substantially.
Figure 4(a) shows a trace of the non-hierarchical master-worker scheme. Many
worker processes are blocked most of the time. In a hierarchical version with a
single additional level comprising four submasters, shown in (b), workers finish
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Fig. 5. Runtimes for various hierarchies and prefetch values

faster. Due to the regular structure of the hierarchy, some of the workers in
the last branch share the same PE. Nevertheless, the system is well-balanced,
but not completely busy. The dynamic task distribution of the master-worker
inherently compensates load imbalance due to slower workers or irregular tasks.

Load Balance and Prefetch Values. In Figure 4(c), we have applied the same
nesting as in (b), but we increased the prefetch value to 120. Small prefetch
values lead to very good load balancing, especially PEs occupied by several (and
therefore slow) workers do not slow down the whole system. On the other hand,
low prefetch lets the workers run out of work sooner or later. Consequently, it is
better to correlate prefetch values with the worker speed. Higher prefetch values
(like 120) reduce the worker idle time, at the price of a worse load balance, due
to the almost static task distribution.

Depth vs. Breadth. Figure 4(d) shows the behaviour of a nested master-worker
scheme with two levels of submasters. It uses 2 submasters at the higher level,
each serving two submasters. From our experiments, we cannot yet identify clear
pros and cons of employing deeper hierarchies. Comparing runs with one and
two additional submaster-levels, runtime and load balancing behaviour are al-
most the same, the advantage of the one-level hierarchy in Figure 4(b) remains
rather vague. As shown in Figure 5, a broad flat hierarchy reveals the best total
runtimes. However, the submasters will as well become bottlenecks when serving
more and more child processes. Therefore, deeper hierarchies will be advanta-
geous on bigger clusters with hundreds of machines.

Garbage Collection and Post-Processing. Another phenomenon can be observed
in traces (a), (b) and (d): If the prefetch is small, relatively short inactivity at the
tree root can make the whole system run out of work and lead to global inactivity.
In this case, the reason are garbage collections in the master process, which make
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all the submasters and workers run out of tasks. The effect is intensified by
higher top-level branching, and compensated by higher prefetch (c).

Additional experiments have shown that the bottleneck in the master process
is mainly caused by the size of the result data structures, collected and stored
in the master’s local heap. This causes the long post-processing phases that can
be observed in our traces. Moreover, since new requests are processed together
with the result values, request processing is slowed down in the master processes.
Using the same setup as in the previous experiments but replacing worker results
with empty lists, the master has no problems to keep all workers busy, even with
small prefetch values and no hierarchy.

2.4 Result Hierarchies

The hierarchy throttles the flow of results and thus helps shorten the post-
processing phases. Therefore, the hierarchical master-worker skeletons show bet-
ter total runtimes, as shown in Figure 5. The skeleton can further be optimised by
decoupling result and request communication. Results may be much larger and
hence more time consuming to be sent than simple requests of type Int. When
requests are sent concurrently and directly to the master, they can be received
and processed faster, speeding up work distribution. This, however, applies only
if the master is not too busy collecting results.

...

[task]

[result]

[task]

[task]

[result]

[result]
... workerworker ... workerworker

distributor

 m:1

  collector

 m:1

  coll/work

 m:1

  coll/work

[result]

[Request]

 n:1

Fig. 6. Result-hierarchical scheme with
separation of distributor and collector

In this section, we consider a skele-
ton which collects the results hier-
archically to unload the master, but
sends requests and tasks directly from
the master to the workers. The inner
processes of the process tree collect
the results from their child processes,
but also serve as additional workers.
The result streams of inner workers
are merged with the collected ones,
and forwarded to their parent process.
To speed up the work distribution, we
additionally separate the task distrib-
utor functionality of the master from
its collector role (also proposed in [6]),
which is only a minor change to the
previous result-hierarchical skeleton. The result-collecting master creates a dis-
tributor process and redirects the direct connections between master and work-
ers to exchange tasks and results. The resulting process structure is depicted in
Figure 6.

Figure 7 shows traces for the non-hierarchical skeleton with concurrent re-
quest handling, with and without a separate distributor process, and a variant
which collects results in a hierarchy, with 4 submasters. As shown in trace (a),
concurrent request handling alone does not improve the skeleton performance.
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(a) Concurrent request handling, non-hierarchical, , pf 20

(c) result hierarchy, , pf 10

(b) separate distributor, non-hierarchical , pf 20

Fig. 7. Mandelbrot traces, different result-hierarchical skeletons

Separating the distributor (trace (b), top bar shows distributor) already creates
an almost steady workload for the workers, but exposes the same long post-
processing. A result hierarchy (trace (c), without separate distributor) shortens
the post-processing phase to some extent, while keeping the same positive effect
on worker load.

3 Dynamic Creation of New Tasks

Except for some problems consisting of independent tasks which are trivial to
parallelise, e.g. mandelbrot, ray tracing and other graphical problems, many
problems deliver tasks containing inherent data dependencies. Thus, the task
pool is not completely known initially, or it depends on other calculation results
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to be fully defined. This is the case when the problem space is built hierarchically,
as a tree structure or following other, more complex, patterns.

3.1 The Dynamic Master-Worker Skeleton

The elementary master-worker skeleton can easily be extended to enable the
dynamic creation of additional tasks within the worker processes. In the version
shown in Figure 8, the worker processes deliver a list of new tasks with each
result, and the master simply adds the new tasks to its task queue. A straight-
forward extension would be to let the master filter or transform the task queue,
considering global information (main point of investigation in [7]).

mwDyn :: (Trans t, Trans r) => Int -> Int -> (t -> (r,[t])) -> [t] -> [r]
mwDyn n prefetch wf initTasks = finalResults
where -- identical to static task pool except for the type of workers

(reqs, ress) = (unzip . merge) (spawn workers inputs)
workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate prefetch [0..n-1])
-- additions for task queue management and termination detection
tasks = initTasks ++ newTasks
initNumTasks = length initTasks
(finalResults, newTasks) = tdetect ress initNumTasks

-- task queue control for termination detection
tdetect :: [(r,[t])] -> Int -> ([r], [t])
tdetect ((r,[]):ress) 1 = ([r], []) -- final result
tdetect ((r,ts):ress) numTs = (r:moreRes, ts ++ moreTs)
where (moreRes, moreTs) = tdetect ress (numTs-1+length ts)

Fig. 8. Eden master-worker skeleton with a dynamic task pool

The static task pool version terminates as soon as all the tasks have been
processed. With dynamic task creation, explicit termination detection becomes
necessary, because the task list contains a reference to potential new tasks. In
the skeleton shown in Figure 8, a function tdetect keeps track of the current
number of tasks in process. It is essential that the result list is extracted via
tdetect and that the evaluation of this function is driven by the result stream.
As long as new tasks are generated, the function is recursively called with an
updated task counter, initialised to the length of the skeleton input.2 As soon
as the result of the last task arrives, the system terminates by closing the tasks
list and, via distribute, the input streams of the worker processes.

2 The reader might notice that the initial task list now has to have fixed length. This
skeleton cannot be used in a context where the input tasks arrive as a stream.
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3.2 Nesting the Dynamic Task Pool Version

It would be possible to apply the simple nesting scheme from Section 2 to the dy-
namic master-worker skeleton mwDyn. However, newly created tasks would always
remain in the lower submaster-worker level because the interface of mwDyn only
passes results, but not tasks, to upper levels. For nesting, the dynamic master-
worker scheme mwDyn has to be generalised to enable a more sophisticated task
management within the submaster nodes.

...

[(r,[t],Bool,Int)]

count tasks,
trigger req.s
termination

[Maybe t]

[Maybe t]

[request]

split
new
tasks

 [(r,[t],Bool,Int)]

map 
Left

distribute

sub- / topmaster

(counter,mode)

[Maybe t]

map 
Right

subm./worker subm./worker subm./worker

tcontrol

Fig. 9. Submaster functionality in the dy-
namic master-worker hierarchy

Each submaster receives a task
stream from its master and a re-
sult stream including new tasks from
its workers. It has to produce task
streams for its workers and a result
stream including new tasks for its mas-
ter (see Figure 9). Sending back all dy-
namically generated tasks is a waste
of bandwidth, when they might be
needed in the local subtree. A por-
tion of the generated new tasks can be
kept locally, but surplus tasks must be
passed up to the next level. Further-
more, sending a result should not au-
tomatically be interpreted as a request
for a new task, since tasks kept locally
can compensate for solved tasks. Finally, global information about tasks in pro-
cess is needed at the top-level, to decide when to terminate the system. The
Eden code for the submaster in Figure 10 shows the necessary changes:

– The input stream for submasters and workers has type Maybe t, where the
value Nothing serves as a termination signal, propagated downwards from
the top level.

– The output stream of submasters (and workers) now includes information
about the number of tasks kept locally, and a Bool flag, indicating the request
for a new task, leading to type [(r,[t],Bool,Int)].

– The incoming list initTasks for submasters is a stream, which has to be
merged with the stream of worker answers, and processed by a central control
function tcontrol. The origin of each input to tcontrol is indicated by tags
Left (worker answers) and Right (parent input), using the Haskell sum type
Either (Int,(r,[t],Bool,Int)) (Maybe t)

– All synchronisation is concentrated in the task control function tcontrol. It
both controls the local task queue, passes new requests to distribute, and
propagates results (and a portion of generated tasks) to the upper levels.

The heart of the dynamic master-worker hierarchy is the function tcontrol,
shown in Figure 11. It maintains two counters: one for the amount of tasks



Hierarchical Master-Worker Skeletons 259

mwDynSub :: (Trans t, Trans r) =>
Int -> Int -> ([Maybe t] -> [(r,[t],Bool,Int)])
-> [Maybe t] -> [(r,[t],Bool,Int)]

mwDynSub n pf wf initTasks = finalResults where
fromWorkers = spawn workers inputs
-- worker :: [Process [Maybe t] [(Int,(r,[t],Bool,Int))]]
workers = [process (zip [i,i..] . wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate pf [0..n-1])
-- task queue management
ctrlInput = merge (map Right initTasks : map (map Left) fromWorkers)
(finalResults, tasks, reqs) = tcontrol (n*pf+n) (False,0,0) ctrlInput

Fig. 10. Eden submaster for nested dynamic master-worker skeleton

that have been generated and passed up to this submaster, to decide whether a
request must be sent up, and the overall task count in the subtree below.

Tasks sent by the parent are simply enqueued in the local task queue. Tasks
generated by workers are split into a part that is kept local, and a part that is
passed upwards. The nested task pools can be seen as a system of interdependent
buffers, and both buffer-underruns and buffer-overruns will spoil the skeleton
performance. This is relatively easy for a static task list: the exchange of tasks
and results between different buffers is limited, and the prefetch parameter
defines the maximum buffer size. In the extension for dynamically growing task

tcontrol _ (_,_,0) ((Right Nothing):_) -- from above, final termination
= ([],repeat Nothing,[])

tcontrol pf (even,local,numTs) ((Right (Just t)):ress) -- task from above
= let (moreRes, moreTs, reqs) = tcontrol pf (even, local ,numTs+1) ress

in (moreRes, (Just t):moreTs, reqs)
-- from i below, (result, new tasks, flag, no. of retained tasks)
tcontrol pf (even,local,numTs) ((Left (i,(r,ts,wantNew,tBelow))):ress)
= let (localTs,fatherTs,evenAct) = split numTs pf ts even

newLocal = length localTs + local
- if wantNew && not newTasksForMe then 1 else 0

newNumTs = numTs-1 + length localTs + tBelow
(moreRes, moreTs, reqs)
= tcontrol pf (evenAct, newLocal, newNumTs) ress

newreqs = if wantNew then i:reqs else reqs
newTasksForMe = local + length localTs == 0 && wantNew

in ((r, fatherTs, newTasksForMe, heldBelow + lenlocalTs):moreRes,
(map Just localTs) ++ moreTs, newreqs)

Fig. 11. Control function for submaster of Figure 10
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pools, more sophisticated policies are needed instead of mechanically forwarding
new tasks and requests.

To achieve a roughly even level of tasks in each submaster, the task pool size is
limited by two thresholds (sometimes called low and high watermark [3]). When
too few tasks are locally generated, additional new tasks must be requested from
the upper level, while all surplus tasks must be forwarded to upper levels. In our
version, tcontrol emits requests when all self-generated tasks have been assigned,
thereby trying to maintain its initial local task buffer size, given by the prefetch

parameter. The split function decides how many tasks to hold in the subtree
below a submaster. If a sufficient amount of self-generated tasks fills the subtree
below the node (overall task count numTs), all generated tasks are forwarded to
the upper level. The split function we use (not shown) splits generated tasks
one half each, until the total task count exceeds the double prefetch for the
whole subtree below. Different heuristics can be configured by exchanging the
split function, and minor changes in tcontrol.
The top-level master in the nesting scheme for a dynamic task pool works similar
to the submasters we have described, but of course cannot forward tasks to the
outside. A separate top-level master has to be defined.

topMaster :: (Trans t, Trans r) =>
Int -> Int -> ([Maybe t] -> [(r,[t],Bool,Int)]) -> [t] -> [r]

Besides termination detection, the former tdetect function now takes the role of
tcontrol in the submaster processes, also incorporating the more sophisticated
request handling we have introduced in the tcontrol function. Further changes
are the adaption of the worker function to the Maybe type interface and the
termination signal Nothing for all submasters upon termination.

3.3 Experimental Results

The skeletons that support dynamic task creation have been tested with a special
test application: a program which computes all satisfying variable assignments
for a particular logical formula (i.e. it is a specialised SAT problem solver). Tasks
are incomplete variable assignments, and the workers successively assign a value
to a new variable and partially evaluate the result. An assignment that already
yields false is immediately discarded, true results are counted, yet unspecified
results are new tasks returned to the level above.

The test program runs the satisfiability check for a formula which disjoins
all conjunctions of n logical variables where k variables are negated (yielding(
n
k

)
disjoint monoms). In the underlying search tree of the SAT problem, each

node has at most two child nodes, but for particular formulas, many subproblem
nodes in the search tree can immediately be discarded. Using a formula of 200
variables and 1 negation tests the skeleton behaviour for such a broad sparse
tree. Especially with sparse search trees, it is challenging for the load balancing
strategy to evenly fill the process hierarchy with tasks, avoiding idle times. Many
tasks can be discarded early, but the test for 200 variables is complex. In contrast,
a test with negated 8 variables out of 16 shows the performance for a dense tree
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Runtime (sec)
16 var.s, dense tree 7.16 7.09 5.58 5.55 5.94
200 var.s, sparse tree 21.16 17.03 14.13 12.90 13.19
16 var.s, task variant 7.12 6.97 5.50 5.36 5.85
200 var.s, task variant 21.28 16.57 10.81 9.08 10.61

(Heriot-Watt Beowulf, 31 nodes)

Fig. 12. Experiments using skeletons for dynamic task pool

with very small tasks. Runtimes have been compared for the basic skeleton,
for hierarchies with one level of two, four and six submasters, and for a binary
hierarchy with two levels.

Flat vs. Hierarchical Skeleton: In general, variants of hierarchical master-worker
schemes perform better than the non-hierarchical skeleton in our test runs. How-
ever, when testing a formula with only 16 variables, tasks are numerous, but very
simple. For this variant, hierarchical skeletons yield smaller runtime gains.

Depth vs. Breadth: The runtime comparison in Figure 12 shows that, in our setup
of 31 machines, broader hierarchies with only one level perform better than
the binary two-level hierarchy. The variant with 6 submasters yields the best
results, whether sparse or dense decision trees. Measurements with a simplified
test procedure, where tasks are checked very quickly using additional knowledge
about the tested formula, confirm this result: The performance of the skeleton
with two-level nesting is slightly worse than for the one-level nestings. Of course,
this result again has to be qualified for bigger clusters.

Prefetch and Forwarding Policy: Prefetch values have little influence on perfor-
mance (or trace appearance) for this test program, since there are relatively few
tasks in the beginning anyway and many of the generated tasks are held close
to the processing units. Higher prefetch values only lead to “bundled” working
and idle phases instead of a more steady workload. Using higher prefetches, we
also observed periods of global inactivity, again caused by garbage collections of
the top-level master.
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The partition policy for tasks returned by workers is a crucial property for an
even global load balance. Our minimum threshold, the prefetch parameter, is self-
suggesting: requests are emitted when locally generated tasks cannot keep the
buffer filled. For the maximum threshold, our experiments have confirmed that
increasing the high watermark for the split policy hardly produces perfomance
gains. While the very existence of a maximum threshold has principal impact on

, prefetch 6

Fig. 13. Trace for SAT solver (200/1 var.)

the load balance (especially in our
setup where only few new tasks
are created), it is not necessary
to add another parameter to the
skeleton.

Figure 13 shows a trace for a
program run using the best skele-
ton in our experiment, with six
submasters above the leaves, on a
sparse decision tree. The workers
expose a slow startup phase, since
the (relatively few) tasks must
first be propagated in all branches.
Tasks are well distributed among
the different submaster branches,
leading to an even workload
among the worker processes. Even
though some PEs are reserved as
submasters, the remaining work-
ers outperform the non-hierachical
skeleton close to factor 2.

4 Related Work

The commonly used master-worker scheme with a single master managing a
set of workers is a well-known scheme which has been used in many different
languages [1]. Modifications of this scheme are however more rare, and we are
not aware of general hierarchical master-worker schemes like ours.

Driven by the insight that the propagation of messages is expensive in a master-
worker scheme, Poldner and Kuchen [6] present a variant where the master is di-
vided into a task distributor (dispatcher) and a result collector. As described in
2.4, we extended this variant to a skeleton with a hierarchy of collectors and only
one distributor. In order to save communication, the dispatcher of Poldner and
Kuchen applies a static task distribution, and they argue that for a large number
of tasks, a roughly even load balance can be expected. However, this contradicts
one basic idea of dynamic master-worker skeletons: the intention to balance not
only task irregularity, but also potential differences in worker performance.

In [5], Poldner and Kuchen investigate skeletons for branch & bound problems.
A centralized master-worker skeleton is compared to a set of distributed workers
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connected by a bidirectional ring, without a central master. Distributed workers
can establish load balance using a supply-driven or a demand-driven mecha-
nism. In addition to the load balancing problem, the paper addresses branch &
bound-specific requirements like fast propagation of updated bounds, and dis-
tributed termination detection. In the experiments with two branch & bound
algorithms, the distributed skeleton with demand-driven load balancing shows
best performance, due to the reduced communication need.

Hippold and Rünger describe task pool teams [2], a programming environment
for SMP clusters that is explicitly tailored towards irregular problems with strong
inter-task dependences. The scheme comprises a set of task pools, each running
on its own SMP node, and interacting via explicit message passing. Dynamic
task creation by workers, task migration, and distributed task pools with a task
stealing mechanism are possible. Locality can be exploited to hold global data on
the SMP nodes, while communication between nodes is used for task migration,
remote data access, and global synchronisation.

Various load balancing strategies for divide-and-conquer algorithms are dis-
cussed by Nieuwpoort et al., in [8]. The authors experiment with different tech-
niques to exchange tasks between autonomous worker processes, in the context
of WAN-connected clusters (hierachical wide-area systems). Aside from special
optimisations to handle different network properties, a basic distinction is made
between task pushing and stealing approaches. Demand-driven work stealing
strategies are generally considered advantageous, but must take into account
the high latency connections in question. The work pushing strategy specula-
tively (and blindly) forwards tasks to random peers when the amount of lo-
cal tasks exceeds a prefetch threshold. Contrary to the randomised, or purely
demand-driven, task distribution in this work, our skeletons are always based on
task-request cycles, and concentrate surplus tasks at higher levels.

5 Conclusions

We have given a series of functional implementations of the parallel master-
worker scheme. The declarative approach enables a clear conceptual view of the
skeleton nesting we have developed.

Starting with a very compact version of the standard scheme, we have given
implementations for skeleton nesting, to shift the administrative load to a whole
hierarchy of (sub-)masters. The hierarchies have been elegantly expressed as
foldings over the modified basic scheme. In the case of a dynamically growing task
pool, a termination detection mechanism is needed. Nesting this skeleton is far
more complex and needs special code for submasters, especially an appropriate
task forwarding policy in the submaster processes.

As our tests show, master-worker hierarchies generally speed up runtime and
keep workers busier, avoiding the bottleneck of a flat skeleton. Hierarchy layout
and suitable prefetch values, however, have to be chosen carefully, depending on
the target architecture and problem characteristics. Our experiments show the
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importance of suitable task distribution and task forwarding policies, which we
have described and discussed in detail.

We have presented implementations and experiments with a range of hierar-
chical master-worker variants, and we will continue investigations on some open
topics. As ongoing work, we will develop distributed work pools, like the one pro-
posed by Poldner and Kuchen in [5], and compare them to our master-worker
hierarchies.
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Eden. Journal of Functional Programming 15(3), 431–475 (2005)

5. Poldner, M., Kuchen, H.: Algorithmic skeletons for branch & bound. In: Filipe, J.,
Shishkov, B., Helfert, M. (eds.) ICSOFT (1), pp. 291–300. INSTICC Press (2006)

6. Poldner, M., Kuchen, H.: Scalable farms. In: Joubert, G.R., Nagel, W.E., Peters,
F.J., Plata, O.G., Tirado, P., Zapata, E.L. (eds.) ParCo 2005. Parallel Computing:
Current & Future Issues of High-End Computing, Jülich, Germany. NIC Series, vol.
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