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Abstract. Skeletons simplify parallel programming by providing gen-
eral patterns of parallel computations. When several skeletons are used
inside the same program, skeleton composition usually leads to aggre-
gation and redistribution of the intermediate data on a single process.
Though the programmer can overcome the performance loss at a lower
level of abstraction by altering the existing skeletons or not using them
at all. A high-level concept like skeleton-based programming, however,
calls for a more general solution.
Remote data provides runtime mechanisms that allow declaratively spec-
ified processes to access other processes’ data via remote handles. This
enables the programmer to easily build complex skeletons by combin-
ing simpler ones. Skeletons can be composed without the drawback of
collecting and then redistributing the data in between two skeleton in-
stances. Another advantage is that skeletons which inherently depend on
their inner communication patterns are easily implemented using remote
data. We present the implementation of remote data in the parallel func-
tional language Eden and show the definition of some example skeletons
with a remote data interface.
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1 Introduction

Algorithmic skeletons [5] capture common patterns of parallel evaluations like
task farms, pipelines, divide-and-conquer schemes etc. The application program-
mer only needs to instantiate a skeleton appropriately, thereby concentrating on
the problem-specific matters and trusting on the skeleton with respect to all
parallel details. Skeletons should be small and simple to instantiate to increase
the ease and flexibility of their use. In particular, it should be possible to com-
pose and nest skeleton instantiations arbitrarily. This means for the case of a
distributed memory setup and structured data that must be passed from one
skeleton to the next that the result of the first skeleton is gathered in a single
process and redistributed for the following skeleton execution. This causes un-
necessary communication and holds the danger of a communication bottleneck
in the caller process (see Fig. 1 (a)). A typical example is the composition of two
parallel maps (parallel task farms) producing a two dimensional matrix with an
intermediate transpose.
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Fig. 1. Data transfer between composed skeleton instances

There exist several proposals to avoid the gathering and redistribution of dis-
tributed data. One could introduce a new distributed data type as common in
languages with a data-parallel concept [7, 6] where data can be passed in a dis-
tributed manner. In this case, one needs special transformation and conversion
functions to redistribute the distributed data or to switch between distributed
and common data types. Another simple alternative would be to design a new in-
tegrated skeleton for the composition by merging the two skeleton instantiations
and organising the redistribution explicitly within the new skeleton context. This
approach has the disadvantage that the programmer has to go into the internals
of skeleton design and that the clarity of the original composition is lost.

In this paper, we present an alternative approach that allows the direct pass-
ing of distributed result data from one skeleton instance to the next one (see
Fig. 1 (b)). The main idea is to replace the data by handles to it, called remote
data, which are gathered and redistributed instead. The handles can then be used
to pull the real data directly to the target. This concept which has independently
been suggested by Alt and Gorlatch [2, 3, 1] can be easily used: normal data is
replaced by the corresponding remote data handles and skeletons that operate
on the new remote data can be composed as before. Only that now the gathering
and redistribution of complex data is replaced by the gathering and exchange of
small remote data handles which are used for the direct data exchange between
processes within different skeleton instances. Thus, remote data handles for data
which may be located elsewhere can be used like the original data but cause only
low communication costs. They can occur everywhere where ordinary data may
occur, e.g. in lists or trees to model distributed data structures. As we will show,
this concept is flexible to use and still type-safe.

We develop the concept of remote data in the context of our parallel func-
tional language Eden, although the concept itself is language-independent. It
could equally well be added to other parallel languages, see [2, 3, 1] for a reali-
sation in Java. The realisation in a declarative language has the advantage that
the beauty and elegance of declarative programming is maintained for parallel
skeleton-based programming. In functional languages, skeletons are realised as
higher order functions. Skeleton instantiation reduces to function application
and skeleton composition is nothing else than function composition.

We will introduce a new data type RD a representing a handle for remote
data of type a and provide interface functions release :: a → RD a and
fetch :: RD a → a. The function release yields a remote data handle that
can be passed to other processes, which will in turn use the function fetch
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to access the remote data. The data transmission occurs automatically from
the processes that released the data to the process which uses the handle to
fetch the remote data. Skeleton composition skel2 ◦ skel1 of type a → c

where skel2 of type b → c and skel1 of type a → b will now be replaced
by skel2’ ◦ skel1’ of type a → c where skel2’ is of type RD b → c and
skel1’ is of type a → RD b. The modified skeleton definitions differ from the
original ones only in additional applications of release in skel1’ and fetch in
skel2’ . These small modifications solve our problem while preserving the orig-
inal program structure. We will show that complex communication structures
like an all-to-all scheme can easily and elegantly be defined using remote data.

Plan of the paper In Section 2 we give a introduction to the language Eden.
Section 3 presents the implementation of the new data type constructor RDwith
interface functions fetch and release in Eden. Section 4 shows how to use
remote data for skeleton composition and the definition of complex communi-
cation patterns. Section 5 compares with related work while Section 6 finally
concludes.

2 Eden in a Nutshell

The parallel Haskell dialect Eden [9] extends Haskell with an explicit notion of
processes (function applications evaluated remotely in parallel). The program-
mer has direct control over evaluation site, process granularity, data distribu-
tion and communication topology, but does not have to manage synchronisation
and data exchange between processes. The latter are performed by the parallel
runtime system through implicit communication channels, transparent to the
programmer.

The essential two coordination constructs of Eden are process abstraction
and instantiation:

process :: ( Trans a, Trans b) ⇒ (a → b) → Process a b
( # ) :: ( Trans a, Trans b) ⇒ Process a b → a → b

The function process embeds functions of type a → b into process abstractions
of type Process a b where the context (Trans a, Trans b) states that both
a and b must be types belonging to the Trans class of transmissible values.
Evaluation of an expression (process funct) # arg leads to the creation of a
new process for evaluating the application of the function funct to the argument
arg .

For immediately instantiating a list of process abstractions with appropri-
ate inputs, Eden provides a (predefined) function spawn , and a variant spawnAt

which additionally locates the created processes on given processor elements. Ne-
glecting demand control, spawn is denotationally specified, and could be defined,
by the following equation.

spawn :: ( Trans a, Trans b) ⇒ [ Process a b] → [a] → [b]
spawn = zipWith (#)

3

Dieterle, Horstmeyer, Loogen, Skeleton Composition using R. D. In: PADL 2010, LNCS 5937.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com


Eden further provides functions to create and use explicit connections be-
tween arbitrary processes.

new :: Trans a ⇒ ( ChanName a → a → b) → b
parfill :: Trans a ⇒ ChanName a → a → b → b

They can be used to shortcut the tree-shaped topologies created by the basic
functions. The function new is used at the receiver side to created a receiver
port of a unidirectional channel connection. It works in continuation passing
style, new’s parameter function’s first parameter is the “name” of the channel
(type ChanName a) whose incoming port is created as a side effect. The second
parameter is the value that will be received via the channel. The parameter
function’s output is the result of the function new. The sender of the connection
is still not determined. The channel’s “name” can be passed to another process.
The connection gets established when parfill is used at the sender side us-
ing the “name” of the channel (containing the receivers process ID and port).
The function parfill takes the value to be written in the channel, parfill ’s
third argument is returned unchanged after forking a thread that sends the data
through the channel.

These two function are quite complicated to use for people new to Eden.
Their signatures interplay well in some circumstances, but they are not intuitive
at all. The main problem when using dynamic channels is the change of direction
in the communication: when Process 1 wants to send data directly to Process 2
using a dynamic channel, this channel must first be generated by Process 2 and
sent from Process 2 to Process 1 before the proper data transfer from Process 1
to Process 2 can take place. Thus, the dynamic channel must be communicated
in the opposite direction in which the data is to be transferred. This complicates
the use of dynamic channels. The remote data approach keeps the direction
of the communication by introducing another channel transfer from Process 1
to Process 2. This transfer sends a channel via which Process 2 can send its
data channel to Process 1. Thus, an exchange of dynamic channels takes place
between Process 1 and Process 2 which automatically establishes a data channel
connection from Process 1 to Process 2. In the following, we implement the
remote data concept using Eden’s dynamic channels. Note that this concept
provides the same expressive power as dynamic channels, but in a more natural
and easier-to-use way.

3 Eden Implementation of Remote Data

The implementation of remote data in Eden (Figure 2) is simple and elegant.
To release a local data x of type a we create – using the function new –
a channel name cc of type ChanName (ChanName a) via which a channel c

of type ChanName a will be received. Using parfill a thread is forked that
subsequently sends the local data x via the channel c . The result of the release

function is the newly created channel cc :: ChanName (ChanName a) . Note
that the remote data type RD a is a synonym of cc ’s type. Data of type RD a
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-- remote data
type RD a = ChanName ( ChanName a)

-- convert local data into corresponding remote data
release :: Trans a ⇒ a → RD a
release x = new ( λcc c → parfill c x cc)

-- convert remote data into corresponding local data
fetch :: Trans a ⇒ RD a → a
fetch cc = new ( λc x → parfill cc c x)

Fig. 2. Remote data definition

r1

f g
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b b
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release . f g . fetch

a

RD b RD b

c

b

Fig. 3. Using remote data

is merely a channel name and thus very lightweight with low communication
costs. To access remote data we need to fetch it by again creating a channel
c :: ChanName a using the function new. This channel is sent via the remote
data handle, i.e. the channel cc of type RD a. The proper data is then received
via channel c and returned as the result of the fetch function.

A problem arises when remote data needs to be duplicated. Channel names
(of type ChanName a) cannot be used more than once to retain referential trans-
parency [9]. As remote data is implemented as a specialized channel name, it
must not be duplicated and fetched several times in parallel. A manual work-
around to duplicate remote data on a node would be to fetch the data and re-
lease it again repeatedly. We considered more sophisticated versions which make
the use of remote data more comfortable, but they expose nondeterminism and
should therefore not be implemented in the actual version of Eden.

Our new way of communication creates a slight overhead. In comparison
to the common way of defining explicit communication we have an additional
channel per direct connection that is used only before the transmission of the
actual data begins. However, as this channel only transports a value of type
ChanName awhich is quite small the increase in communication cost should not
be noticeable in most cases.

Example. We show a small example where the remote data concept is used to
establish a direct channel connection between sibling processes. Given functions
f and g, one can calculate (g ◦ f) a in parallel creating a process for each
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function. Figure 3 shows two different ways to implement this. Simply replacing
the function calls by process instantiations

r1 a = process g # (process f # a)

leads to the following behaviour (visualised in the left part of Fig. 3): Function
r1 instantiates the first process calculating f, passes its input to this process and
receives the remotely calculated result. It instantiates a second process calculat-
ing g and passes the result of process f to this new process. The output of the
second process is also sent back to the caller. The drawback of this approach is
that the result of the first process will not be sent directly to the second process.
This causes unnecessary communication costs.

We use remote data RD a in the second implementation
r2 a = process (g ◦ fetch) # (process (release ◦ f) # a) .

It uses function release to produce a handle of type RD a for data of type a.
Calling fetch with remote data returns the value released before. Function r2 is
identical to r1 except for the conversion of the result type of f ’s process and the
input type of g’s process to remote data. The use of remote data leads to a direct
communication of the actual data between the processes of f and g (see the right
part of Fig. 3). The remote data handles are treated like the original data in the
first version and the basic structure of the program, i.e. the composition of two
process instantiations, remains the same.

4 Composing Predefined Skeletons

Before handling the composition of skeletons using the remote data concept, we
show the lifting of a simple parallel map skeleton to a remote data interface.
Then we define a parallel all-to-all skeleton which generates a number of pro-
cesses each of which exchanges data with any of the others. Using these skeletons
with their remote data interfaces enables us to define a sequence consisting of
a parallel map, a parallel transpose (realised using the all-to-all skeleton) and
a second parallel map. This can be useful in an implementation of a parallel
FFT skeleton [8] or a Google Map-Reduce skeleton [4]. In [4, 8], correspond-
ing parallel map-transpose skeletons have been defined as monolithic skeletons
without composing simpler skeletons. With the remote data interface, we can
define the same skeleton as a composition of the three component skeletons.
This leads to a much better understandable definition while achieving the same
performance. Finally, we present another elegant and concise definition of an
even more complex communication pattern: a butterfly scheme which is used to
define an all-reduce-skeleton.

4.1 The parmapDC skeleton

A parallel map creates a process for each element of the input list. In Eden, it can
easily be defined using the function spawn (see Fig. 4). Note that this definition
implies that the process evaluating parmap creates as many processes as there are
elements in the input list and sends each of theses elements to the correspond-
ing process. Using a remote data interface, each process only gets a handle to
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parmap :: ( Trans a, Trans b) ⇒ (a →b) → [a] → [b]
parmap f xs = spawn pfs xs

where pfs = repeat ( process f)

parmapDC :: ( Trans a, Trans b) ⇒ (a →b) → [ RD a] → [ RD b]
parmapDC f xs = spawn pfs xs

where pfs = repeat ( process (liftRD f))

liftRD :: ( Trans a, Trans b) ⇒ (a →b) → RD a → RD b
liftRD f = release ◦ f ◦ fetch

Fig. 4. The parmap and parmapDC skeletons
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a
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Fig. 5. Visualization of the
parmapDC skeleton

its list element. It can then use this handle
to fetch the element directly from the remote
place where this element is located. In order to
achieve this behaviour, we simply replace the
parameter function f in the process abstraction
by its lifted pendant liftRD f (see Fig. 4). The
function liftRD is used to lift functions act-
ing on data to functions performing the same
computation on remote data. This leads to the
skeleton parmapDC where the ending DCstands
for Directly Composable due to the remote
data interface. This interface makes it possible
for skeletons to receive distributed input and to
produce distributed output which is crucial for an efficient composition of skele-
tons. Fig. 5 visualises the behaviour and communication paths of the parmapDC

skeleton. The upper circle represents the process evaluating the parmapDC in-
stantiation. It generates the other processes whose task is to apply the parameter
function f to input of type a and produce output of type b. Note that only remote
data handles for the input and the output values are communicated between the
generator process and its child processes. The proper data is communicated via
dynamic channel connections indicated by dashed lines.

4.2 The allToAllDC skeleton

In Figure 6 we present an all-to-all skeleton allToAllDC . This skeleton depends
inherently on its inner communication pattern which we will implement using re-
mote data. We need the following variants of the remote data interface functions
in order to fetch or release a list of remote data:

– releaseAll :: [a] → [RD a] is defined as map release .
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– fetchAll :: [RD a] → [a] is semantically equivalent to map fetch , but
needs a special eager implementation which initiates to fetch each input list
element without waiting for the result of this action.

The input of the allToAllDC skeleton is a list of remote data with, say, n
elements and two transformation functions t1 and t2 to allow the processes to
transform the input data before sending data to all other processes and after

allToAllDC :: forall a b i. ( Trans a, Trans b, Trans i) ⇒
--(#Elements, data in, data out)

( Int→a→ [i]) → -- transform before transpose
([i] →b) → -- transform after transpose
[ RD a] → [ RD b]

allToAllDC t1 t2 xs = res where
t1’ = t1 ( length xs) --same amount of procs as #xs
(res,iss) = unzip $ spawn procs inp
inp = lazy2Zip xs ( transpose iss)

procs = repeat $ process $ uncurry p
p :: ( Trans a, Trans b, Trans i) ⇒ RD a→ [ RD i] → ( RD b,[ RD i])
p x theirIs = (res, myIs) where

res = ( release ◦ t2 ◦ fetchAll) theirIs
myIs = ( releaseAll ◦ t1’ ◦ fetch) x

--lazy in second argument
lazy2Zip (x:xs) ˜(y:ys) = (x,y): lazy2Zip xs ys
lazy2Zip [] _ = []

spawn

releaseAll.t1’.fetch

transpose

release.t2.fetchAll

res

function process

0 0’

1

2

3

1’

2’

3’

RD a [RD i] [RD i] RD b

[RD a] [RD b]

a

a

a b

b

b

i

i

i

Fig. 6. The allToAllDC skeleton: code and visualisation. (The darker shading of
the arrows from the uppermost child process emphasizes the connectivity of a single
process.)
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mtmDC :: ( Trans a, Trans b, Trans c)
⇒ (a → [[b]]) → ([[b]] →c) → [ RD a] → [ RD c]

mtmDC f g = parmapDC g ◦ parTransposeDC ◦ parmapDC f

parTransposeDC :: Trans b ⇒ [ RD [[b]]] → [ RD[[b]]]
parTransposeDC = allToAllDC ( λ n → unshuffleN n ◦ transpose)

( map shuffle ◦ transpose)

-- round robin / segmented distribution
unshuffleN , splitEvery :: Int → [a] → [[a]]
unshuffleN n xs = transpose $ splitEvery n xs
shuffle :: [[a]] → [a] -- inverse function
shuffle = concat ◦ transpose

Fig. 7. Composition of parmap and transpose skeletons

receiving data from all other processes, respectively. The length of the input list
determines the number of processes to be created by spawn . Every process will
fetch its remote input x and transform it with the transformation function t1 .
This yields a list of intermediate data for each child process which is released
element-wise by releaseAll , giving the list myIs :: [RD i] with remote data
handles. Note that this list must have the same number n of elements as the
input list. This list of remote data handles is returned to the root process in
the second component of each process’s result tuple. The root process receives
one such list from each of its child processes resulting in the n × n matrix
iss :: [[RD i]] . It transposes this matrix and sends the result back to the
processes as its second, lazily supplied parameter theirIs . Each process gets
thus one remote intermediate value of type RD i of each sibling process and
of itself. The values are gathered using fetchAll , transformed by the second
parameter function t2 to the output type b and released. The visualisation
in Fig. 6 again shows the exchange of remote data handles between the root
process the child processes and using dashed arrow the direct communication of
data between the processes.

4.3 Composing Skeletons with Remote Data Interface

The allToAllDC skeleton can be used to express arbitrary data exchange that
requires an all-to-all network. A common special case is the transposition of a
matrix which is distributed over several processes. The way the matrix is dis-
tributed over the processes can be manifold. Each process might be assigned
e.g. to one row or — more general — to several rows of the matrix. In the
example skeleton parTransposeDC of Fig. 7, we implement the more general
case. Thus, we are not restricted to 1:1 relations between rows and processes.
We assume that rows are distributed round robin over the processes. The ad-
vantage against a block distribution is that the matrix can be assigned partially
to the processes without knowledge of the overall number of rows. Hence, the
transposition skeleton has to assign the columns of the overall matrix (rows of
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Fig. 8. Runtime behaviour of the skeleton mtmDCin the global view(left), the zoomed
process on Machine 16 (bottom) vs. the local transposition version (right).
(Note the different scaling of the x-axes in the upper traces and that the zoomed view
has been taken from a processes-per-machine view, here showing the activity bars of
the three processes on Machine 16.)

the transposed matrix) round robin to the processes. The first transformation
function of type Int → [[b]] → [[[b]]] first transposes a list of rows to
get the list of the former columns. In a second step, these are round robin dis-
tributed to sublists, one for each process. Process i will consequently receive
one row-sliced and column-sliced partial matrix from each process. The second
transformation of type [[[b]]] → [[b]] will shuffle the row-slices (transposed
column-slices) into each other to recover the rows of the overall transposed ma-
trix. This is done by flipping the outer dimension (the list of partial matrices)
with the row-dimension using transpose . Thus every outer list element contains
all partial rows belonging to the same row of the overall matrix. The transfor-
mation map shuffle re-establishes each row.

Now, we can combine the parmapDC skeleton of Fig. 4 and the parallel trans-
pose skeleton parTransposeDC in the function mtmDC (cf. Fig. 7), a parallel
version of the function composition map g ◦ transpose ◦ map f . Without re-
mote data a naive parallel implementation would be

parmap g ◦ unshuffleN n ◦ transpose ◦ shuffle ◦ parmap f

This version gathers the data for the intermediate transposition step in the caller
process.

We compared runtime activity profiles of the mtmDCskeleton with the naive
version. In our example executions, the parameter functions f and g have been
set to the dummy function map (scanl1 ( +)) which creates rows of prefix
sums. The input matrix contained the number 1 in each position.
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In order to focus on communications in the middle part of the composed
skeletons, input and output communications have been suppressed in the runtime
traces underlying the activity profiles. Moreover, the default streaming mode of
the communication has been replaced by a single message mode to reduce the
number of messages exchanged between the processes.

Each skeleton was instantiated with an input matrix of size 800 × 800 and
evaluated on 8 Intel Core 2 Duo machines with a Fast Ethernet connection,
where each processor core hosted two virtual machines of the Eden runtime
system. In Fig. 8, we present the activity profiles of the corresponding runtime
traces for the two skeletons. The trace visualisations show the activity of each
machine on a horizontal bar. The different activity phases of the virtual machines
(runnable, running, blocked) are indicated by different colours explained in the
traces legend. Messages are depicted by black lines with an arrow (black dot) on
the receiver side. The x-axis shows the time in seconds.

The upper left trace in Fig. 8 clearly reveals the distributed transposition by
the multitude of messages exchanged right after the initial data generation phase
and the first map-phase, which is depicted “running” in the trace. The exchange
of remote data starts very early overlapping the map-phase and forming dense
bundles of messages. The second map-phase at the end of the program execution
is rather short. Note that the overall runtime was less than 0.5 seconds.

We have placed the ith process of every skeleton on the same machine, such
that communication costs are low. The lower zoomed view of the figure shows
the activity bars of the three processes located on the virtual machine 16. The
lowest bar belongs to a child of the first parmapDC-instantiation. The upper two
bars show the processes of the parallel transpose skeleton and the second parmap

instantiation. With this information, we can easily identify the different types
of messages. During phase 1 the process of the first parmapDC skeleton sends its
results to the parTransposeDC process. In the second phase the intermediate
data is exchanged with the processes on the other machines. Finally, in phase 3,
the result of the transposition is passed on to the second parmapDC process.

The upper right trace in Fig. 8 belongs to the naive version which performs a
local transposition in the root process. As expected, this version is much slower
with an overall runtime of approximately 3 seconds. The conspicuously fast com-
munication between machine 1 and machine 10 is because the two virtual ma-
chines share the same physical machine. Further tests with varying input sizes
(not shown) confirmed the enormous runtime advantages of the distributed ver-
sion.

4.4 The allReduceDC skeleton

The all-reduce skeleton combines distributed data using a binary reduction func-
tion. It leaves the result duplicated on all processes involved in the reduction.
Usually, it is implemented using the classical butterfly scheme which is also a
common way to efficiently synchronise data between parallel processes. As for
the allToAllDC skeleton, it is crucial for the all-reduce skeleton that data is
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transferred to and from the skeleton in a distributed way. The butterfly reduc-
tion for n processes is done in logn parallel communication and local reduction
steps. In each step, the communication partner of process k is usually calculated
with the boolean function k xor 2step−1.
Fig. 9 shows the definition of the function bitFlipF which applies a transfor-
mational way to determine the communication partner for the current step .
The input list xs contains at position j the value of process j. xs is distributed
round robin to d=(2ˆstep) sublists. The values to be exchanged are in the same
columns of the transformed matrix. Their indexes differ by 2step−1 which equals
d ‘div‘ 2 or half the number of inner lists. We flip the first half of inner lists
with the second half and achieve the desired value exchange. A function call to
shuffle re-establishes the original list structure.

The allReduceDC (see Figure 10) skeleton uses the function bitFlipF to
rearrange lists of remote data in the caller process which represent the results of
the intermediate reduction steps of the skeleton’s processes. The rearranged lists
are sent back to the processes. Thus, each process gets the remote values released
by one partner in every step. Fetching these values establishes the butterfly
communication topology.

The skeleton’s input is a list with 2steps remote data handles1. For each han-
dle a process will be instantiated. The skeleton takes two parameter functions:
function initF :: a → b is used to transform the initial remote value of each
process after it is fetched. This transformation allows to work with different types
for the input values and the reduction function inputs. The reduction function
redF :: b → b → b which should be associative and commutative is applied
in each step to the results of the previous step of a process and of its partner.
This behaviour can concisely be expressed with scanl1 redF applied to the
stream toReduce of values to be reduced. The stream toReduce is composed of
the initial value and the stream input theirReds . The latter contains the part-
ners’ values for all steps. Note that the complete list structure of theirReds is
already built in theirReds’ even before its first element is received. Thus the
request for all remote values can be eagerly initiated by the function fetchAll

which would otherwise block on an incomplete list structure. The result of the
scanl1 application is element-wise released in every process, resulting in a list
of remote data which is also generated in advance. This happens because the
evaluation of releaseAll equally depends only on its parameter list’s structure.

1 The allToAllDC skeleton only works for input lists where the length is a power of
two. Other lists are cut to the next smaller power of two.

bitFlipF :: Int → [a] → [a]
bitFlipF step xs = (shuffle ◦ flipAtHalfF ◦ unshuffleN d) xs where

d = (2 ˆ step)
flipAtHalfF xs = let (xs1, xs2) = splitAt (d ‘ div‘ 2) xs

in xs2 ++ xs1

Fig. 9. Flip of values at bit ldi
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allReduceDC :: forall a b. ( Trans a, Trans b) ⇒
(a → b) → --initial transform function
(b → b → b) → --reduce function
[ RD a] → [ RD b]

allReduceDC initF redF rdAs = rdBss !! steps where
steps = ( floor ◦ logBase 2 ◦ fromIntegral ◦ length) rdAs
rdAs’ = take (2ˆsteps) rdAs --cut input to power of 2

-- topology, inputs and instantiation
rdBss = ( transpose ◦ spawn procs) inp --steps in rows
bufly = zipWith bitFlipF [1..steps] rdBss --only init rdBss
inp = lazy2Zip rdAs’ ( transpose bufly) --steps in cols

-- process functionality and abstraction
procs = repeat $ process $ uncurry p
p :: ( Trans a, Trans b) ⇒ RD a → [ RD b] → [ RD b]
p rdA theirReds = ( releaseAll ◦ scanl1 redF) toReduce where

toReduce = (initF ◦ fetch) rdA : fetchAll theirReds’
theirReds’ = lazy2ZipWith ( curry snd) [0..steps] theirReds

Fig. 10. The allReduceDC skeleton

Thus the exchange of remote data handles via the root process can happen in
advance, independently of the parallel reduction steps.

The caller process gathers the result streams of all processes in a nested
list. We transpose this list to have all remote values of a step in each inner
list of rdBss . Applying the function bitFlipF to the first steps lists permutes
these according to the butterfly scheme. We transpose this permutation bufly

such that each process’s input is located in one inner list. This transposed list
is lazily zipped with the initially supplied input list rdAs using lazy2Zip and
passed back to the processes. The final result consists of the results of the last
reduction step, i.e. the last element of the list rdBss .

We have tested the allReduceDC skeleton with a dummy example which we
executed on an 8 core Intel Xeon machine. The initial transformation function
initF serves as generator and generates the list [1..nElems] , where nElems is
a parameter of the program and in our example set to 200000. The trace visuali-
sation in Fig. 11 reveals interchanging computation and communication phases.
The butterfly interconnection scheme can clearly be recognised in the messages
exchanged between the processes. The generation of elements is depicted as the
first “running” phase. The reduction network has been set up before, by ex-
changing the remote data messages via the root process on Machine 1 (initial
messages). Three reduction phases follow. First the direct neighbours exchange
their lists leading to the typical butterfly pattern of messages. The processes re-
duce their lists using the reduction function redF which is set to zipWith ( +) .
For the next steps, the distance to the partner process is doubled every time.
Finally, a parmapDC skeleton is called to consume the data and return an empty
list to the root process.
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Fig. 11. Runtime behaviour of the allReduceDC skeleton

5 Related Work

Alt and Gorlatch [1–3] introduced a concept similar to remote data called remote
references in the context of optimisations of Java RMI. They concentrated on
what they called lazy RMI, localised RMI and future-based RMI. Lazy RMI
describes the basic functionality. Future-based RMI allows to create and pass
remote references before the corresponding values are computed. We get this
in Eden for free because of Haskell’s laziness. An optimization for data passed
locally on the same machine, like localised RMI, would be a good optimisation
of the Eden runtime system, but is currently not implemented.

Alternative approaches to skeleton composition are based on the use of dis-
tributed data structures. Kuchen and Cole [7] describe a skeleton library based
on C++ and MPI which integrates task and data parallel skeletons. Darlington
[6] uses an imperative base as well but describes the composition of (predefined)
skeletons itself functionally in the structured coordination language (SCL).

Although programming with distributed data structures is comfortable and
efficient, the number of predifined data structures is limited and their use is
thus not as flexible as working with remote data. Remote data can be nested in
arbitrary algebraic data structures and manipulated by standard functions on
those structures.

6 Conclusions and Future Work

The remote data concept uses an existing communication topology to build di-
rect connections between different processes. Existing bottlenecks are thereby
circumvented and the total communication amount is reduced. Although being
language-independent the concept enrolls its power and expressive elegance espe-
cially in the context of a declarative host language like Eden, where the concept
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itself is implemented with small effort and only minor changes to existing code
are needed to lift functional results to the new data type.

Algorithmic skeletons that define process networks with complex communi-
cation patterns can be defined in an elegant and concise way. Composition of
skeletons with a remote data interface enables direct communication between
processes within the different skeleton instances. Communication overhead is
substantially reduced and skeleton compositions do not suffer anymore from the
performance penalty caused by the collection and redistribution of distributed
data in ordinary settings. Thus, the remote data concept enhances modularity of
skeleton-based parallel programming, especially by promoting easily composable
skeletons.

With remote data the explicit channel handling using new and parfill can
in most cases be abandoned. This improves the the elegance and usability of
Eden even more. We think that there is room for improvements in other parts
of the language as well. One of the topics that has been brought up many times
is the question whether the Eden functions should get an IO-interface or remain
unchanged. We plan an intensive study of the benefits and drawbacks of an
language specification that makes the side effects explicit.
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