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Abstract. The paper investigates and compares skeleton-based Eden
implementations of different FFT-algorithms on workstation clusters with
distributed memory. Our experiments show that the basic divide-and-
conquer versions suffer from an inherent input distribution and result
collection problem. Advanced approaches like calculating FFT using a
parallel map-and-transpose skeleton provide more flexibility to overcome
these problems. Assuming a distributed access to input data and re-
organising computation to return results in a distributed way improves
the parallel runtime behaviour.

1 Introduction

The well-known Fourier transform, which describes frequency distribution in a
signal, finds diverse applications from pure mathematical applications to real-life
scenarios such as digital signal processing. Today’s state of the art is the Fast
Fourier Transform (FFT). Cooley and Tukey [4] were the first to propose an FFT
algorithm in 1965 (known as 2-radix FFT) with time complexity O(n log n). A
range of other FFT algorithms have been discovered since then [16].

Developing an efficient parallel distributed-memory implementation of FFT
is a great challenge. The manual of the recent 3.2 alpha release of FFTW1

warns that “distributed-memory parallelism can easily pose an unacceptably
high communications overhead for small problems”. In the broader context
of an implementation for parallel computer algebra algorithms in the paral-
lel Haskell extension Eden [15, 13], we investigate parallelisation strategies for
different FFT algorithms. The goal of our work has not been to develop the
fastest distributed-memory FFT, but to investigate a skeleton-based paralleli-
sation of FFT. In Eden, skeletons [3, 14, 1] are higher-order functions defining
general parallel evaluation schemes. The skeleton approach to parallelisation
cleanly separates problem-related and problem-independent issues. This simpli-
fies the parallelisation of algorithms enormously. In essence, FFT algorithms
are based on divide-and-conquer strategies. In this paper, we utilize skeletons
for two variations of parallel divide-and-conquer evaluations: a distributed ex-
pansion scheme which unfolds the computation tree dynamically and spawns

? Supported by the DFG grant LO 630-3/1.
1 Fastest Fourier Transform in the West, http://www.fftw.org/fftw-3.2alpha3-doc/



parallel processes for the evaluation of sub-trees as long as processor elements
are available, and a flat expansion scheme which unfolds the tree up to a given
depth and evaluates all sub-trees at this depth in parallel. Moreover, we present
a parallel map-and-transpose skeleton for the implementation of more advanced
FFT methods. Our skeletons are applicable to a whole class of algorithms, those
which rely on fixed-branching divide-and-conquer or parallel map-and-transpose
schemes.

We analyse the parallel runtime behaviour of various skeleton/algorithm com-
binations using activity profiles of parallel program executions on networks of
workstations, i. e. distributed-memory parallel machines. In addition, we inves-
tigate their scalability when increasing the number of processor elements.

Plan of Paper. The following two sections elaborate on divide-and-conquer ap-
proaches of parallel FFT (Section 2) and on advanced approaches (Section 3).
In each section, we will describe appropriate skeletons for the parallelisation of
FFT algorithms and an experimental evaluation of the parallelised algorithms.
Section 4 discusses related work, the final section concludes.

2 Divide-and-Conquer FFT

FFT Algorithms. The classic 2-radix FFT algorithm by Cooley and Tukey divides
the input vector xs of length n into two halves, computes their element-wise sum
and difference, and multiplies the latter with powers of an n-th primitive root
of unity, the twiddle factors. The algorithm recursively computes the FFT of
these vectors, and combines the results simply by interleaving them element-
wise. Recursion ends at singleton vectors which are returned unmodified. This
version is called decimation in frequency.

An alternative version, called decimation in time, essentially consists of the
opposite dividing and combining steps. The input vector is split into the sub-
vectors with even and odd indices (inverse to the interleaving step above). After
evaluating the recursive calls of FFT for the sub-vectors, the more complex com-
bination of the result lists follows. The first and second half of the overall result
are defined as element-wise sums and differences including again a multiplication
with the twiddle factors.

Divide-and-Conquer Skeletons. The essence of a divide-and-conquer algorithm
is to decide whether the problem is trivial and, in this case, to solve it, or else
to decompose non-trivial problems into a number of sub-problems, which are
solved recursively, and to combine the output. A general skeleton takes parameter
functions for this functionality, as shown here:
type DivideConquer a b = (a -> Bool) -> (a -> b) -- trivial? / solve

-> (a -> [a]) -> ([b] -> b) -- split / combine

-> a -> b -- problem / result

The resulting structure is a tree of task nodes where child nodes are the sub-
problems, the leaves representing trivial tasks.
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Fig. 1. Divide-and-conquer expansion schemes.

A fundamental Eden skeleton which specifies a general divide-and-conquer
algorithm structure can be found in [14]. In [1], we have refined and adapted
this skeleton for fixed branching divide-and-conquer algorithms like FFT. Two
different basic strategies have been used to unfold a process tree. The distributed
expansion scheme creates the process tree in a distributed fashion: One of the tree
branches is processed locally, the others are instantiated as new processes, as long
as processor elements are available. This results in a distributed expansion of the
computation (cf. Fig. 1(a)). Explicit placement of processes is essential to achieve
a balanced distribution of processes on the available processor elements. The
boxes indicate which tree node are evaluated by the same process. The numbers
indicate a possible placement on 8 processor elements (PEs). The corresponding
skeleton has the following interface (type):

dcN :: (Trans a, Trans b) =>

Int -> [Int] -> -- branching degree / processor elements

DivideConquer a b

The Eden type class Trans provides internally used communication functions.
The first two skeleton parameters determine the fixed branching degree of the
underlying divide-and-conquer tree and a list of available processor numbers
used for explicit process placement.

In the flat expansion skeleton, the main process unfolds the divide-and-
conquer tree up to a given depth, usually with more branches than available
PEs. The resulting subtrees are then evaluated by parallel processes, the main
process combines the results of the sub-processes. This results in a homogeneous
flat expansion scheme from a single source depicted in Fig. 1(b) for the binary
variant. A uniform distribution of the subtrees on processors can be achieved
using a farm of worker processes with static or dynamic task distribution. The
corresponding skeleton has the following interface (type):

dcDM_N :: (Trans a, Trans b) =>

Int -> Int -> -- unfolding depth / branching degree

DivideConquer a b

Here the first two skeleton parameters determine the unfolding depth of the
underlying divide-and-conquer tree and the fixed branching degree. A detailed



-- Parallel 2-radix FFT, decimation in time, with input

-- chunking size, instantiates dcN skeleton

fft2radixTime :: Int -> [Complex Double] -> [Complex Double]

fft2radixTime c xs

= chunkDC c chunkL concat

(dcN 2 [2..noPe]) isSingleton id (unshuffle 2) combine2

Fig. 2. Parallelisation by Skeleton Instantiation

explanation of these Eden divide-and-conquer skeletons can be found in [1]. Fig. 2
shows a sample instantiation of the dcN skeleton with branching degree 2 and
explicit process placement on PEs 2 to noPe (the number of available PEs). Input
vectors (lists) are chunked into larger pieces to reduce communication costs.

Experimental Results. The following runtime experiments have been performed
on a local network of 8 Linux workstations with Core 2 Duo processors and 2 GB
RAM connected by Fast Ethernet. The Eden runtime system is instrumented
in such a way that a runtime flag activates a tracing mechanism which pro-
tocols parallelism-related events like process/thread creation/termination, state
changes of machines (i. e. processors), processes and threads, and message send-
ing and receiving. The trace files can then be visualised by the EdenTV tool
(Eden Trace Viewer) [2]. The resulting graphics (see e.g. Figure 3) which are
best viewed in colour are two-dimensional diagrams. The time scale is on the
horizontal axis. The vertical axis shows the machine numbers, on which the pro-
cesses are placed. For each process, there is a coloured horizontal bar, which
shows the process states over time. Green parts (grey) indicate that a thread
is working, red parts (dark grey) indicate that all threads of the process are
blocked, usually because they are waiting for input, or because the processor
is communicating. Yellow areas (light grey) indicate that there are runnable
threads but some system activity like e. g. garbage collection is taking place.
Data transfer, i. e. messages can be optionally indicated as arrows from the
sending to the receiving process.
Our first experiments tested the standard Cooley-Tukey 2-radix FFT algorithm
variants decimation in frequency and decimation in time with the distributed
expansion and flat expansion skeletons. Figure 3 shows typical traces and the
runtimes obtained with the following parameters: input size 220 (double precision
complex numbers), chunk size2 1500, recursion depth 4 and heap size 1500MB.

The activity profiles in Figure 3 reveal that the flat expansion skeleton leads
to a much better runtime behaviour than the distributed expansion skeleton.
This is due to the good load balance in the worker processes which start imme-
diately. Note that the skeleton even co-locates one worker process with the main
process on machine 1 (lowest bars). The communication overhead is low — only
80 messages were sent in both versions.

The decimation in frequency flat expansion version was the fastest version
with 6.92 s. This is due to the fact that the post processing in the master can
2 The chunk size is only used by the distributed expansion skeleton to reduce the

number of messages.
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Fig. 3. Traces and runtimes of divide-and-conquer approaches, without/with messages.

be done very fast, because combining the results is a trivial shuffle, while the
top level combining phase of the decimation in time version takes almost three
quarters of the overall runtime.

With the flat expansion skeleton, we eliminate the input communication,
i. e. distributing tasks to the worker processes. Each worker receives the whole
unevaluated task specification and evaluates its own part on demand. Contrarily,
work distribution is slower with the distributed expansion skeleton because the
main process distributes the tasks to all worker processes. These are initially
blocked waiting for their tasks and start working at different points in time.
This leads to an inhomogeneous runtime behaviour.

3 Advanced Approaches

The parallel divide-and-conquer FFT-implementations show an acceptable per-
formance using few processors, but do not scale well. Therefore we have im-
plemented a more sophisticated algorithm taken from [7] which minimizes data
dependencies and provides more fine grained parallelism. The input vector is
divided into rows of a matrix with side lengths l = 2k. Thus, the input vector is
of length n = l2 = 4k. The algorithm consists of three phases:

1. preprocessing: permutation of input in bit reverse order, tagging input ele-
ments with their position and their segment’s length, split into rows.

2. central processing: local fft3 ◦ a global transpose ◦ local fft3



3. postprocessing: concat and remove tags

The key difference between the ordinary sequential FFT and fft3 is that the
latter operates on triples which contain additional information like a position tag.
It works with global twiddle factors to simulate a contiguous, single-dimensional
FFT algorithm. The divide step is a trivial split of lists. The combine step needs
to be modified using the additional information in the triples. Because of the
permuted input, it is possible to perform FFT locally on the available subsets
of global lists in a global manner. For more details, see [7].

We have derived a skeleton for the central phase of the above scheme which
consists of a composition of parallel maps and an intermediate global communi-
cation to implement the global transpose. The skeleton has been inspired by the
distributable homomorphism skeleton of Gorlatch and Bischof [8]. It can also be
used for the distributed-memory FFT algorithms proposed in [17, 10].

The Parallel Map-and-Transpose Skeleton implements the functionality
(parMap f1) ◦ transpose ◦ (parMap f2).

Defining it with this simple function composition is not appropriate, because
all data would be gathered in the main process in between the two parmap
phases. This again would provoke too much communication and process creation
overhead. Our skeleton parMapTranspose includes a distributed transpose phase
in between two parallel map evaluations. The skeleton’s input is a matrix which
will be distributed row cyclic. In our application the functions f1 and f2 will be
sequential fft3 invocations. In order to save the costs of input distribution, the
parallel maps are executed by direct mapping [12] which means that the matrix is
not communicated but transferred unevaluated within the process abstraction’s
body. The child processes will then evaluate the needed parts locally and demand
driven.

The Eden code of the skeleton uses the following Eden constructs. The library
function spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b] creates
a list of processes from a list of process abstractions and a list of corresponding
process inputs. A process abstraction is a function that will be evaluated by a
process. Process is the type constructor for Eden Process abstractions, which are
created by the function process :: (a -> b) -> Process a b. Eden provides the
following functions to dynamically define new input channels for processes. The
Eden function createChans :: Int → ([ChanName a], [a]) creates a list of new
(input) channel names. Data (lazily) received via the channels can be accessed
in the second component of the result tuple of createChans. Channel names can
be communicated to other processes which can write into the corresponding
channels with the Eden function multifill :: [ChanName a] → [a] → b → b,
which concurrently passes data via given channels and returns its third argu-
ment.

The code of the parallel map-and-transpose skeleton parMapTranspose is shown
in Figure 4. The distributed map functionality is easily defined. Let np be the
number of available PEs (processing elements). We divide the matrix rows into
np contiguous blocks using the function unshuffle. At the end the final result



parMapTranspose :: Int -> ([a] -> [b]) -> ([b] -> [c]) -> [[a]] -> [c]

parMapTranspose np f1 f2 matrix = shuffle res

where

myProcs css = spawn [ process (distr2d_f np f1 f2 rows)

| rows <- unshuffle np matrix ] css

(res,chanss) = myProcs $ transpose chanss

distr2d_fs :: Int -> ([a] -> [b]) -> ([b] -> [c]) ->

[[a]] -> [ChanName[b]] -> ([[c]],[ChanName [b]])

distr2d_fs np f1 f2 rows theirChanNs

= let (myChanNs, theirFstRes) = createChans np

intermediateRes = map f1 rows

myFstRes = unshuffle np $ transpose intermediateRes

res = map f2 $ shuffleMatrixFracs theirFstRes

in (multifill theirChanNs myFstRes $ res, myChanNs)

-- types of auxiliary functions

-- round robin distribution and combination of list elements

unshuffle :: Int -> [a] -> [[a]]

shuffle :: [[a]] -> [a]

-- combine n matrix fragments into one matrix

shuffleMatrixFracs :: [[[a]]] -> [[a]]

Fig. 4. Parallel map-and-transpose skeleton.

is re-composed using the inverse function shuffle. As many processes as avail-
able PEs are created using the Eden function spawn. Each process applies the
function distr2d fs np f1 f2 to its portion of rows and the lazily communicated
input (a row of css). The latter consists of a list of np channel names which are
used to establish a direct link to all processes: each process can thus send data
directly to each other process3. Each process evaluates the function distr2D fs

which firstly leads to the creation of np input channel names myChanNs for the
corresponding process. These are returned to the parent process in the second
component of the result tuple of distr2d fs. The parent process receives a whole
matrix chanss :: [[ChanName a]] of channel names (np channel names from np

processes), which it transposes before sending them row-wise back to the child
processes. Each process receives thus lazily np channel names theirChanNs for
communicating data to all processes. The parallel transposition can thus occur
without sending data through the parent process.

After the first map f1 evaluation, a process locally unshuffles the columns of
the result (the locally transposed result rows) into np lists. These are sent via
the received input channels of the other processes using the function multifill.
The input for the second map phase is received via the initially created own input
channels. The column fragments are composed to form rows of the transposed
intermediate result matrix. The second map f2 application produces the final
result of the child processes.
3 To simplify the specification the channel list even contains a channel which will be

used by the process to transfer data to itself.
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Fig. 5. Trace of parallel FFT using map-and-transpose skeleton (input size 220, 3.5
seconds on 26 Pentium 4 machines)

Experimental Results. The following traces and runtime measurements have been
obtained on a Beowulf cluster at Heriot-Watt-University, Edinburgh, which con-
sists of 32 Intel Pentium 4 SMP processors running at 3 GHz with 512 MB
RAM and a Fast Ethernet interconnection. We implemented the FFT version
of Gorlatch and Bischof [7] using our map-and-transpose skeleton. Result col-
lection and post processing (a simple shuffle) have been omitted leaving the
result matrix in a distributed column-wise manner. A runtime trace, again for
input size 410, is depicted in Figure 5. The communication provoked by the
distributed transpose phase overlaps the second computation phase, such that
stream communication and computation terminate almost at the same time. The
first computation phase is dominant because of the preprocessing, in particular
the reordering (bit reversal) of the input list and the computation of the twiddle-
factors. Noticeable are also the frequent “runnable” phases, which are garbage
collections.

Figure 6 shows the runtimes of the parallel map-and-transpose FFT version
with and without final result collection (Figure 6, triangle marks) in comparison
with the best divide-and-conquer versions (4-radix4, Flat Expansion, Decima-
tion in Time and Frequency). We have measured these versions on the Beowulf
cluster and on our local network of dual-core machines, which are more powerful
and have more RAM than the Beowulf nodes. The parallel map-and-transpose
versions scale well when increasing the number of processing elements. However,
for a small number of PEs it is less efficient than the divide-and-conquer ver-
sions discussed in Section 2. Including result collection in the map-and-transpose

4 4-radix divides the input into 4 parts instead of two.
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Fig. 6. Runtime and scalability comparison of parallel FFT approaches.

version decreases the performance clearly. The runtime differences of the vari-
ous versions are less distinct on the powerful dual-core processors than on the
Beowulf nodes. The huge performance penalties of the algorithms with a small
number of worker processes on the Beowulf are due to more garbage collection
rounds, because of the limited memory size.

4 Related Work

A range of parallel FFT implementations have been presented in the past ([6, 5],
to mention only a few). The vast majority is tailored for shared-memory systems,
see e. g. [9] as an example for a high-level implementation in the functional array
language SAC or [1] for experiments with our divide-and-conquer skeletons on
multi-core machines. Distributed implementations are mostly based on C+MPI.
The distributed MPI-based FFTW implementation [6] is especially tailored for
transforming arrays so large that they do not fit into the memory of a single
processor. In contrast to these specialised approaches, our work propagates a
skeleton-based parallelisation. In his PhD thesis [11], Christoph Herrmann gives
a broad overview, classification, and a vast amount of implementation variants
for divide-and-conquer, while we have focused on divide-and-conquer schemes
with a fixed branching degree. The skeleton-based version of parallel FFT in [8,
7] underlies our parallel map-and-transpose implementation of FFT.

5 Conclusions

The skeleton approach to the parallelisation of FFT provides a high flexibility.
In total, six different parallel FFT approaches have been compared, on the ba-
sis of three different skeletons: two parallel divide-and-conquer and a parallel



map-and-transpose skeleton. We have achieved an acceptable parallel runtime
behaviour with a low parallelisation effort. The most effective techniques to lower
the communication overhead have been the use of direct mapping to avoid in-
put communication and leaving the results in a distributed manner to avoid the
result communication. When applicable, these techniques substantially improve
the efficiency.

Acknowledgements. Thanks go to Thomas Horstmeyer for his comments.
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