
Chapter 1

Graph-based Communication
in Eden
Thomas Horstmeyer and Rita Loogen1

Category: Research

Abstract: We present a new approach to the definition and creation of process
topologies in the parallel functional Haskell extension Eden. Grace (Graph-based
communication in Eden) allows a programmer to specify a network of processes
as a graph, where the graph nodes represent processes and the edges represent
communication channels. Thus, the specification and creation of complex com-
munication topologies is simplified a lot. The main benefit of the new approach is
a clean separation between coordination and computation. Runtime experiments
show that Grace has a marginal overhead in comparison with traditional Eden
code.

1.1 INTRODUCTION

The parallel functional language Eden [7] enables programmers to define pro-
cess networks with arbitrary topologies. However, the creation of a non-tree-like
topology had up to now to be done on a low level of abstraction using so-called
dynamic channels. These channels are created by receiver processes and must be
passed to the corresponding sender processes to establish a direct channel con-
nection between those processes. This is a rather tedious and error-prone task.

In this paper, we present a new approach to the definition and creation of pro-
cess topologies in Eden. Grace (Graph-based communication in Eden) allows a
programmer to specify a network of processes as a graph, where the graph nodes
represent processes and the edges represent communication channels. The graph
is described as a Haskell data structure ProcessNetwork a, where a is the

1Philipps-Universität Marburg, Fachbereich Mathematik und Informatik,
Hans-Meerwein-Straße, 35032 Marburg, Germany;
{horstmey,loogen}@informatik.uni-marburg.de

1

2 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

sums

multTwo addOne

pascalSums

FIGURE 1.1. Network Topology for the Sums of Elements in the Pascal’s Triangle

result type of the network computation. A function start will instantiate the
network and automatically set up the corresponding process topology, i.e. the
processes are created and the necessary communication channels are installed.
The main benefit of the new approach is a clean separation between coordination
and computation. The network specification encapsulates the coordinational as-
pects. The graph nodes are annotated with functions describing the computations
of the corresponding processes.

Generally a user defines the process network by placing functions on nodes
and connecting the nodes with edges. For every parameter that a function takes,
the corresponding node must have an incoming edge. The third parameter of the
edge constructor is used to define an ordering on these incoming edges to map
them unambiguously to the parameters. The result computed on a node will be
transmitted over every outgoing edge to other nodes. Since not every succes-
sor node might need the whole result an optional transformation function can be
placed on edges that filters the data to be transmitted before the transfer. No filter-
ing is expressed using nothing2. A small extension to the base system allows
the definition of multiple incoming edges for a parameter that is a list which then
will be received element-wise over these edges.

An Introductory Example
Let us take a look at a simple network that computes the sequence 〈xn|n≥ 1〉 with
x1 = 1 and xi = 2xi−1 +1 for all i > 1. Here, xn gives you the sum of the elements
in the Pascal’s triangle with n levels. We use two separate processes to compute
the multiplication and the addition. Figure 1.1 visualises the network.

Listing 1.1 shows how to describe this network with the help of Grace. It uses
the data types and functions of the Grace package shown in Listing 1.2. The net-
work is specified as a graph structure that is passed to the Grace function build.
It consists of the node for the main process where the sums function is evaluated,
two nodes labeled ”mult” and ”add” for the separate processes and edges connect-
ing the nodes. The third and fourth parameter of the edge constructor E are not
of interest in this small example. Applying the function start to the network

2Nothing of the Maybe-data type with a fixed type

1.2. EDEN 3

Listing 1.1. Element Sums in the Pascal’s Triangle with Grace
pascalSums = start network
where

addOne = map (+1) :: [Int] → [Int]
multTwo = map (∗2) :: [Int] → [Int]
sums = λ xs → 1:xs :: [Int] → [Int]

network :: ProcessNetwork [Int]
network = build ("sum", sums) nodes edges

nodes :: [Node String]
nodes = [N "mult" multTwo, N "add" addOne]

edges :: [Edge String Int]
edges = [E "mult" "add" 0 nothing,

E "add" "sum" 0 nothing,
E "sum" "mult" 0 nothing]

Listing 1.2. Some Data Types and Functions of the Grace Package
data Node l = forall f a g r p. (Placeable f a g r p) ⇒ N l f

data Edge n l = forall a b p.
(Trans a, Trans b, Placeable (a → b) a b b p) ⇒
E n n l (Maybe (a → b))

build :: forall f a g r p n e. (Placeable f a g r p, Ord e, Eq n) ⇒
(n, f) → [Node n] → [Edge n e] → ProcessNetwork r

start :: (Trans a) ⇒ ProcessNetwork a → a

will instantiate its processes, build the communication channels and compute the
result.

Plan of Paper. The next section contains a short introduction into Eden. Ba-
sic constructs of Grace are explained in Section 1.3. Advanced constructs follow
in Section 1.4. Implementation details are discussed in Section 1.5, while an
experimental evaluation is presented in Section 1.6. Section 1.7 gives an imple-
mentation of the hyperquicksort algorithm that uses all of Grace’s features. The
paper finishes with a discussion of related work in Section 1.8 and conclusions in
Section 1.9.

1.2 EDEN

The parallel Haskell dialect Eden [7] extends Haskell [8] with an explicit notion of
processes (function applications evaluated remotely in parallel). The programmer
has direct control over evaluation site, process granularity, data distribution and
communication topology, but does not have to manage synchronisation and data
exchange between processes. The latter are performed by the parallel runtime
system through implicit communication channels, transparent to the programmer.

4 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

The essential two coordination constructs of Eden are process abstraction and
instantiation:

process :: (Trans a, Trans b) ⇒ (a → b) → Process a b
(#) :: (Trans a, Trans b) ⇒ Process a b → a → b

The function process embeds functions of type a → b into process abstrac-
tions of type Process a b where the context (Trans a, Trans b) states
that both a and b must be types belonging to the Trans class of transmissible
values. Evaluation of an expression (process funct) # arg leads to the
creation of a new process for evaluating the application of the function funct to
the argument arg. The type class Trans provides overloaded communication
functions for lists, which are transmitted as streams, element by element, and for
tuples, which are evaluated component-wise by concurrent threads in the same
process. An Eden process can thus contain a variable number of threads during
its lifetime.

Two additional non-functional features of Eden are essential for performance
optimisations and the creation of non-hierarchical process networks: nondeter-
ministic stream merging and explicit communication. Eden’s non-deterministic
function merge :: Trans a ⇒ [[a]] → [a] merges a list of streams
into a single stream and thus, provides many-to-one communication. Communi-
cation channels may be created implicitly during process creation – in this case
we call them static channels – or explicitly during process evaluation. In the lat-
ter case we call them dynamic channels. The following functions provide the
interface to create and use dynamic channels:

new :: Trans a ⇒ (ChanName a → a → b) → b
parfill :: Trans a ⇒ ChanName a → a → b → b

Evaluating new (λ name val → e), a process creates a dynamic chan-
nel name of type ChanName a in order to receive a value val of type a. After
creation, the channel should be passed to another process (just like normal data)
inside the expression result e, which will as well use the eventually received value
val. Evaluating (parfill name e1 e2) in the other process has the side-
effect that a new thread is forked to concurrently evaluate and send the value e1
via the channel. The overall result of the expression is e2.

Listing 1.3 shows a definition of the introductory example in Eden. The main
process pascalSums creates process addOne which in turn creates process
multTwo. Process multTwo creates a dynamic channel chan which it returns
to its creator addOne. The latter simply passes this channel to the main process
which uses the channel to pass the result list (1:result) directly to the process
multTwo. Thus, the channels from multTwo to addOne and from addOne to
the main process are implicitly created static channels, while the channel connec-
tion between the main process the multTwo is dynamically created.

1.3 BASIC CONSTRUCTS

With Grace the desired network topology is specified through a directed graph
structure where nodes represent the processes and edges the communication be-

1.3. BASIC CONSTRUCTS 5

Listing 1.3. Element Sums in the Pascal Triangle in Eden
pascalSums :: [Int]
pascalSums = parfill chan (1:result) (1:result)
where

(chan, result) = (process addOne) # ()
addOne () = (λ(c, ins) → (c, map (+1) ins))

((process multTwo) # ())
multTwo () = new (λchan ins →

(chan, (map (∗2) ins)))

tween them. On every node a function must be placed which will receive each
of its arguments through an incoming edge. The functions’ result will be sent to
every successor node. To unambiguously map incoming edges to function pa-
rameters the edges must have a weight, i.e. a label for whose type an ordering is
defined.

The graph itself is specified as a list of nodes, a list of edges and a separate
special node, whose result is considered to be the result of the whole network. In
the following we will refer to this special node as main node. A node has a label
and a function placed on it.

data Node l = forall f a g r p.
(Placeable f a g r p) ⇒
N l f

This construct uses multi-parameter classes with functional dependencies [11]
and explicit quantification to introduce the type variables a, g, r and p which are
dependent on f. The class Placeable in the type context is used by the imple-
mentation. However, the user needs not declare a suitable instance – an instance
will be derived automatically for every possible function. The only constraint is
that the function may not have allquantified type variables. Note that the type
variable f that represents the placed function is existentially quantified [5] and
does not appear in the type of the node. This allows us to declare a list of nodes as
a standard Haskell list [Node l] even if the functions placed on the nodes are
of different type.

Edges consist of two nodes (from and to), a label and an optional function.
The use of the latter will be explained in Section 1.4.

data Edge n l = forall a b p.
(Trans a, Trans b,
Placeable (a → b) a b b p) ⇒

E n n l (Maybe (a → b))

When nodes and edges have been specified they can be passed to the function
build that combines them into an abstraction of a process network.

build :: forall f a g r p n e.
(Placeable f a g r p, Ord e, Eq n) ⇒
(n, f) → -- main node
[Node n] → -- other nodes
[Edge n e] → -- edges
ProcessNetwork r

The type context Ord e and Eq n ensures that edges can be ordered by their
label and nodes can be identified by their label. The main node is not of type

6 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

Node n but a pair of its label and function because the existential quantification
would hide f which is needed to determine the result type r of the network’s
computation . Placeable f a g r p relates f to r, such that r is a constant
and f is a type τ1→ . . .→ τk→ r for k ≥ 0.

The instantiation of the network and the computation of its result is executed
by passing the process network to the function start.

start :: (Trans a) ⇒ ProcessNetwork a → a

The introductory example given in listing 1.1 shows the clear distinction be-
tween computation logic and topology specification. Due to the usage of strings as
node labels the intended interrelations between the processes are even perceptible
in the edge declarations.

1.4 ADVANCED CONSTRUCTS

Parameterized Number of Edges
With the basic constructs each node has exactly as many incoming edges as its
function takes parameters. This is not very practical for processes that need to
communicate with a high, parameterized number of other processes. Without
Grace one would store the incoming data as elements in a list. An example is the
master-worker skeleton [7, 6], where the master has a list of incoming streams that
is merged with the Eden-function merge. To allow something similar in Grace
we have made it possible not only to receive a list as a stream but also element-
wise from different communication partners. This is realized by introducing a
new data type Lister f, that can be placed on a node like an ordinary function.
It is created using the function lister:

lister :: (IsFunctionType f flag,
Placeable’ f a g r p) ⇒
f → [Int] → Lister f

Again, for the user the type context is not really important. Appropriate in-
stances will be derived for any given function.

The list parameter specifies the behaviour for each of the functions arguments.
If the i-th element of the list is 0 the corresponding parameter of the function will
be treated normally. However, if it is k > 0 and the i-th parameter of the function
is a list then exactly k channels will be created for this parameter when building
the network. A single list element will be received over each of these channels.

See Section 1.6 for a Grace version of the master-worker skeleton.

Selection on Edges
In most of the cases where a node has multiple outgoing edges not all successors
are really interested in the whole result that is computed on the node. It is quite
common that the result, e.g. a tuple, is supposed to be distributed component-
wise.

Eden’s eager communication forces us to address this problem on the sender’s
side. We allow to place a function on an edge that is used to transform the node’s

1.5. BEHIND THE SCENES – GRACE IMPLEMENTATION DETAILS 7

result before it is communicated over that edge. The edge data type given in
Section 1.3 already takes this possibility into account. This will typically be used
for selection or filtering but technically arbitrary transformations are possible.

1.5 BEHIND THE SCENES – GRACE IMPLEMENTATION DETAILS

The implementation faces a few challenges, most of which can be solved using
common language extensions like multi-parameter classes, functional dependen-
cies and relaxations in type checking.

The easiest task is how to specify the graph. A list of nodes (and edges) that
carry functions of different types must be made possible. Since the number of
functions is not fixed we can not use an algebraic data type. The use of the HList-
library [4] would be possible but we do not really need its advanced features.
The user has to build the list, which should therefore be as easy as possible. By
declaring the node data type as existential type that hides the type of the placed
function ordinary Haskell lists can be used.

A more complicated problem is how to partition the user supplied function
type into its parts, i.e. parameter types and result type, so that individual channels
for these can be created. Here, we use techniques developed in the context of
generic programming. We define a multi-parameter class with dependent types to
make the parts of the function type accessible.

class (Trans argtype, Trans restype) ⇒
Placeable ftype argtype remtype restype plisttype
| ftype → argtype remtype restype plisttype
where ...

The function’s type ftype determines all the other types. The type of the
function’s first argument is argtype, remtype is the remaining part of the
function’s type without the first argument. The final result type of the function,
which you get after applying all parameters is restype. Finally, plisttype
is a type level list of all the parameters. This list uses the type constructors:

data PNilType = PNil
data PConsType a b = PCons a b

For a function of type Int → Char → Bool we would get the instance:
Placeable
(Int → Char → Bool) -- ftype
Int -- argtype
(Char → Bool) -- remtype
Bool -- restype
(PCons Int (Pcons Char (PCons Bool PNil))) -- plisttype

The type context (Trans argtype, Trans restype) ensures that
both first argument and result can be transported over Eden-channels. For the
other parameters we will ensure this via recursive instance declarations.

Let us now take a look at these instance declarations. We do not show the (not
so interesting) class’ methods but it is important for these (and for the recursive
structure of the instance declarations as well) to be able to distinguish between

8 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

constants and functions that take parameters. To decide this, we follow the tech-
nique described by Kiselyov on his website [3], based on the class TypeCast
from the HList-library.

We declare a class IsFunctionType a b that relates a given type to one
of the types HFuncListParam, HFuncConstParam and HConst if the type
is a function type that takes a list as first parameter, a function type that takes no
list as first parameter or is a constant, respectively. The distinction between list
and non-list parameters is needed to support the Lister-construct.

Originally we had intended to only give one instance declaration for the class
Placeable:

instance (IsFunctionType ftype, flag,
Placeable’ flag ftype argtype

remtype restype plisttype) ⇒
Placeable ftype argtype remtype

restype plisttype
where ...

Any method in this class would redirect its call to a corresponding method in the
class Placeable’. For Placeable’ we give instances for any of the three
possible flags as shown in listing 1.4.

Listing 1.4. Instances of Placeable
instance (Trans argtype,

Placeable’ flag remtype a g restype plisttype,
IsFunctionType remtype flag)
⇒ Placeable’ HFuncConstParam

(argtype → remtype)
argtype remtype restype
(PConsType argtype plisttype)

where ...

instance (Trans argelemtype,
Placeable’ flag remtype a g restype plisttype,
IsFunctionType remtype flag)
⇒ Placeable’ HFuncListParam

([argelemtype] → remtype)
[argelemtype] remtype restype
(PConsType [argelemtype] plisttype)

where ...

instance (Trans ftype) ⇒ Placeable’ HConst
ftype
() () ftype
PNilType

where ...

You can see, that for the constant function the result type is the same as the
function type.

In the end, the Lister-data type got its own, second instance declaration.
This ensures that Lister can only be ’wrapped’ around a function and not be
another part of a function type, e.g. Lister ([Int] → Int) has an in-
stance but Int → Lister ([Int] → Int) has not.

While the afore mentioned challenges all could be addressed, a serious hen-
and-egg-problem is yet only partly solved. The dynamic channels specified by

1.6. EXAMPLE AND RUNTIME BEHAVIOUR 9

the edges must be created by the receiving process and communicated – via other
channels – to the sender. We chose a star network to accomplish this: Every
node sends its channels to the main node that distributes them where they belong.
The problem is the typing: A channel’s type is determined by the communicated
data’s type. A channel of our building network transports an arbitrary number of
channels with user-defined types.

Since we do not want to pass this problem to the user we do not see any other
way than cheating: hide the channels type for transport using unsafeCoerce
and reestablish the type afterwards with the same operation. However, the reap-
plied type could be a different one if the process network was erroneous. The
channel is created with the type of data that is expected on the receiver’s side.
The sender later casts it to a type for the data it intends to send. If these do not
match the computation may lead to unexpected results and even deadlocks. Un-
fortunately, the type safety is broken at this point.

We hope to reintroduce type safety in the future. Theoretically it should be
possible to use the specified graph for type checking. Template Haskell [9] might
be a tool suited to address this task.

We have considered runtime type checking using dynamic typing as well. But
on the one hand it creates a data overhead at runtime that we want to avoid, and on
the other hand the existing solutions are not designed to work when data migrates
over different runtime environments.

To support debugging we have written a function that verifies the topology of
the network and checks if every node has as many incoming edges as its function’s
arity.

1.6 EXAMPLE AND RUNTIME BEHAVIOUR

Grace’s strength lies in the easy creation of complex networks. This of course
introduces a certain overhead. To examine this overhead we have chosen a clas-
sic application that builds a tree-shaped network and implemented a version with
Grace. This was compared against an existing version that does not use Grace.
The latter uses only implicit channels and has therefore the smallest possible com-
munication overhead. If Grace performs well in this case then we can expect good
results in cases where Grace has the advantage of a more shallow communication
structure during network creation as well.

The core of the program is the classic master-worker-skeleton in a slight vari-
ation that returns unmerged data. The application computes a visualization of
the Mandelbrot-set and has been used previously to compare hierarchical master-
worker-skeletons [1].

On the main node the master-function gets streams from all of the np work-
ers that are combined into a list using the Lister-construct. This list is split
into results and worker ids and the latter are used as requests that are used to dis-
tribute tasks to workers. The prefetch number determines how many tasks are
initially distributed to the workers.

Edges from the master to the workers have a filter toWorkerSelect i that

10 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

Listing 1.5. The core Master-Worker-Skeleton with Grace
mwGrace :: forall t r. (Trans t, Trans r) ⇒

Int → Int → -- no. of workers, prefetch
([t] → [r]) → -- worker function
[t] → [[r]] -- tasks, result lists

mwGrace np prefetch wf tasks
= fst $ start $ build (0, master) (number workers) edges
where

master :: Lister ([[(Int, r)]] → ([[r]], [(Int, t)]))
master = lister (λxs → (map (map snd) xs,

zip (initReqs ++ map fst (merge xs)) tasks))
[np]

initReqs = concat (replicate prefetch [0..np-1])

-- general worker function
worker :: Int → [t] → [(Int, r)]
worker i ts = zip [i, i..] $ wf ts

-- workers concrete with id
workers :: [Function]
workers = toFL [worker i | i ← [0..np-1]]

-- edge definitions
edges :: [Edge Int Int]
edges = zipWith4 E [1..np] [0,0..] [1,1..] nothings

++ zipWith4 E [0,0..] [1..np] [1,1..]
[Just (toWorkerSelect i) | i ← [0..np-1]]

toWorkerSelect :: Int → ([r], [(Int, t)]) → [t]
toWorkerSelect i (_, xs) = map snd $ filter ((==i) . fst) xs

selects for each worker the tasks assigned to it.
The user supplied worker function wf is used by a worker to evaluate tasks.

The results are tagged with the worker id which is used as request for a new task.
The (not shown) Grace functions toFL and number construct a list of worker
nodes by adding labels from 1 to np to the list of functions. (Note that the worker
with id i is represented by a node with label i+1.)

For the runtime measurements we used two systems. System NOW is a net-
work of 8 Linux-workstations connected via Fast Ethernet. System 8C is a Linux-
System with a 8-core CPU with 16 GB RAM running at 2.5 GHz on which we
started 8 instances of the program. We computed the Mandelbrot-set visualization
in a resolution of 5000 x 5000 pixels. The tasks were the lines of the graphic, i.e.
5000 tasks were evaluated. The prefetch value was 60.

The runtime on NOW fluctuated highly between 30 and 90 seconds for both
programs, probably due to external influences on the network which could not be
used exclusively. The difference in runtime between the two versions is too small
to be measured accurately under these circumstances.

Figures 1.2 and 1.3 show trace visualisations, i.e. activity profiles, of two runs
whose runtimes do not differ too much. The master-worker system consists of
the master and 7 worker processes which have been placed on different PEs, with
the master process on PE 1. The profiles look quite similar. The only noticeable

1.6. EXAMPLE AND RUNTIME BEHAVIOUR 11

FIGURE 1.2. Trace of the Mandelbrot-Application on NOW, Version without
Grace

FIGURE 1.3. Trace of the Mandelbrot-Application on NOW, Version with Grace

difference lies in a higher amount of garbage collection (the yellow (light grey)
sections) in the master process of the Grace version.

On 8C, where communication costs can be neglected, the traces show about
the same characteristics. Only that no blocking can be perceived in the worker
processes. We therefore omit these trace visualisations here. The higher amount
of garbage collection in the master is apparent, too.

The runtimes on 8C are very stable. We measured the average of 5 runs. In
addition to the runs with 5000 tasks we also measured the runtimes for bigger
problem sizes. Table 1.1 gives the results. The runtimes for the three smaller
problem sizes differ in approx. 0.2 seconds, twice in favor of the Grace-free ver-
sion, once in favor of Grace. For 20.000 tasks the Grace program is suddenly 3
seconds slower. A trace reveals that this is due to a three-second garbage collec-
tion in the master process just one second before the end. The runtime differences
of the bigger problem sizes are not as significant but can be ascribed to garbage
collection in the master process, too.

It could be that the slightly higher amount of memory that is needed for

12 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

number of tasks / lines 5,000 10,000 15,000 20,000 25,000 30,000
runtime of version 25.87 s 51.94 s 77.11 s 102.59 s 127.69 s 153.53 swithout Grace
runtime of version 26.08 s 51.72 s 77.34 s 105.71 s 128.40 s 154.62 swith Grace

time difference 0.21 s −0.22 s 0.23 s 3.12 s 0.71 s 1.09 s

TABLE 1.1. Runtimes of the Mandelbrot-Application on 8C

the additional data structures used in the Grace version just happens to make
garbage collection in the main process more often necessary. We suspect that
some ressources remain in memory even after the process network has been built.
A restructuring of the code for the main process may allow an earlier release of
these ressources.

1.7 A MORE SOPHISTICATED EXAMPLE: HYPERQUICKSORT

While the master-worker example in the last section was a good test case for
performance comparisons, it does not use the more powerful features of Grace
due to the simplicity of the tree network. In this section, we give a more so-
phisticated example that uses all of Grace’s features: an implementation of the
hyperquicksort-algorithm [12], a parallel variant of the well known quicksort-
Algorithm that works on a hypercube network.

A hypercube of dimension d consists of 2d nodes, each of which is connected
to d neighbours. The nodes can be enumerated from 0 to 2d − 1 in such a way,
that a node pi is connected to all nodes p j where the binary representations of i
and j differ in exactly one bit.

Algorithm Description
To sort a list of n2d elements the algorithm first distributes them evenly onto the
available processor elements (PEs). The aim is to reorder them such that the
sublists on every PE is sorted and for every pair of nodes pi and p j where i < j
the elements stored on pi are smaller or equal to all elements stored on p j.

To achieve this, every PE first sorts its local sublist using the sequential quick-
sort. Then, d phases follow. Let H j

i denote the (sub)hypercube of dimension j
that consists of the nodes pi, ..., pi+2 j−1. In any phase k, k ∈ {0, ...,d− 1}, each
hypercube Hd−k

i is split into the hypercubes Hd−k−1
i and Hd−k−1

i+2d−k−1 . For that, the

root node of Hd−k
i first determines the median of its sublist and broadcasts it to the

other nodes of Hd−k
i . Then, any node of Hd−k−1

i sends the upper part of his sub-
list with elements greater than the pivot element to his neighbour in Hd−k−1

i+2d−k−1 and
receives that one’s elements smaller or equal to the pivot. Figure reffig:hqcomm
exemplifies this. A merge of the newly received list with the list that remained on
the node concludes the phase.

1.7. A MORE SOPHISTICATED EXAMPLE: HYPERQUICKSORT 13

p0

p4

p2

p6

p1 p3

p5 p7

p0

p4

p2

p6

p1 p3

p5 p7

FIGURE 1.4. Communication in the first Phase of a 3D-Hyperquicksort: Broad-
cast of Pivot Element in H3

0 (left); Exchange of sublists (right).

At the end of any phase k the elements in any hypercube Hd−k−1
i are smaller

than those on Hd−k−1
j iff i < j. After the last phase, the original hypercube has

been deconstructed down to subhypercubes with only one PE and the desired
order is achieved.

Assuming a good selection of pivot elements the algorithm has an expected
time complexity of O(n log n+ d(d+1)

2 +dn).

Realization
Listing 1.6 shows how the hypercube-network that sorts a given input list can be
specified with Grace. The functional core is defined by the function hypernode
of which we only give the type. Supplied with the nodes index and the initial
sublist the curried function is placed on every node of the network. Additional
parameters (for which we will define edges later) are a list of pivot elements and
a list of sublists that are received in each phase of the algorithm. The result is
a pair of two lists, one containing the pivot elements and one the sublists to be
sent in each phase. The latter is supposed to include as last element the complete
sublist a node has after the last phase. Note that the pivot element in each phase is
either taken from the input list or computed from the stored elements, depending
on whether the node is root of its subhypercube in a given phase or not.

The Lister-construct is used to assemble the dim sublists coming from
different neighbours into a single list. The list of pivot elements on the other hand
is received as a stream from only one other node. (Except for the root node with
index 0 which computes all pivot elements by itself and for which this input is
undefined.)

The mainNode not only computes the result of its hypernode-function but
also the complete sorted list by receiving and concatenating all results of each
node. This is another additional element of the list of computed sublists.

The edge definitions consist of three parts: Edges for the communication of
the pivot element, for the exchange of sublists and a direct connection from each
node to the root node that transfers the result lists.

The pivotEdges define a tree embedded into the hypercube. They are con-
structed using a helper function and carry a function that selects the pivot list

14 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

Listing 1.6. Definition of the Hyperquicksort-network
hyperquicksortNW :: forall a. (Ord a, Trans a) ⇒

Int → [a] → ProcessNetwork ([a], [[a]])
hyperquicksortNW dim input = build controller nodes edges
where

-- ∗∗∗ node definitions ∗∗∗
nodes = [N i (lister (hypernode i (inputs !! i)) [dim,0])

| i ← [1..2ˆdim -1]]

mainNode :: (Int, Lister ([[a]] → [[a]] → ([a], [[a]])))
mainNode = (0, lister mainFunction [2ˆdim - 1, dim])

-- results lists (pivots, lists)
mainFunction :: [[a]] → [[a]] → ([a], [[a]])
mainFunction rs xs = (pivots, xs’ ++ [last xs’ ++ concat rs])

where
(pivots, xs’) = (hypernode 0 (inputs !! 0)) xs undefined

inputs = unshuffleN (2ˆdim) input

-- nodeId input lists pivots pivots, lists
hypernode :: Int → [a] → [[a]] → [a] → ([a], [[a]])
hypernode nodeId es lists pivots = ...

-- ∗∗∗ edge definitions ∗∗∗
edges = pivotEdges ++ dataEdges ++ resultEdges

where

-- edges for the broadcast of pivot elements
pivotEdges = hlp (dim-1) [0]

hlp (-1) _ = []
hlp d ns = es ++ hlp (d-1) (ns++ms)

where
es = zipWith4 E ns ms (repeat dim)

(repeat (Just (fst :: ([a], [[a]]) → [a])))
ms = map (+2ˆd) ns

-- edges for exchange of sublists
dataEdges = [E (complementBit i k) i (dim-k-1) (selectData k)

| i ← [0..2ˆdim - 1], k ← [0..dim-1]]

selectData :: Int → Maybe (([a], [[a]]) → [a])
selectData d = Just ((!!(dim-d-1)) . snd)

-- edges for the collection of the final result
resultEdges = [E i 0 (i-(2ˆdim)) selectResult

| i ← [1..2ˆdim -1]]

selectResult :: Maybe (([a], [[a]]) → [a])
selectResult = Just ((!!dim) . snd)

1.8. RELATED WORK 15

p0

p2

p1

p3

1

0 0

1

2

2

2

-3

-2 -1

FIGURE 1.5. Topology of the Process
Network for the Hyperquicksort in a 2D-
Hypercube. Edges for the Communication
of the Pivot Elements (single line), the Sub-
lists (double line) and the Collection of the
Result (dashed line). The Edge Weights
define an Ordering on each Node’s incom-
ing Edges.

Listing 1.7. Definition of the hyperquicksort-function
hyperquicksort :: (Ord a, Trans a) ⇒

Int → [a] → [a]
hyperquicksort dim xs = (!!(dim+1)).snd $ start

$ hyperquicksortNW dim xs

from the result of the hypernode-computation. Since the pivot-list parameter
of hypernode succeeds the sublists-parameter, the weight of the pivot edges is
chosen to be dim which is greater than that of any data edge.

The dataEdges have weights of 0 to dim−1, corresponding to the phase in
which they are used. Figure 1.7 shows the graph used in a hyperquicksort with a
twodimensional hypercube. The k used in the list comprehension defines the size
of the subhypercube that is to be split in a phase d− k− 1. The selectData-
function extracts the sublist to be transmitted from the result of hypernode.

Finally, after all phases a node’s result is transferred via a direct connection to
the mainNode. The ordering with negative weights was chosen such that it does
not interfere with the other edges’ weights and it defines the correct ordering on
the received sublists in the main node which will only have to apply concat to
get the overall result.

To complete the definition of the hyperquicksort, all that is left is to instanti-
ate the network and select the desired reults from the networks computation (cf.
listing 1.7).

1.8 RELATED WORK

The idea of splitting a parallel program into parts of sequential computations and
a coordination definition is not new.

S-Net [2] is a coordination language targetted at stream processing that allows
to specify the coordination network without too much knowledge of the connected
computation boxes, which therefore can be implememented in an arbitrary box
language.

Even if we describe a computation as graph we have not much in common
with visual languages or term-graphs [10] in general since we use the graph only
as static specification and do not transform it.

16 CHAPTER 1. GRAPH-BASED COMMUNICATION IN EDEN

1.9 CONCLUSION

Modeling process networks as graphs is more intuitive than the use of dynamic
channels on a low level of abstraction. We have given a library that introduces
these graph definitions into Eden with only a slight impact on the runtime of the
written program which may even be reduced further. Currently, type safety is un-
fortunately not guaranteed but the unsafety is limited to communication interfaces
between the processes. We hope to address this problem in the future.

Our modeling of computations as graphs is not limited to the parallel world.
The same could be done sequentially. With only minor modifications we would
obtain a tool to evaluate term-graphs.

REFERENCES

[1] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical Master-Worker
Skeletons. In P. Hudak and D. S. Warren, editors, Practical Aspects of Declarative
Languages, LNCS 4902, pages 248 – 264. Springer, 2008. submitted for publication.

[2] C. Grelck, S.-B. Scholz, and A. Shafarenko. S-Net: A typed stream processing lan-
guage. In Proceedings of the 18th International Symposium on Implementation and
Application of Functional Languages (IFL’06), Budapest, Hungary, Technical Report
2006-S01, pages 81–97, 2006.

[3] O. Kiselyov. How to write an instance for not-a-function. http://okmij.org/
ftp/Haskell/typecast.html#is-function-type. Online, 25.11.2008.

[4] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous collections.
Technical Report SEN-E0420, CWI, Amsterdam, Aug. 2004.

[5] K. Läufer. Type classes with existential types. Journal of Functional Programming,
6(3):485–517, May 1996.

[6] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Abstrac-
tions in Eden. In Patterns and Skeletons for Parallel and Distributed Computing.
Springer, 2003.

[7] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́. Parallel Functional Programming
in Eden. Journal of Functional Programming, 15(3):431–475, 2005.

[8] S. Peyton Jones and J. H. (editors). Haskell 98: A non-strict, purely functional lan-
guage. Technical report, Februar 1999.

[9] T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell. In M. M. T.
Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16. ACM Press,
Oct. 2002.

[10] M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors. Term graph
rewriting: theory and practice. John Wiley and Sons Ltd., Chichester, UK, 1993.

[11] M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding func-
tional dependencies via constraint handling rules. J. Funct. Program., 17(1):83–129,
2007.

[12] B. Wagar. Hyperquicksort - a fast sorting algorithm for hypercubes. In M. T. Heath,
editor, Hypercube Multiprocessors 1987 (Proceedings of the Second Conference on
Hypercube Multiprocessors), pages 292–299. SIAM, 1986.

