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Abstract

Text detection in images or videos is an important step
to achieve multimedia content retrieval. In this paper, an
efficient algorithm which can automatically detect, localize
and extract horizontally aligned text in images (and dig-
ital videos) with complex backgrounds is presented. The
proposed approach is based on the application of a color
reduction technique, a method for edge detection, and the
localization of text regions using projection profile analy-
ses and geometrical properties. The output of the algorithm
are text boxes with a simplified background, ready to be fed
into an OCR engine for subsequent character recognition.
Our proposal is robust with respect to different font sizes,
font colors, languages and background complexities. The
performance of the approach is demonstrated by present-
ing promising experimental results for a set of images taken
from different types of video sequences.

1. Introduction

Indexing images or videos requires information about
their content. This content is often strongly related to the
textual information appearing in them, which can be divided
into two groups:

� Text appearing accidentally in an image that usually
does not represent anything important related to the
content of the image. Such texts are referred to as
scene text [8].

� Text produced separately from the image is in general
a very good key to understand the image. In [8] it is
called artificial text.

In contrast to scene text, artificial text is not only an im-
portant source of information but also a significant entity
for indexing and retrieval purposes. Localization of text
and simplification of the background in images is the main

objective of automatic text detection approaches. How-
ever, text localization in complex images is an intricate pro-
cess due to the often bad quality of images, different back-
grounds or different fonts, colors, sizes of texts appearing in
them. In order to be successfully recognizable by an OCR
system, an image having text must fulfill certain require-
ments, like a monochrome text and background where the
background-to-text contrast should be high.

In this paper, we present an approach that allows to de-
tect, localize and extract texts from color images with com-
plex backgrounds. The approach is targeted towards being
robust with respect to different kinds of text appearances,
including font size, color and language. To achieve this aim,
the main focus of the proposed algorithm is centered on the
recognition of the specific edge characteristics of charac-
ters. Based on the way how possible text areas are detected
and localized, our method can be classified as a connected-
component based approach. It essentially works as follows:
Color images are first converted to grayscale images. An
edge image is generated using a contrast segmentation algo-
rithm, which in turn uses the contrast of the character con-
tour pixels to their neighboring pixels. This is followed by
the analysis of the horizontal projection of the edge image
in order to localize the possible text areas. After applying
several heuristics to enhance the resulting image created in
the previous step, an output image is generated that shows
the text appearing in the input image with a simplified back-
ground. These images are ready to be passed to an OCR
system. The software is completely written in JAVA to be
able to easily run the code in parallel on possibly hetero-
geneous networked computing platforms. The performance
of our approach is illustrated by presenting experimental re-
sults for different sets of images.

The paper is organized as follows. Section 2 gives an
overview of related work in the field. Section 3 presents the
individual steps of our approach to text localization. Sec-
tion 4 contains the experimental results obtained for a set
of images. Section 5 concludes the paper and outlines areas
for future research.



2. Related Work

Several approaches for text detection in images and
videos have been proposed in the past. Based on the meth-
ods being used to localize text regions, these approaches can
be categorized into two main classes: connected component
based methods and texture based methods.

The first class of approaches [1, 2, 4, 5, 6, 8] employs
connected component analysis, which consists of analyz-
ing the geometrical arrangement of edges or homogeneous
color and grayscale components that belong to characters.
For example, Cai et al.[2] have presented a text detection
approach which is based on character features like edge
strength, edge density and horizontal distribution. First,
they apply a color edge detection algorithm in YUV color
space and filter out non-text edges using a low threshold.
Then, a local thresholding technique is employed in order
to keep low-contrast text and simplify the background. Fi-
nally, projection profiles are analyzed to localize text re-
gions.

Lienhart and Effelsberg [8] have proposed an approach
which operates directly on color images using the RGB
color space. The character features like monochromacity
and contrast within the local environment are used to qual-
ify a pixel as a part of a connected component or not, seg-
menting each frame into suitable objects in this way. Then,
regions are merged using the criteria of having similar color.
At the end, specific ranges of width, height, width-to-height
ratio and compactness of characters are used to discard all
non-character regions.

Kim [6] has proposed an approach in which LCQ (Lo-
cal Color Quantization) is performed for each color sepa-
rately. Each color is assumed as a text color without know-
ing whether it is real text color or not. To reduce processing
time, an input image is converted to a 256-color image be-
fore color quantization takes place. To find candidate text
lines, the connected components that are extracted for each
color are merged when they show text region features. The
drawback of this method is the high processing time since
LCQ is executed for each color.

Agnihotri and Dimitrova [1] have presented an algorithm
which uses only the red part of the RGB color space, with
the aim to obtain high contrast edges for the frequent text
colors. By means of a convolution process with specific
masks they first enhance the image and then detect edges.
Non-text areas are removed using a preset fixed threshold.
Finally, a connected component analysis (eight-pixel neigh-
borhood) is performed on the edge image in order to group
neighbouring edge pixels to single connected components
structures. Then, the detected text candidates undergo an-
other treatment in order to be ready for an OCR.

Garcia and Apostolidis [4] perform an eight-connected
component analysis on a binary image, which is obtained as
the union of local edged maps that are produced by applying
the band Deriche filter on each color.

Jain and Yu [5] first perform a color reduction by bit
dropping and color clustering quantization, and afterwards,

a multi-value image decomposition algorithm is applied to
decompose the input image into multiple foreground and
background images. Then, connected component analysis
combined with projection profile features are performed on
each of them to localize text candidates. This method can
extract only horizontal texts of large sizes.

The second class of approaches [7, 9] regards texts as
regions with distinct textural properties, such as character
components that contrast the background and at the same
time exhibit a periodic horizontal intensity variation, due to
the horizontal alignment of characters. Methods of texture
analysis like Gabor filtering and spatial variance are used to
automatically locate text regions. Such approaches do not
perform well with different character font sizes, and further-
more, they are computationally intensive.

For example, Li and Doerman [7] typically use a small
window of 16x16 pixels to scan the image and classify each
of them as a text or non-text window using a three-layer
neural network. For a successful detection of various text
sizes, they use a three-level pyramid approach. Text regions
are extracted at each level and then extrapolated at the orig-
inal scale. The bounding box of the text area is generated
by a connected component analysis of the text windows.

Wu et al. [9] have proposed an automatic text extraction
system, where second order derivatives of Gaussian filters
followed by several non-linear transformations are used for
a texture segmentation process. Then, features are com-
puted to form a feature vector for each pixel from the fil-
tered images in order to classify them into text or non-text
pixels. In a second step, bottom-up methods are applied to
extract connected components. A simple histogram-based
algorithm is proposed to automatically find the threshold
value for each text region, making the text cleaning process
more efficient.

3. The Proposed Text Localization Method

In this section, the processing steps of the proposed text
localization approach are presented. Our intention is to
build an automatic text localization and extraction system
which is able to accept different types of still images (or
video frames) possibly with a complex background. The
system design is based on the following assumptions: (a)
the input to our system can be a grayscale or a color image;
(b) the current version can only detect texts with a horizon-
tal alignment, and (c) texts that are smaller than a certain
(small) font size will not be detected.

In contrast to many other text detection approaches, our
complete implementation has been written in the JAVA pro-
gramming language, which allows the code to be easily
distributed and run in parallel on heterogenous platforms
connected via the Internet. This allows to treat text local-
ization as a scalable compute-intensive application of the
Grid computing paradigm [3]. The different steps of our
approach are as follows.

Step 1: Image Preprocessing. If the image data is not
represented in YUV color space, it is converted to this color



Algorithm 3.1.
Image generateEdgeImage(Image �����	��
�����
comment: Create an XxY output image ��������
����
comment: �	���	��
���� is the XxY result image created
in step 1�����
� ���� ����� ��� 	!�! �"� ���
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end if

end for��������
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�����
return 0E��������
�����
Figure 1. Pseudocode for generating the edge
image, see step 2.

space by means of an appropriate transformation. In con-
trast to the approaches presented in [1, 2, 8] our system only
uses the luminance data (Y channel of YUV) during fur-
ther processing. After that, luminance value thresholding
is applied to spread luminance values throughout the image
and increase the contrast between the possibly interesting
regions and the rest of the image.

Step 2: Edge Detection. This step focuses the attention
to areas where text may occur. We employ a simple method
for converting the gray-level image into an edge image. Our
algorithm (see Figure 1) is based on the fact that the charac-
ter contours have high contrast to their local neighbors. As
a result, all character pixels as well as some non-character
pixels which also show high local color contrast are regis-
tered in the edge image. In this image, the value of each
pixel of the original image is replaced by the largest differ-
ence between itself and its neighbors (in horizontal, vertical
and diagonal direction). Despite its simplicity, this proce-
dure is highly effective. Finally, the contrast between edges
will be increased by means of a convolution with an appro-
priate mask.

Step 3: Detection of Text Regions. The horizontal pro-
jection profile of the edge image is analyzed in order to lo-
cate potential text areas. Since text regions show high con-
trast values, it is expected that they produce high peaks in
horizontal projection. First, the histogram F is computed,
where � � -HG F is the number of pixels in line � of the edge
image exceeding a given value.

In subsequent processing, the local maxima are calcu-

Algorithm 3.2.
textRegion[] detectTextRegions(Image ��������
�����
comment: ��������
��� is created with Alg. 3.1
comment: textRegion is a data structure with 4 fields: x0,
y0, x1, y1
comment: determineYCoordinates uses the Alg. 3.3
comment: determineXCoordinates uses the Alg. 3.4

Integer[] F � calculateLineHistogram 0D��������
������
textRegions[] IHJ � determineYCoordinate 0EFK�ILJ � determineXCoordinate 0D��������
�����C(IHJ/�
return 0MILJ/�
Figure 2. Pseudocode for localizing text can-
didates, see step 3.

Algorithm 3.3.
textRegion[] determineYCoordinate(Integer[] FN�
comment: F is the line histogram, see step 3
textRegion ����O@�
textRegion[] ILJ� �P8 , Q ���
#SRUT"#V��)IW� � �YXZ����� � �[� � T)�
for � �+-\. F do
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if not #SRUTi#V�	�)IW� � �YXZ����� then����O@�@j � �\� �#SRUT"#V��)IW� � �YXW���)� � �V�  �
end if

else if #SRUT"#S�	�)IW� � �YXW����� then����O@�@j � 8H� � 638
if 0c0E����O@�@j � 8Z6 ����O@�@j � � � ]_^ #SRaef#SRa��T)� thenIHJ2k Q�l � ����O@�Q � QHm 8
end if#$RUT"#V�	�"IH� � �YXZ����� � �[� � T)�

end if
end for
return 0MILJ/�
Figure 3. Pseudocode for determining the y
coordinates of text regions, see step 3.

lated by the histogram determined above. Two thresholds
are employed to find the local maxima. A line of the image
is accepted as a text line candidate if either it contains a suf-
ficient number (MinEdges) of sharp edges or the difference
between the edge pixels in one line to its previous line is
bigger than a threshold (MinLineDiff). Both thresholds are
defined empirically and are fixed. In this way, a text region
is isolated which may contain several texts aligned horizon-



Algorithm 3.4.
textRegion[] determineXCoordinate(Image ��������
�����C
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end if
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end if
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end for
return 0MIHJ/�
Figure 4. Pseudocode for determining the x
coordinates of text regions, see step 3.

tally (whereby their y-coordinates are already defined). In
a later step, we define the x-coordinates of the leftmost and
rightmost, top and bottom point of the text region (see Fig-
ures 2, 3, 4). Finally, the exact coordinates for each of the
detected areas are used to create bounding boxes.

Step 4: Enhancement and Segmentation of Text Regions.
First, geometric properties of the text characters like the
possible height, width, width to height ratio are used to dis-
card those regions whose geometric features do not fall into
the predefined ranges of values. All remaining text candi-
dates undergo another treatment in order to generate the so-
called text image where detected text appears on a simpli-
fied background. The binary edge image is generated from
the edge image, erasing all pixels outside the predefined text
boxes and then binarizing it. This is followed by the process
of gap filling. If one white pixel on the binary edge image
is surrounded by two black pixels in horizontal, vertical or
diagonal direction, then it is also filled with black. The gap
image is used as a reference image to refine the localiza-
tion of the detected text candidates. Text segmentation is
the next step to take place. It starts with extraction of text
candidates from the gray image. Then, the segmentation
process concludes with a procedure which enhances text to
background contrast on the text image (see Figure 5).

4. Experimental Results

The proposed approach has been evaluated using data
sets containing different types of images. The whole test
data consists of 326 images where 296 of them were ex-
tracted from various MPEG videos, which were kindly pro-
vided to us by Lienhart [8]. These images can be further

Algorithm 3.5.
Image SegmentTextRegions(Image ��������
���[C
textRegion[] IHJ/�
comment: ��������
��� is created with Alg. 3.1
comment: IHJ is the array returned from Alg. 3.4
Image �����  Oi�)�	
��� � erase 0MILJLC(��������
������
Image tu#SRa�����
��� � binarize 0E�����  Oi�)�	
�����
Image ��� ! 
��� � fillGaps 0Dtu#SRa�	����
�����ILJ � refineCoordinates 0D��������
�����Cc��� ! 
�����C(IHJ/�
Image �Y� � �Y
���� � extractImage 0M�	���	��
�����C(IHJ/��Y� � �Y
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�����
return 0M�Y� � �Y
������
Figure 5. Pseudocode for generating the text
image, see step 4.

Figure 6. An image from the "credits test set".

Figure 7. The text detection result for the im-
age from the "credits test set".

divided into two groups, based on the video genre:

� Sequences from different commercial advertisements
(called the ”commercials test set”).

� Sequences from different films, with a lot of text
lines scrolling downwards, pre-title and credits title se-
quences (subsequently called the ”credits test set”).



Test set v Images v Textlines v Correct detected False positive Recall( w ) Precision( w )
Credits 209 900 823 131 91.4 86.3
Commercials 87 151 117 49 77.4 70.4
News 30 53 39 8 73.5 82.9
Total v images 326 1104 979 188 88.7 83.9

Table 1. The text detection results for the whole data set.

Figure 8. An image from the "commercials
test set".

Figure 9. The text detection result for the im-
age from the "commercials test set".

We have chosen to extract one frame each second if ei-
ther the background or the text being displayed changes sig-
nificantly within that second. Otherwise, we have checked
the next frame one second later in the same way. All these
images were coded as 24-Bit RGB JPEG images with a size
of 384 by 288 pixels.

The remaining images were taken from our image
database which had been created during a former media
research project on the presentation of politicians in se-
lected TV evening news broadcasts between 1950 and 2000
(called ”news test set”). They have a resolution of 384*288
pixels. The selection of these test images is based on the
complexity of background and text regions. We have manu-
ally checked the output for each image and measured the
number of correctly detected text regions as well as the
number of falsely detected text regions (regions without
text). A detected text line has been accepted as correct if
from our point of view the probability is high that an OCR
system could recognize the text characters. It should be
pointed out that all the system parameters remain the same
throughout the whole set of test images.

Figure 10. An image from the "news test set".

Figure 11. The text detection result for the
image from the "news test set".

One sample for each of our test sets is shown in figure
6 (”credits test set”), figure 8 (”commercials test set”) and
figure 10 (”news test set”). In these figures the original
images are presented, while in figure 7, figure 9 and figure
11 the output image is shown for each image. The output
image of the proposed algorithm only consists of detected
text regions. The results for the experiments are presented
in table 1 where the number of really existing text lines, the
number of detected text lines, the number of false alarms
and the corresponding values for recall and precision are
listed. Recall is defined as:

Recall = Correct Detected
(Correct Detected + Missed Text Lines)

whereas precision is defined as:

Precision = Correct Detected
(Correct Detected + False Positives)

The experimental results vary depending on the differ-
ent test sets. For example, a good performance has been



achieved for the ”credits test set” with a recall of above 91 w
and a precision of 86 w . The performance for the other test
sets is lower because those images have even more com-
plex backgrounds and text in these images varies in fonts,
sizes and colors. Altogether, the overall performance for the
whole test set of images is 88.7 w for recall and 83.9 w for
precision.

5. Conclusions

In this paper, we have presented an approach to detect,
localize, and extract texts appearing in grayscale or color
images. The proposal is based on employing a color reduc-
tion technique, a method for edge detection and region seg-
mentation, and selecting text regions based on their horizon-
tal projection and geometrical properties. The software is
completely written in JAVA to be able to easily run the code
in parallel on possibly heterogenous networked computing
platforms. Experimental results on a set of images have
demonstrated the performance of our approach, achieving
an overall recall of 88.7 w and a precision of 83.9 w .

There are several areas for future work. First, we plan
to employ an OCR system to check the recognition perfor-
mance for the text images produced by the proposed algo-
rithm. Second, the low quality of the old news video ma-
terial respectively the variety of text appearances in adver-
tisement images make the process of text detection more
complex, such that the detection performance of our algo-
rithms must be improved. Third, the approach will be ex-
tended to also work with video sequences instead of still
images. Finally, we plan to implement a hybrid system
where connected component-based methods are combined
with texture-based methods to possibly obtain further per-
formance improvements.
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