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Abstract Evolving fuzzy systems are data-driven fuzzy (rule-based) systems
supporting an incremental model adaptation in dynamically changing envi-
ronments; typically, such models are learned on a continuous stream of data
in an online manner. This paper advocates the use of visualization techniques
in order to help a user gain insight into the process of model evolution. More
specifically, rule chains are introduced as a novel visualization technique for
the inspection of evolving Takagi-Sugeno-Kang (TSK) fuzzy systems. To show
the usefulness of this techniques, we illustrate its application in the context
of learning from data streams with temporal concept drift.

1 Introduction

Visualization has become an important tool in data-driven research fields,
such as machine learning and data mining. Apart from the visualization of
data objects, data relationships, and aggregated information content [4], the
visualization of models learned from data has recently attracted increasing
attention in the field of computational intelligence [1, 2, 8, 9]. Going beyond
the presentation of static models, this paper suggests the use of visualization
techniques for tracking evolving models, that is, models that are learned and
adapted in an online manner on a continuous stream of data [3, 10].

More specifically, we developed an interactive visualization tool that al-
lows for monitoring evolving TSK fuzzy inference systems in real time. So-
called rule chains are proposed for visualizing changes of a rule system be-
tween two consecutive time points. Experimentally, we show that character-
istic patterns emerge in a rule chain visualization when applied to evolving
rule systems learned from data streams exhibiting concept drift.
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This paper is structured as follows. Before introducing our rule chain vi-
sualization technique in Section 3, we revisit the underlying TSK fuzzy rule-
based systems in Section 2. In Section 4, an experimental study with synthetic
data is presented, showing the usefulness of our visualization technique for
analyzing the evolution of fuzzy models learned on data streams with concept
drift. Conclusions are drawn in Section 5.

2 TSK Fuzzy Rule-based Systems

In this work, we consider first order Takagi-Sugeno-Kang (TSK) fuzzy rule-
based systems R = {R1, . . . , RN} implementing maps of the form

f : Rp → R, x 7→
N
∑

i=1

li(x) · Ψi(x) . (1)

Here, the antecedent of each rule Ri is modeled as a conjunction of p fuzzy
sets with Gaussian membership function, each characterized by its center ci,j
and width σi,j ; for a given input vector x = (x1, . . . , xp) ∈ R

p, the relevance
(“firing strength”) of an antecedent part is evaluated as follows:

Ψi(x) =
exp

[
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k=1 exp
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(xj − ck,j)2/σ2
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] (2)

The conclusion of Ri is a linear function specified by a (p + 1)-dimensional
weight vector wi = (wi,0, wi,1, . . . , wi,p):

li(x) = wi,0 + wi,1x1 + wi,2x2 + . . .+ wi,pxp (3)

Learning TSK models of that kind on a continuous (and potentially un-
bounded) stream of data (z(1), z(2), z(3), . . .) in the form of input/output tu-
ples z(t) = (x(t), y(t)) essentially means applying a learning algorithm A that
adapts the current rule model after each newly observed example. Thus,
starting with a model R(0) at time t = 0, a corresponding sequence of models
(R(0),R(1),R(2), . . .) is produced, where R(t) = A(R(t−1), z(t)) is obtained
by modifying certain rules in R(t−1), by merging different rules into a single
new rule, or by creating a new rule from scratch. For a proper handling of
rules, it is important that all rules have a unique label, no matter whether
freshly generated or originating from a merging process. A rule R(t) in R(t)

which evolved from a rule R
(t−1)
i in R(t−1) with label i keeps that label. The

history Hi is the set of all rules labeled with i.
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3 Visualizing Model Evolution with Rule Chains

In this section, we introduce our idea of rule chains for visualizing important
aspects of the evolution of fuzzy rule-based systems. Essentially, a rule chain
seeks to capture the changes of a single rule between two consecutive time
points. An important prerequisite for visualizing such changes is the avail-
ability of meaningful measures of similarity or distance between fuzzy rules.
Therefore, prior to explaining our visualization technique, we introduce mea-
sures of this kind. Since an independent treatment of the antecedent parts
and the conclusion parts of fuzzy rules is informative for different aspects of
the visualization, we measure the similarity of both parts separately.

3.1 Similarity and distance measures for fuzzy rules

3.1.1 Antecedence similarity

Recall that the antecedence part Mk of a rule Rk is a conjunction of fuzzy
sets µk,i with normalized Gaussian membership function, one for each input
variable xi (cf. Section 2). We define the similarity between two antecedence
parts Mk and Ml of two rules Rk and Rl by

S(Mk,Ml) = min
(

s(µk,1, µl,1), s(µk,2, µl,2), . . . , s(µk,p, µl,p)
)

, (4)

where s(µk,i, µl,i) is a standard similarity between fuzzy sets, namely the size
of their intersection (pointwise minimum of membership degrees) normalized
by the size of the larger of the two:

s(µk,i, µl,i) =
|µk,i ∩ µl,i|

max(|µk,i|, |µl,i|)
(5)

The size |µ| of a Gaussian fuzzy set µ is defined by the area under the mem-
bership function. Thus, its computation comes down to solving an integra-
tion problem for which no closed-form solution exists. Therefore, we exploit
the connection between the cumulative distribution function of the normal
distribution and the error function erf(z) = 2/

√
π
∫ z

0
e−τ2

dτ , for which effi-
cient numerical implementations exists. Thus, the area under a normalized
Gaussian function with mean c and standard deviation σ can be efficiently
determined as follows:

FNc,σ(z) =
σ
√
2π

2

(

1 + erf

(

z − c

σ
√
2

))

(6)
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3.1.2 Distance between the rule centers

Another similarity measure based on rule antecedence parts is the distance
between rule centers, where the center of a rule Rk is defined as

ck = (ck,1, ck,2, . . . , ck,p) , (7)

with ck,i the center of the i
th fuzzy set in the antecedence of the kth rule. By

using the Euclidean metric, the distance between two rules is

D(Rk, Rl) = ‖ck − cl‖ . (8)

For the purpose of visualization, it is desirable to have the measure normalized
to the range [0, 1]. In rule chains, the computation of distances is restricted

to adjacent rules R
(t)
i and R

(t+1)
i from the same history Hi (the history of

the ith rule). Therefore, the normalization is done as follows:

DN
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R
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i , R

(t+1)
i

)

=
D
(

R
(t)
i , R

(t+1)
i

)

max
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(τ)
i

,R
(τ+1)
i

)∈Hi×Hi

D
(

R
(τ)
i , R

(τ+1)
i

) (9)

3.1.3 Angle similarity

The angle similarity is a measure of similarity between the conclusion parts
of two rules. The conclusion part (3) of a TSK fuzzy rule Ri defines a p-
dimensional hyperplane Hi = {(x1, x2, . . . , xn, li(x)) |x ∈ R

n} with normal
vector vi = (wi,1, wi,2, . . . , wi,p,−1). Using this normal vector, we can com-
pute the angle between two conclusions Hi and Hj by

α = arccos

(

vi · vj

‖vi‖ · ‖vj‖

)

, (10)

and finally their angle similarity [6, 7] as

Sα(Hi, Hj) =

{

1− 2
π
α if α ≤ π

2
2
π

(

α− π
2

)

else
. (11)

3.1.4 Conclusion intercept difference

In addition to the angle similarity of two conclusions, we also consider the dif-
ference in their y-intercept, which is not captured by this similarity. Although
this difference might indeed be negligible on a global scale, one should keep in
mind that the influence of a conclusion is localized by the rule antecedence;
and locally, the constant term may clearly make a difference. Therefore, we
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define the conclusion y-intercept difference by

CY
(

R
(t)
i , R

(t+1)
i

)

=

∣

∣

∣
w

(t)
i,0 − w

(t+1)
i,0

∣

∣

∣

max
(R

(τ)
i

,R
(τ+1)
i

)∈Hi×Hi

∣

∣

∣
w

(τ)
i,0 − w

(τ+1)
i,0

∣

∣

∣

, (12)

with wi,0 denoting the y-intercept of the conclusion of the rule Ri.

3.2 Rule chains

We propose rule chains as an adequate means for visualizing specific aspects
of the evolution of a fuzzy rule-based system. A rule history H is visualized
as a horizontal pearl chain, where every pearl represents a rule at a certain
time point. The first time point is located at the left and the most recent time
point at the right end. Pearls along a chain are connected with different types
of links. Focusing on a measure of interest, links between adjacent pearls can
represent the corresponding similarity or distance between consecutive rules.
As illustrated in Figure 1, there are three types of links that correspond,
respectively, to the measures introduced in Section 3.1.

1

5 4

3 2

Low Similarity

High Similarity

α

Low Similarity

High Similarity

Fig. 1 The upper left panel shows all five elements of a rule chain. The elements pointed
at by the numbered arrows are: (1) rule pearl, (2) antecedence similarity link, (3) angle
line, (4) angle similarity block, (5) conclusion shift block. The top right panel describes

the meaning of different heights and color intensities of ellipsoid links. The bottom right
panel describes the meaning of different color intensities of rectangular links. Generally,
both types of links can be used for visualizing any given similarity or distance measure.

The lower left panel shows the rotated line segment for visualizing the angle between the
conclusions of two adjacent rules.
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In addition to the horizontal time point position, the vertical position of a
pearl determines the history of the associated rule. The antecedence similar-
ity link corresponds to the antecedence similarity measure or the Euclidean
distance of centers. The degree of similarity is connected to the color intensity
and shape of the ellipse. The lower the similarity, the bigger and darker is
the ellipse. The angle similarity block visualizes the angle similarity, and the
conclusion shift block displays differences of y-intercepts of the related rule
conclusions. The color intensity of both blocks is the higher, the lower the
similarity and the higher the difference is, respectively. Thus, the three types
of links highlight different aspects of change between two rules. The angle
line is mathematically positively rotated by α against the horizon to display
the angle between two temporally adjacent conclusions.

For visualizing the evolving system as a whole, the horizontal rule chains
are stacked (Figure 2). A single rule chain gives a quick overview of a rule’s
lifetime and development, and stacking them provides a holistic view on the
development of the whole rule chain system.

Time

R
u
le
ID

Rule birth Rule death

H7

R11

Fig. 2 This figure shows a cut-out from a rule chain system. All rules, symbolized by
pearls, belonging to the same rule system are aligned vertically. Rules belonging to the
same rule history are organized in horizontal chains. The pearl links are associated with
similarity measures. Here, only the antecedence similarity links (ellipses) are shown.

3.3 Concept drift detection with rule chains

An important requirement for evolving (fuzzy) systems is a quick discovery
and adequate reaction to so-called concept drift [3]. Roughly speaking, a
concept drift is a (gradual) change of the data-generating process in the course
of time, that is, a change of the probability distribution P that generates
input/output tuples emitted by the data stream.

Rule chains provide an adequate (visual) means for discovering concept
drift and monitoring the fuzzy system’s reaction to this drift. In fact, as
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a reaction to a change of the data generating process, the fuzzy system is
expected to adapt a possibly large number of rules (both, antecedence and/or
conclusion parts). Likewise, new rules will typically be created and existing
ones will be deleted.

Changes of that kind naturally produce observable patterns in the visu-
alized rule chain system. More precisely, a simultaneous change of the an-
tecedence or conclusion parts of many rules will produce noticeable vertical
lines in the rule chain system (Figure 3). Such patterns can be amplified by
defining thresholds for the minimal change to be drawn. The simultaneous
appearance or disappearance of many rules produces long vertical edges in
the displayed rule chains. This enables the user to recognize potential concept
drifts in the data. More correctly, since we are visualizing the model and not
the data evolution, the observation of such patterns should only be taken as
an indication (and not as a proof) of a possible concept drift.

Time

R
u
le
-I
D

Fig. 3 This figure highlights patterns in the rule chains which indicate significant changes

in the model and, therefore, suggest a possible concept drift in the data. The bold arrows
are marking time points at which an abrupt change of the conclusion parts of many rules
can be observed as vertical lines.

4 Illustration

This section presents an illustration of our rule chain visualization tool that
is meant as a first proof of concept. For this purpose, we make use of syn-
thetic data, which allows for conducting controlled experiments and, since
the “ground truth” is known for this data, for judging the plausibility of
the results—properties that are obviously not offered by real data. More-
over, while our visualization tool is in principle independent of the learning
algorithm, we used FLEXFIS [5] as a concrete implementation and set the
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forgetting factor to 0.9. This FLEXFIS specific factor controls the forget-
ting of the inverse hessian matrix during the recursive weighted least squares
optimization of the rule consequents.

To generate a data stream, we concatenate a number of synthetic datasets.
Every dataset is associated with a time point determined by the position p of
the dataset in the concatination. An instance of a dataset consists of a two-
dimensional input and a real-valued output. For the initial dataset, three
normally distributed clusters C1, C2, C3 are generated. Every cluster Ci is
characterized by its center ci = (ci,1, ci,2), its width σi = (σi,1, σi,2) and the
size ni. The output y associated with an instance x = (x1, x2) depends on
the cluster Ci and is determined by a linear function:

y = fi(x) = wi,0 + wi,1(x1 − ci,1) + wi,2(x2 − ci,2) . (13)

Thus, a dataset can be characterized by (p, (ci,σi, ni,wi)
m
i=1), where p is

the position of the dataset in the stream and m is the cluster number. For
the whole stream, only a few datasets lying on so-called anchor positions
are explicitly declared. The datasets lying between two anchor positions are
interpolated by a linear function (i.e., the parameters c,σ, n,w characterizing
a data set are convex combinations of the corresponding parameters of the
left and right anchor datasets). The characteristics of the data stream used
in our study are summarized in Table 1.

Table 1 Specification of the data stream. Cluster size of each cluster at any time is
n = 1000. The cluster width is σ1 = 2 and σ2 = 2 for all clusters.

C1 C2 C3 C1,C3 C2

p c1 c2 c1 c2 c1 c2 w0 w1 w2 w0 w1 w2

0 10 50 50 50 90 50 0 10 0 0 10 0
3 10 50 50 50 90 50 0 10 0 0 10 0

6 10 50 50 50 90 50 -10 0 0 10 0 0

12 10 50 50 50 90 50 -10 0 0 10 0 0
16 10 -100 50 150 90 -100 -10 0 0 10 0 0

26 10 -100 50 150 90 -100 -10 0 0 10 0 0
30 10 -100 50 150 90 -100 -10 0 10 10 0 10

The data stream contains three concept drifts with two stable episodes
in-between, namely 6–12 and 16–26. These episodes allow the learner to re-
stabilize the model. At the beginning, all three clusters are well separated
and located next to each other along the first dimension. Moreover, the three
regression functions share the same coefficients. Somewhat surprisingly, this
initial configuration lets FLEXFIS generate more than only the expected
three rules and leads to rich patterns during model formation.

The first drift is caused by a change of the regression values (between
anchor positions 3 and 6, i.e., time steps 3000 and 6000). In Figure 4, this
drift phase lies between marks A and B. At mark 1, a reaction of FLEXFIS is
clearly seen. The second drift (between anchor positions 12 and 16) is caused
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by a movement of the clusters, which are all moving in different directions.
The period of this drift is delimited by marks C and D. The visible reaction of
FLEXFIS is between marks 2 and 3. Here, a change in the antecedent parts
of the rules is seen, which confirms the expectation from the experimental
design. The last concept drift (between anchor positions 26 and 30) is again
caused by a drift in the regression values. It starts at mark E and ends
at F. A change in the rule system caused by this drift can be seen from
mark 4 onwards. After the third drift, the rule system does not reach a
stable stage until the end of the experiment. All three concept drifts cause an
adaptation of the rule system by the learning algorithm, resulting in clearly
visible patterns in the rule chain visualization.

1 2 3 4 5

A B C D E F

Fig. 4 This figure shows the result of a visualization of an evolving fuzzy rule-based system
using stacked rule chains. There are three concept drifts in the underlying data stream,
the first between A and B, the second between C and D, and the third between E and F.
The numbers mark the time points where a change in the rule system, as a reaction to the

concept drift, becomes visible.

5 Conclusion

We proposed stacked pearl chains for visually tracking the development of
rules in evolving TSK fuzzy rule-based systems. Not only the life span of indi-
vidual rules can be assessed by looking at the rule history, also demographic
changes of the evolving rule system become visible. Temporal rule chaining
is accomplished by visualizing similarities between adjacent rule antecedents
and conclusions. Basically, the overlap between evolved rules or their center
proximities is being displayed, as well as the angle between their conclusions.

With an example application using synthetic data, we highlighted several
benefits of our visualization tool: the size of the rule system (number of rules),
being a good indicator of model complexity, can be grasped quickly and



10 Sascha Henzgen, Marc Strickert and Eyke Hüllermeier

monitored over time quite easily. Moreover, vertical patterns clearly indicate
concept drifts and corresponding reactions of the evolving model.

Rule chain visualization as introduced in this paper is part of an ongoing
software project for interactive monitoring of evolving TSK model evolution.
This way, insights into model dynamics can be attained, which is interest-
ing for both end-users who receive early feedback about setting model-specific
parameters and developers who like to study convergence or adaptation prop-
erties of their models. Future work is focusing on the display of rule similar-
ities and evolving rules at attribute level, global model state characteristics,
and interactive control of evolving fuzzy system models. Eventually, our tool
is supposed to provide the user access to complex states in time-adaptive
machine learning methods beyond evolving TSK models.
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