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Abstract. The extension of machine learning methods from static to dynamic en-

vironments has received increasing attention in recent years; in particular, a large

number of algorithms for learning from so-called data streams has been developed.

An important property of dynamic environments is non-stationarity, i.e., the as-

sumption of an underlying data generating process that may change over time. Cor-

respondingly, the ability to properly react to so-called concept change is considered

as an important feature of learning algorithms. In this paper, we propose a new type

of experimental analysis, called recovery analysis, which is aimed at assessing the

ability of a learner to discover a concept change quickly, and to take appropriate

measures to maintain the quality and generalization performance of the model.

1 Introduction

The development of methods for learning from so-called data streams has been a

topic of active research in recent years [6, 9]. Roughly speaking, the key idea is to

have a system that learns incrementally, and maybe even in real-time, on a continu-

ous and potentially unbounded stream of data, and which is able to properly adapt

itself to changes of environmental conditions or properties of the data generating

process. Systems with these properties have already been developed for different

machine learning and data mining tasks, such as clustering and classification [7].

An extension of data mining and machine learning methods to the setting of data

streams comeswith a number of challenges. In particular, the standard “batchmode”

of learning, in which the entire data as a whole is to provided as an input to the

learning algorithm (or “learner” for short), is no longer applicable. Correspondingly,

the learner is not allowed to make several passes through the data set, which is

commonly done by standard methods in statistics and machine learning. Instead,
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the data must be processed in a single pass, which implies an incremental mode of

learning and model adaptation.

Domingos and Hulten [3] list a number of properties that an ideal stream mining

system should exhibit, and suggest corresponding design decisions: the system uses

only a limited amount of memory; the time to process a single record is short and

ideally constant; the data is volatile and a single data record accessed only once;

the model produced in an incremental way is equivalent to the model that would

have been obtained through common batch learning (on all data records so far); the

learning algorithm should react to concept change (i.e., any change of the underlying

data generating process) in a proper way and maintain a model that always reflects

the current concept.

This last property is often emphasized as a key feature of learning algorithms,

since non-stationarity is arguably the most important difference between static and

dynamic environments. Indeed, while the idea of an incremental learning is crucial

in the setting of data streams, too, it is not entirely new and has been studied for

learning from static data before. The ability of a learner to maintain the quality

and generalization performance of the model in the presence of concept drift, on the

other hand, is a property that becomes truly important when learning under changing

environmental conditions.

In this paper, we propose a new type of experimental analysis, called recovery

analysis, which is aimed at assessing this ability of a learner. Roughly speaking,

recovery analysis suggests a specific experimental protocol and a graphical presen-

tation of a learner’s generalization performance that provides an idea of how quickly

a drift is recognized, to what extent it affects the prediction performance, and how

quickly the learner manages to adapt its model to the new condition.

2 Learning under Concept Drift

We consider a setting in which an algorithmA is learning on a time-ordered stream

of data S = (z1,z2,z3, . . .). Since we are mainly interested in supervised learning,

we suppose that each data item zt is a tuple (xt ,yt) ∈ X×Y consisting of an input

xt (typically represented as a vector) and an associated output yt , which is the target

for prediction. In classification, for example, the output space Y consists of a finite

(and typically small) number of class labels, whereas in regression the output is a

real number.

At every time point t, the algorithm A is supposed to offer a predictive model

Mt : X→ Y that has been learned on the data seen so far, i.e., on the sequence

St = (z1,z2, . . . ,zt). Given a query input x ∈ X, this model can be used to produce a

prediction ŷ = Mt(x) ∈ Y of the associated output. The accuracy of this prediction

can be measured in terms of a loss function ℓ : Y×Y→ R, such as the 0/1 loss in
the case of classification or the squared error loss in regression. Then, the prediction

performance of Mt is defined in terms of the expected loss, where the expectation
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is taken with respect to an underlying probability measure P on Z = X×Y. This

probability measure formally specifies the data generating process.

If the algorithmA is truly incremental, it will produceMt solely on the basis of

Mt−1 and zt , that is,Mt = A (Mt−1,zt). In other words, it does not store any of the
previous observations z1, . . . ,zt−1. Most algorithms, however, store at least a few of

the most recent data points, which can then also be used for model adaptation. In any

case, the number of observations that can be stored is typically assumed to be finite,

which excludes the possibility of memorizing the entire stream. A batch learner

AB, on the other hand, would produce the model Mt on the basis of the complete

set of data {z1, . . . ,zt}. Note that, althoughA and AB have seen the same data, AB

can exploit this data in a more flexible way. Therefore, the models produced by A

and AB will not necessarily be the same.

As mentioned before, the data generating process is characterized by the prob-

ability measure P on Z = X×Y. Under the assumptions of stationarity and inde-

pendence, each new observation zt is generated at random according to P, i.e., the

probability to observe a specific z ∈ Z is given by1

P(z) = P(x,y) = P(x) ·P(y |x) .

Giving up the assumption of stationarity (while keeping the one of independence),

the probability measure P generating the next observation may possibly change over

time. Formally, we are thus dealing, not with a single measureP, but with a sequence

of measures (P1,P2,P3, . . .), assuming that zt is generated by Pt . One speaks of a

concept change if these measures are not all equal [1].

In the literature, a distinction is made between different causes and types of con-

cept change [8]. The first type refers to a sudden, abrupt change of the underlying

concept to be learned and is often called concept shift (Pt is very different from

Pt−1). Roughly speaking, in the case of a concept shift, any knowledge about the

old concept may become obsolete and the new concept has to be learned from

scratch. The second type refers to a gradual evolution of the concept over time.

In this scenario, old data might still be relevant, at least to some extent. Finally, one

often speaks about virtual concept drift if the change only concerns P(x), i.e., the
distribution of the inputs, while the concept itself, i.e., the conditional distribution

P(y |x), remains unchanged [14]. To guarantee optimal predictive performance, an
adaptation of the model might also be necessary in such cases. In practice, virtual

and real concept drift will often occur simultaneously.

Learning algorithms can handle concept change in a direct or indirect way. In

the indirect approach, the learner does not explicitly attempt to detect a concept

drift. Instead, the use of outdated or irrelevant data is avoided from the outset. This

is typically accomplished by considering only the most recent data while ignoring

older observations, e.g., by sliding a window of fixed size over a data stream. To

handle concept change in a more direct way, appropriate techniques for discovering

the drift or shift are first of all required, for example based on statistical tests.

1 We slightly abuse notation by using the same symbol for the joint probability and its

marginals.
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3 Recovery Analysis

In practical studies, data streams are of course never truly infinite. Instead, a “stream”

is simply a large data set in the form of a long yet finite sequence S= (z1,z2, . . . ,zT ).
In experimental studies, such streams are commonly used to produce a performance

curve showing the generalization performance of a model sequence (Mt)
T
t=1 over

time. Although many of these studies are interested in analyzing the ability of a

learner to deal with concept drift, such an analysis is hampered by at least two prob-

lems: First, for a data stream S, it is normally not known whether it contains any

concept drift, let alone when such a drift occurs; this is a problem at least for real

data, while obviously less of an issue if data is generated synthetically. Second, even

if a concept drift is known to occur, it is often difficult to assess the performance of

a learner or to judge how well it recovers after the drift, simply because a proper

baseline is missing: The performance that could in principle be reached, or at least

be expected, is not known.

3.1 Main Idea and Experimental Protocol

In order to overcome these problems, our idea is to work, not with a single data

stream, but with three streams in parallel, two “pure streams” and one “mixture”.

The pure streams SA = (za
1,z

a
2, . . . ,z

a
T ) and SB = (zb

1,z
b
2, . . . ,z

b
T ) are supposed to be

stationary and generated, respectively, according to distributions PA and PB; in the

case of real data, stationarity of a stream can be guaranteed, for example, by per-

muting the original stream at random. These two streams must also be compati-

ble in the sense of sharing a common data space Z = X×Y. The mixture stream

SC = (zc
1,z

c
2, . . . ,z

c
T ) is produced by randomly sampling from the two pure streams:

zc
t =

{

za
t with probability λ (t)

zb
t with probability 1−λ (t)

(1)

A concept drift can then be modeled, for example, by specifying the (time-

dependent) sample probability λ (t) as a sigmoidal function:

λ (t) =

(

1+ exp

(

t− t0

w

))−1

.

This function has two parameters: t0 is the mid point of the change process, while

w controls the length of this process. Using this transition function, the stream SC is

obviously drifting “from SA to SB”: In the beginning, it is essentially identical to SA,

in a certain time window around t0, it moves away from SA toward SB, and in the

end, it is essentially identical to SB. Thus, we have created a gradual concept drift

with a rate of change controlled by w.
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Fig. 1 Schematic illustration of a recovery analysis: The three performance curves are pro-

duced by training models on the pure streams SA and SB, as well as on the mixed stream SC ,

each time using the same learner A . The region shaded in grey indicates the time window in

which the concept drift (mainly) takes place. While the concept is drifting, the performance

on SC will typically drop to some extent.

Now, suppose the same learning algorithm A is applied to all three streams

SA, SB and SC. Since the first two streams are stationary, we expect to see a stan-

dard learning curve when plotting the generalization performance (for example, the

classification accuracy) as a function of time. In the following, we denote the per-

formance curves for SA and SB by α(t) and β (t), respectively. These curves are
normally concave, showing a significant increase in the beginning before reaching

a certain saturation level later on; see Figure 1 for an illustration. The correspond-

ing saturation levels α∗ and β ∗ provide important information, namely informa-
tion about the best performance that can be expected by the learner A on the pure

streams SA and SB, respectively.

Even more interesting, however, is the performance curve γ(t) for the stream
SC, which exhibits concept drift. In the beginning, this curve will be effectively

identical to the curve for SA, so that the learner A should reach the level α∗. Then,
upon the beginning of the concept drift, the performance is expected to drop, and

this decrease is supposed to continue until the drift ends and the learner A starts to

recover. Eventually,A may (or may not) reach the level β ∗. This level is indeed an
upper bound on the asymptotic performance, since A cannot do better even when

being trained on SB from the very beginning. Thus, reaching this level indicates an

optimal recovery.

Obviously, the performance curve for SC provides important information about

the ability of A to deal with concept drift. In particular, the minimum of this curve

indicates how strongly A is affected by the concept drift. Moreover, the curve in-

forms about how quickly the performance deteriorates (giving an idea of how sen-

sitive A is), how much time A needs to recover, and whether or not it manages to

recover optimally.
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3.2 Bounding the Optimal Generalization Performance

As explained above, the performance curve produced by a learner A on the stream

SC is expected to decrease while this stream is drifting from SA to SB. In order to

judge the drop in performance, not only relatively in comparison to other learners

but also absolutely, it would be desirable to have a kind of reference performance as

a baseline. This leads to an interesting question: Is it possible to quantify our expec-

tations regarding the drop in performance? More specifically, what is the optimal

generalization performance

γ∗(t) = sup
M∈M

γM (t) (2)

we can expect on the stream SC at time t? HereM is the underlying model class (i.e.,

the class of models that A can choose from), and γM (t) denotes the generalization
performance of a modelM ∈M on the mixture distribution (1), i.e.,

PC(t) = λ (t)PA +(1−λ (t))PB .

Our experimental setup indeed allows for answering this question in a non-trivial

way. To this end, we exploit knowledge about the performance levels α(t) and β (t)
that can be reached on SA and SB, respectively. Thus, there are modelsMA,MB ∈M

whose performance is αMA
(t) = α(t) and βMB

(t) = β (t). Now, suppose we were to
apply the modelMA on the stream SC. What is the expected generalization perfor-

mance? If an example (x,y) on SC is generated according to PA, the generalization

performance (expected loss) of MA on this example is the same as on SA, namely

αMA
(t). Otherwise, if the example is generated according to PB, nothing can be

said about the performance of MA; thus, assuming that the performance measure

takes values in the unit interval, we can only assume the worst case performance of

0. Since the first case occurs with a probability of λ (t) and the second one with a
probability of 1−λ (t), the overall expected performance ofMA is given by

λ (t) ·αMA
(t)+ (1−λ (t)) ·0= λ (t) ·αMA

(t) .

Using the same line of reasoning, the performance of the modelMB on the stream

SC is given by (1−λ (t))βMB
(t). Thus, choosing optimally from the two candidate

models {MA,MB} ⊂M, we can at least guarantee the performance

γ•(t) =max
{

λ (t) ·αMA
(t),(1−λ (t)) ·βMB

(t)
}

. (3)

Obviously, since the supremum in (2) is not only taken over {MA,MB} but over the
entire model classM, γ•(t) is only a lower bound on the optimal performance γ∗(t),
that is, γ•(t) ≤ γ∗(t). We also remark that, if the performance levels α(t) and β (t)
are already close enough to the optimal levels α∗ and β ∗, respectively, then (3) can
be written more simply as

γ•(t) =max
{

λ (t) ·α∗,(1−λ (t)) ·β ∗
}

. (4)
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Strictly speaking, this estimation is not correct, since α∗ and β ∗ are only limit values
that will not necessarily be attained. Practically, however, this is of no importance,

especially since we have to work with estimations of these values anyway.

Finally, we note that of course not all performance measures (loss functions) can

naturally be normalized to [0,1]. Especially problematic in this regard are measures
that are principally unbounded, such as the squared loss in regression. In such cases,

an estimation similar to the one above can nevertheless be derived, provided the

worst case performance can be bounded by a constant; this constant will then replace

the constant in our estimation, which is simply 0.

3.3 Practical Issues

Our discussion of recovery analysis so far has left open some important practical is-

sues that need to be addressed when implementing the above experimental protocol.

An obvious question, for example, is how to determine the generalization perfor-

mance of a modelMt (induced by the learnerA ) at time t, which is needed to plot

the performance curve. First of all, it is clear that this generalization performance

can only be estimated on the basis of the data given, just like in the case of batch

learning from static data. In the literature, two procedures are commonly used for

performance evaluation on data streams:2 (i) In the holdout approach, the training

and the test phase of a learner are interleaved as follows: The model is trained incre-

mentally on a block ofM data points and then evaluated (but no longer adapted) on

the next N instances, then again trained on the nextM and tested on the subsequent

N instances, and so forth. (ii) In the test-then-train approach, every instance is used

for both training and testing. First, the current model is evaluated on the observed in-

stance, and then this instance is used for model adaptation. The evaluation measure

in this scenario is updated incrementally after each prediction(prequential evalua-

tion). This approach can also be applied in a chunk mode, where a block of size M

(instead of a single instance) is used for evaluation first and training afterwards.

The test-then-train procedure has some advantages over the holdout approach.

For example, it obviously makes better use of the data, since each example is used

for both training and testing. More importantly, it avoids “gaps” in the learning pro-

cess: In the holdout approach,A only learns on the training blocks but stops adap-

tation on the evaluation blocks in-between. Such gaps are especially undesirable in

the presence of a concept drift, since they may bias the assessment of the learner’s

reaction to the drift. This is the main reason for why we prefer the test-then-train

procedure for our implementation of recovery analysis.

Another practical issue concerns the length of the data streams. In fact, to imple-

ment recovery analysis in a proper way, the streams should be long enough, mainly

to make sure that the learner A will saturate on all streams: First, it should reach

the saturations levels α∗ and β ∗ on SA and SB, respectively. Moreover, the streams

2 Both procedures are implemented in the MOA framework [2].
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should not end while A is still recovering on SC; otherwise, one cannot decide

whether or not an optimal recovery (reaching β ∗) is accomplished.
Finally, to obtain smooth performance curves, we recommend to repeat the same

experiment with many random permutations SA and SB of the original streams, and

to average the curves thus produced. Obviously, averaging is legitimate in this case,

since the results are produced for the same data generating processes (specified by

the distributions PA, PB and their mixture PC).

4 Illustration

This section is meant to illustrate our idea of recovery analysis by means of some

practical examples. To this end, we conducted a series of experiments with different

classification methods. All algorithms were implemented under MOA [2], except

FLEXFIS, which is implemented in Matlab. MOA is a framework for learning on

data streams. It includes data stream generators and several classifiers. Moreover, it

offers different methods for performance evaluation.

Due to a lack of space, we present results only for a single data set, namely the

weather data provided by the National Oceanic and Atmospheric Administration

(NOAA).3 Since this data originally contained missing values, we used it in the

form as suggested by [5]. It contains eight daily weather measurements, such as

temperature, visibility, etc. The goal is to predict whether it will be a rainy day or

not. We used this data as a first pure stream SA and an “inverted copy” as a pure

stream SB. In this copy, we simply inverted the target attribute. Thus, the problem

on the mixture stream SC gradually changes from predicting whether it will be rainy

to predicting whether it will not be rainy.

Performance curves were produced using the test-then-train procedure (cf. Sec-

tion 3.3) in chunk mode (with chunk size 500) and averaging over ten random shuf-

fles of the data. At each point of time, the evaluation curve shows the prediction

performance on the most recent chunk.

The results for four differentmethods are shown in Figure 2: the eFPT method for

learning evolving fuzzy pattern trees [12], the instance-based learner IBLStreams

[11], the Hoeffding Trees classifier for learning decision trees [4] in its incremental

form without any specific reaction mechanism to concept changes, and the FLEX-

FIS method for fuzzy rule induction [10].

From this figure, which also indicates the range of the drift and shows the lower

bound on the optimal performance (3) as a reference, some interesting observations

can be made. For example, by comparing the lower bound with the respective “per-

formance valleys” of the methods, it can be seen that all methods are reacting with a

certain delay, which is clearly expected; some methods, however, are obviously a bit

faster than others. The same remark applies to the extent of performance loss, which

is, for example, more pronounced for FLEXFIS than for eFPT. Overall, the instance-

based learner IBLStreams seems to perform best, showing a curve that is close to the

3 http://users.rowan.edu/~polikar/research/NIE_data/
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reference (3). The Hoeffding Tree learner, on the other hand, is performing much

worse. Its loss in performance is higher, and it recovers only very slowly. In fact,

the decision trees produced by this learner are often very complex and, therefore,

difficult to adapt if significant changes are needed. This may explain why Hoeffding

Trees react more slowly than other learners (a tendency that we could also confirm

on other data streams).

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

%
 c

o
rr

e
c
t

 

 

Drift Str1−eFPT Str2−eFPT Str1~Str2−eFPT−OPT Str1~Str2−eFPT

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

%
 c

o
rr

e
c
t

 

 

Drift Str1−Hoef Str2−Hoef Str1~Str2−Hoef−OPT Str1~Str2−Hoef

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

%
 c

o
rr

e
c
t

 

 

Drift Str1−IBLSt Str2−IBLSt Str1~Str2−IBLSt−OPT Str1~Str2−IBLSt

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

%
 c

o
rr

e
c
t

 

 

Drift Str1−FLEX Str2−FLEX Str1~Str2−FLEX−OPT Str1~Str2−FLEX

Fig. 2 Performance curves (classification rate) on the weather data. From top to bottom: fuzzy

pattern trees, Hoeffding Trees, IBLStreams, FLEXFIS. The sigmoid in light grey indicates

the range of the drift. The grey line shows the lower bound on the optimal performance (3).
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5 Conclusion

We have introduced recovery analysis as a new type of experimental analysis in the

context of learning from data streams. The goal of recovery analysis is to provide an

idea of a learner’s ability to discover a concept drift quickly, and to take appropriate

measures to maintain the quality and generalization performance of the model. To

demonstrate the usefulness of this type of analysis, we have shown results of an

experimental study using a stream of weather data, on which we have compared

four different learning algorithms.

In future work, we plan to further refine our approach to recovery analysis, for ex-

ample by developing numerical measures to quantify specific aspects of a recovery

curve (delay of reaction, duration, etc.). Moreover, we plan to use recovery analy-

sis in large empirical studies as a tool for comparing different classes of learning

methods with regard to their ability to handle concept drift [13].
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