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Department of Mathematics and Computer Science

University of Marburg, Germany

e-mail: {shaker,eyke}@mathematik.uni-marburg.de

Draft of a paper to be published in:

International Journal of Applied Mathematics and Computer Science,

24(1):199–212, 2014.

Abstract

In this paper, we introduce a method for survival analysis on data streams. Survival

analysis (also known as event history analysis) is an established statistical method for

the study of temporal “events” or, more specifically, questions regarding the temporal

distribution of the occurrence of events and their dependence on covariates of the data

sources. To make this method applicable in the setting of data streams, we propose an

adaptive variant of a model that is closely related to the well-known Cox proportional

hazard model. Adopting a sliding window approach, our method continuously updates

its parameters based on the event data in the current time window. As a proof of

concept, we present two case studies in which our method is used for different types

of spatio-temporal data analysis, namely the analysis of earthquake data and Twitter

data. In an attempt to explain the frequency of events by the spatial location of the

data source, both studies are using the location as covariates of the sources.

1 Introduction

So-called data streams have recently attracted increasing attention in different fields of

theoretical, methodological and applied computer science, such as database systems,

data mining, and distributed systems. As the notion suggests, a data stream can

roughly be thought of as an ordered sequence of data items that arrive continuously

as time progresses [21, 20, 15]. Streams of that kind are naturally produced in various

applications, for example network monitoring, telecommunication systems, customer

click streams, stock markets, or any type of multi-sensor system.

A data stream system may constantly produce huge amounts of data. As an illustra-

tion, imagine a multi-sensor system with 10,000 sensors each of which sends a mea-

surement every second of time. Regarding aspects of data storage, management and
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processing, the continuous arrival of data items in multiple, rapid, time-varying, and

potentially unbounded streams raises new challenges and research problems. Indeed,

it is usually not feasible to simply store the arriving data in a traditional database

management system in order to perform operations on that data later on. Rather,

stream data must generally be processed in an online manner in order to guarantee

that results are up-to-date and that queries can be answered with small time de-

lay. The development of corresponding stream processing systems is a topic of active

research [10, 24].

The remarks on data stream processing in general also apply to the analysis of stream

data in particular. In fact, mining data streams and learning from data streams have

been topics of active research in recent years [17, 19, 18]. Roughly speaking, the key

motivation of these and related fields is the idea of a system that learns incrementally,

and maybe even in real-time, on a continuous stream of data, and which is able to

properly adapt itself to changes of environmental conditions or properties of the data-

generating process. Systems with these properties have already been developed for

different machine learning and data mining problems, such as clustering [1, 6, 26],

classification [22, 23], and frequent (sequential) pattern mining [12, 8].

In this paper, we address another data analysis problem in the context of data streams,

namely the analysis of temporal “events” or, more specifically, questions regarding

the temporal distribution of (duration between) the occurrence of events and their

dependence on covariates of the data sources. To this end, we develop an incremental,

adaptive version of survival analysis, which is a standard statistical method for event

analysis. The basic mathematical tool in survival analysis is the hazard function,

which models the “propensity” of the occurrence of an event (marginal probability of

an event conditional to no event so far) as a function of time.

Connections between survival analysis on the one side and machine learning and data

mining on the other side have already been established by some authors; see, for

example, [32] and [3]. To the best of our knowledge, however, survival analysis has

not yet been considered in the data stream setting so far. This is arguably surprising,

for several reasons. Most notably, the temporal nature of event data naturally fits

the data stream model, and indeed, “event data” is naturally produced by many data

sources. Moreover, survival analysis is widely applicable and routinely used in many

application fields. In fact, survival analysis, a term commonly used in medicine, is

also known as event history analysis in sociology, reliability analysis in engineering

and duration analysis in economics. Although “survival analysis” seems to be most

widely used, we shall adopt the term “event history analysis” (EHA) for the rest of

this paper, simply because this term is more neutral and less associated with a specific

application.

To make event history analysis applicable in the setting of data streams, we develop an

adaptive (online) variant of a model that is closely related to the well-known propor-

tional hazard model proposed by Cox [14]. In this model, the hazard rate may depend

on one or more covariates associated with a statistical entity. More specifically, in

the proportional hazard model, the effect of an increase of a covariate by one unit is

multiplicative with respect to the hazard rate.

We adopt a sliding window approach, which is a common technique in data stream

analysis. In order to estimate the influence of the covariates, we assume the hazard rate
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to be constant on the current window. The estimate then depends on the frequency

and temporal distribution of events falling inside the window, and sliding the window

calls for adapting the estimate in an incremental (and as efficient as possible) manner.

The remainder of the paper is organized as follows. By way of background, we recall

some basic information about data streams in Section 2 and on event history analysis

in Section 3. Section 4 is devoted to our extension of EHA and describes the main

adaptations that we realized to make this method applicable in a streaming setting.

Finally, to evaluate our approach, we present two case studies that are meant as a

proof of principle. In both studies, our method is used for a specific type of spatio-

temporal data analysis, namely the analysis of earthquake data (Section 5) and of

Twitter data (Section 6).

2 The Data Stream Model

The data stream model assumes that input data are not available for random access

from disk or memory, such as relations in standard relational databases, but rather

arrive in the form of one or more continuous data streams. The stream model differs

from the standard relational model in the following ways [5]:

• The elements of a stream arrive incrementally in an “online” manner. That is,

the stream is “active” in the sense that the incoming items trigger operations on

the data rather than being sent on request.

• The order in which elements of a stream arrive are not under the control of the

system.

• Data streams are potentially of unbounded size.

• Data stream elements that have been processed are either discarded or archived.

They cannot be retrieved easily unless being stored in memory, which is typically

small relative to the size of the stream.1

• Due to limited resources (memory) and strict time constraints, the computation

of exact results will usually not be possible. Therefore, the processing of stream

data does commonly produce approximate results [11].

For data mining and machine learning methods, the above properties have a number of

important consequences and come with several challenges. In particular, the standard

“batch mode” of learning, in which the entire data as a whole is provided as an input

to the learning algorithm, is no longer practicable. Correspondingly, the learner is

not allowed to make several passes through the data set, which is commonly done

by standard methods in statistics and machine learning. Instead, the data must be

processed in a single pass, which implies an incremental mode of learning and model

adaptation.

Domingos and Hulten [16] list a number of properties that an ideal stream mining

system should exhibit, and suggest corresponding design decisions: the system uses

only a limited amount of memory; the time to process a single record is short and

ideally constant; the data is volatile and a single data record accessed only once;

1Stored/condensed information about past data is often referred to as a synopsis.
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the model produced in an incremental way is equivalent to the model that would

have been obtained through common batch learning (on all data records so far); the

learning algorithm should react to concept drift (i.e., any change of the underlying

data-generating process) in a proper way and maintain a model that always reflects

the current concept.

3 Event History Analysis

Event history analysis is a statistical method for modeling and analyzing the temporal

distribution of events in the course of time or, more specifically, the duration before

the occurrence of an event; the notion of an “event” is completely generic and may

indicate, for example, the failure of an electrical device. The method is perhaps

even better known as “survival analysis”, a term that originates from applications in

medicine, in which an event is the death of a patient and the survival time the time

period s = tevent − tstart between the beginning of the study and the occurrence of

this event.

Thus, the basic statistical entities in EHA are subjects, typically described in terms of

feature vectors x ∈ Rn, together with their survival time s. The goal, then, is to model

the dependence of s on x. In principle, one may thus be tempted to approach this

task as a standard regression problem with input (regressor) x and output (response)

s.

However, the survival time s is normally not observed for all subjects. Indeed, the

problem of censoring plays an important role in EHA and occurs in different facets. In

particular, it may happen that some of the subjects are still under observation when

the study ends at time tend; in other words, these subjects have survived till the end

of the study. They are censored or, more specifically, right censored, since tevent has

not been observed for them; instead, it is only known that tevent > tend. Another

reason for a censoring could be that a subject leaves the study, not since the event

of interest occurred, but simply for other reasons (for example, a patient in a breast

cancer study may die from a car accident).

3.1 Survival Function and Hazard Rate

Suppose the time for an event to occur is modeled as a real-valued random variable T

with probability density function f(·). Moreover, denote the cumulative distribution

function by F (·), i.e.,

F (t) = P {T ≤ t} =

∫ t

0

f(x) dx

is the probability of an event to occur before the time t. The survival function S(·) is

then defined as

S(t) = P {T > t} = 1− F (t) =

∫ ∞
t

f(x) dx . (1)

Since S(t) is the probability that the event did not occur until time t, it can be used

to model the probability of an event that is right censored.
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The hazard function or hazard rate h(·) is defined as follows:

h(t) = lim
dt→0

P {t < T ≤ t+ dt |T > t}
dt

(2)

=
f(t)

S(t)

Roughly speaking, h(t) is the conditional probability that the event will occur within

a small time interval after t, given that it has not occurred until t. More specifically,

h(t) is the limit of this probability when the length of the time interval tends to 0.

Mathematically, it is hence a kind of density (and not a probability) function, which

means that it may thoroughly assume values larger than 1. Note that the density f(·)
can be recovered from the hazard rate and the survival function, since

f(t) ≡ h(t) · S(t) .

3.2 Modeling the Hazard Rate

Since a statistical entity is not always a person, we shall subsequently use the more

neutral term “instance” instead of “subject”. Suppose such an instance to be described

in terms of a feature vector

x = (x1, . . . , xn)> ∈ Rn, (3)

where xi is the ith property of the instance (for example, the age of a patient in a

medical study). Assuming the hazard rate for this instance to depend not only on

time but also on the properties (features) xi, it can be written as h = h(x, t).

Often, the hazard rate is even assumed to be constant over time, in which case it only

depends on x but not on t. In this case, we shall also denote it by λ = λ(x). Note

that a constant hazard rate gives rise to an exponential survival function:

S(t) = exp(−λ · t)

In the Cox proportional hazard model [14], the hazard rate is modeled as a log-linear

function of the features xi:

λ(x) = α0 · exp
(
x>β

)
(4)

= α0 · exp

(
n∑
i=1

βi · xi

)

In this context, the xi are also called covariates. Extending the covariate vector x in

(3) by a constant entry x0 ≡ 1, (4) can be written more compactly as

λ(x) = exp
(
x>β

)
, (5)

with β0 = log(α0). As can be seen, according to the above model, the effect of an

increase of a covariate by one unit is multiplicative with respect to the hazard rate;

or, stated differently, the hazard rate is proportional to each covariate: Increasing xi
by one unit increases λ(x) by a factor of αi = exp(βi).

Statistical methods for event history analysis, such as Cox regression [13], provide

estimates of the model parameters βi and, therefore, of the hazard rate itself. The
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latter can be used, for example, for prediction purposes: Given an estimate of the

hazard rate, one can predict the time span till the next event will occur, both in terms

of point predictions (e.g., the expected survival time of a patient) and confidence sets

(e.g., a confidence interval for the survival time). At least as interesting as the hazard

rate itself, however, are the estimations of the parameters βi, which inform about the

influence of different covariates on the hazard rate. For example, if βi = log(2) is the

parameter modeling the influence of the covariate smoking (a binary attribute with

value 1 if the patient is a smoker and 0 otherwise) in a medical study, it means that—

under the model (5) and ceterus paribus, i.e., all other covariates being equal—smoking

doubles the hazard rate and therefore halves the expected survival time.

Before proceeding, let us note that non-constant hazard functions h(x, t), in which

the rate does not only depend on covariates x but also changes with time t, have

been studied extensively in the statistical literature, and many parameterized families

of functions have been proposed for modeling the influence of time on the rate [14].

As will become clear later on, however, the constant model λ(x) is sufficient for our

purpose, or at least provides a sufficiently good approximation. This is due to the

use of a sliding window approach: Roughly speaking, the assumption of a constant

rate does not refer to a data stream as a whole but only to the current time window;

therefore, by sliding the window, the hazard rate may actually vary in the course

of time, too. Overall, our model thus even becomes very flexible, especially since

time-dependence is modeled in a non-parametric way.2

4 Event History Analysis on Data Streams

Our setting assumes a fixed set of J data streams to be given, each of which corre-

sponds to an instance x characterized in terms of a vector of covariates (x1, . . . , xn).

Moreover, each stream produces a sequence of temporal events, i.e., events that are

associated with a unique time of occurrence; see Figure 1 for an illustration. For

simplicity, we assume the underlying time scale to be discrete, i.e., time progresses in

discrete steps (such as seconds or minutes).

As an example, imagine that each stream corresponds to a book offered by an online

book store, and the covariates are properties of the book (price, genre, etc.). Moreover,

an “event” occurs whenever a client is purchasing a book. The hazard rate associated

with a book can then be interpreted as a measure of the propensity of people to buy

this book. Obviously, this propensity will change in the course of time, and for each

book, it is therefore interesting to monitor the evolution of its hazard rate. Apart

from that, it is interesting to figure out the influence of the covariates on the buying

behavior of the clients and, perhaps even more importantly, how this influence changes

over time. One may expect, for example, that the price of a book will become more

important, and will hence have a stronger influence on the hazard rates of all books,

in times of an economic crisis.

The previous example has made clear that, when looking at a single data stream,

we are interested in events that can occur repeatedly (for the same instance x) in

2To some extent, this is comparable with statistical methods like kernel density estimation or locally

weighted linear regression.
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c o v a r i a t e s  

c u r r e n t  t i m e  w i n d o w  

STREAM 1  

STREAM 2  

STREAM 3  

STREAM 4  

STREAM 5  

STREAM 6  

Figure 1: Illustration of our setting consisting of a set of J (here J = 6) parallel data

streams: Every stream corresponds to a statistical entity characterized in terms of a vector

of covariates. Moreover, each stream produces a sequence of temporal events (marked by

solid squares). A sliding window (indicated by the grey box)is masking outdated events

that occurred in the past.

the course of time. Events of that kind are called recurrent events and need to be

distinguished from events that can occur at most once (like the death of a patient in a

medical study). More specifically, we are interested in the time duration between the

occurrence of two events. For a fixed instance (data stream) x, suppose the hazard

rate λ = λ(x) to be constant, and let

t1 < t2 < . . . < tk

denote the time points at which an event has been observed for this instance; moreover,

let a = t0 < t1 and b = tk+1 > tk denote the start and the end of the observation

interval [a, b]. The probability of the observation sequence T (x) = {tτ}kτ=1 is then

given by

P(T (x)) =

(
k∏
τ=1

f(tτ−1, tτ )

)
· S(tk, tk+1) (6)

= λ(x)k ·
k+1∏
τ=1

exp
(
− λ(x)(tτ − tτ−1)

)
where

f(t′, t) = h(t) · S(t′, t)

= λ(x) · exp
(
− λ(x)(t− t′)

)
is the probability that an event occurs at time t if the observation starts at time t′.

4.1 Left Censoring

More generally, suppose that the observation of the first event started at an unobserved

time t prior to the start of the observation window at time t0; this is a situation of
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left censoring that we are facing in our sliding window approach to be detailed below.

The probability to observe the duration from t0 to t1 is then given by the conditional

probability of the event at time t1 given survival until t0, i.e., by the expression

f(t0, t1) =
f(t, t1)

S(t, t0)
=
λ(x) · exp

(
− λ(x)(t1 − t)

)
exp

(
− λ(x)(t0 − t)

)
= λ(x) · exp

(
− λ(x)(t1 − t0)

)
.

Thus, we eventually obtain the same expression (6). Roughly speaking, this is due to

the fact that a process with a constant hazard rate is “memoryless”.

4.2 Parallel Event Sequences

In our setting, we assume to observe a sequence of recurrent events T (x) = {tτ}kτ=1

not only for a single instance x but for a fixed set of J instances {x1, . . . ,xJ}, with

xj = (xj1, . . . , x
j
n)>. Thus, the data relevant to a time window [a, b] is given in the

form of J parallel event sequences

D =
(
T (x1), . . . , T (xJ)

)
(7)

=
(
{t1τ}

k1
τ=1, . . . , {tJτ }

kJ
τ=1

)
,

where kj is the number of events for xj and {tjτ}
kj
τ=1 the corresponding time points.

Assuming independence, the probability of D is

P(D) =

J∏
j=1

P(T (xj))

=

J∏
j=1

λ(xj)
kj ·

kj+1∏
τ=1

exp
(
− λ(xj)

(
tjτ − t

j
τ−1

)) ,
and the logarithm of this probability is

log

 J∏
j=1

P(T (xj))


=

J∑
j=1

kj log (λ(xj))−
kj+1∑
τ=1

λ(xj)
(
tjτ − t

j
τ−1

) .
For the model (5), this expression yields the following log-likelihood function for the

parameter vector β:

`(β) =

J∑
j=1

[
kjβ0 + kj

(
n∑
i=1

βix
j
i

)

−
kj+1∑
τ=1

β0 exp

(
n∑
i=1

βix
j
i

)(
tjτ − t

j
τ−1

)
=

J∑
j=1

[
kjβ0 + kj

(
n∑
i=1

βix
j
i

)

−β0 exp

(
n∑
i=1

βix
j
i

)
(b− a)

]
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STREAM 1  

STREAM 2  

STREAM 3  

STREAM 4  

STREAM 5  
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Figure 2: Illustration of the shift of the time window: The current window Wt = [t, t+w]

is replaced by the new one Wt+∆t = [t+ ∆t, t+w + ∆t]. While the status of some of the

events changes (filled boxes), the status of the others (non-filled boxes) remains the same

(either outdated or active).

4.3 Adaptive ML Estimation

Parameter estimation on a time window [a, b] can now be done by means of maximum

likelihood (ML) estimation, i.e., by finding the maximizer of the above likelihood

function:

β∗ = (β∗0 , β
∗
1 , . . . , β

∗
n) = arg max `(β)

Unfortunately, there is no analytical expression for β∗, so that the estimator needs

to be found by means of numerical optimization procedures. Nevertheless, since the

log-likelihood function `(β) is concave (which can be shown by checking corresponding

conditions on the second derivatives), simple gradient-based optimization techniques

and online versions of gradient ascent [7] can be applied and in fact turned out to

work rather well.

The use of local optimization techniques is also reasonable as it can be turned quite

naturally into an incremental learning algorithm applicable in our streaming setting.

Recall that we slide a time window of fixed length w along the time axis. More

specifically, the window is repeatedly moved in discrete steps, each time replacing the

current window Wt = [t, t+w] by the shifted one Wt+∆t = [t+∆t, t+w+∆t]. A shift

of that kind will of course also change the parallel event sequences (7) associated with

the current time window and, therefore, necessitate a re-estimation of the parameter

vector β.

Typically, however, the event sequences T (xj) will change but slightly, since most

of the current events tjτ will remain inside the window—only those close to the lower

boundary t will fall out (namely those with t ≤ tjτ < t+∆t), while new events observed

between t+w and t+w+∆t will be added (see Figure 2 for an illustration). In any case,

the new ML estimate of β will normally be found in close proximity to the old one.

Therefore, the current estimate β∗t , i.e., the ML estimate for the current time window

Wt = [t, t+w], will provide a good initial solution for the re-estimation problem to be

solved by our gradient-based optimizer. Indeed, in practical experiments, we found

that only a few adaptation steps are generally needed to reach the new ML estimate

β∗t+∆t (with sufficient accuracy).

9



As mentioned before, what our adaptive estimation procedure eventually produces is

a sequence of parameter estimates that (implicitly) represents the evolution of both

the parameter β and the hazard rates λj = λ(xj) over time. More specifically, for a

fixed time point τ , let Wτ denote the set of all time windows covering this time point:

Wτ =
{
Wt | τ ∈ [t, t+ ∆t]

}
Moreover, let β∗t denote the ML estimation of β on Wt. Then, we define the parameter

β at time τ by averaging:

β(τ) =
1

|Wτ |
∑

Wt∈Wτ

β∗t (8)

Correspondingly, the hazard rate λj at time τ is given by

λ(τ) = exp
(
x>j β(τ)

)
. (9)

5 Case Study: Earthquake Analysis

As a proof of concept, we conducted two case studies in which our streaming version of

EHA is used for spatio-temporal data analysis. While the temporal aspect is naturally

captured by the hazard rate model, the spatial aspect is incorporated through the use

of spatial information as covariates of the data streams. In other words, the vector

(3) of covariates is describing the spatial location of a data source.

In our first study, we apply our method to the analysis of earthquake data. The

data is collected from the USGS3 (United States Geological Survey), specifically form

the catalog of NEIC4 (National Earthquake Information Center) whose mission is

to quickly discover the most recent destructive earthquakes in terms of location and

magnitude and to broadcast this information to international agencies and scientist.

5.1 Data Generation

The earthquakes were collected in the time period between 1st Jan 2000 and the end of

27th Mar 2012. Since entries in the USGS/NEIC catalog can be added or modified at

any time, we stick to the data in the catalog at the time of exportation, namely 12th

Apr 2012. Table 1 presents an example of earthquake data (a list of 5 earthquakes

with their occurrence time and attributes). The online catalog of USGS/NEIC retains

only significant earthquakes with a magnitude bigger than 2.5, though very few micro-

earthquakes (with a magnitude less than 1) could be found (and even a few earthquakes

with missing magnitude). In total, we collected 319,884 earthquakes around the whole

globe.

Every earthquake is identified by its geographic coordinate, the exact time of occur-

rence (up to the second), and the magnitude and depth. Figure 3(a) shows a picture

of the collected earthquakes, plotted as dots at the place of their rounded geographic

location.

3http://www.usgs.gov/
4http://earthquake.usgs.gov/regional/neic/
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Recall that, in our setting introduced in Section 3, we assume to observe event se-

quences for a fixed set of instances. In order to define these instances, we discretize the

globe both in terms of longitude and latitude, and associate one instance with each

intersection point. More specifically, with φ ∈ {−90,−89, . . . , 90} for longitude and

η ∈ {−180,−179, . . . , 180} for latitude, we end up with 181× 361 = 65, 341 instances

in total. The regions thus produced are obviously not equal in size: Since latitudes

are not parallel like longitudes, areas near the equator are smaller than those closer

to the poles.

Furthermore, recall that each instance is described in terms of features (covariates)

xi, which, according to (5), have a proportional effect on the hazard rate. In order to

account for possibly nonlinear dependencies between spatial coordinates and risk of

earthquake, we define these features in terms of a fuzzy partition, that is, a partition

defined in terms of fuzzy sets [31]. In contrast to a standard partition defined in

terms of intervals, this allows for a smooth transition between spatial regions. More

specifically, we discretize both longitude and latitude by means of triangular fuzzy

sets as shown in Figure 3(c). The number of fuzzy sets was chosen so as to achieve a

reasonable compromise between spatial resolution and computational complexity. A

two-dimensional (fuzzy) discretization of the globe is defined in terms of the Cartesian

product of these two one-dimensional discretizations, using the minimum operator for

fuzzy set intersection. The covariates of an instance x associated with coordinates

(φ, η) are then simply given by the membership degrees in all these two-dimensional

fuzzy sets, i.e., the covariates are of the form

xi,j = min
(
Ai(φ), Bj(η)

)
,

where Ai is one of the 11 fuzzy sets for longitude and Bj one of the 10 fuzzy sets for

latitude; thus, each instance is of the form

x =
(
x1,1, x1,2, . . . , x1,10, . . . , x11,10

)
∈ [0, 1]110 .

5.2 Results

Given the data produced in this way and after sorting all earthquakes by their time

of occurrence, we are able to apply our method as outlined in Section 3. We set the

length of the time window to 3 months and the shift parameter ∆ to 1 week. These

values appear to be reasonable for this application, although they are not optimized

according to any specific criterion.

The results we obtain in terms of time-dependent estimates of the parameters βi,j ,

each of which is associated with a covariate xi,j and hence with a spatial (fuzzy) region

Ai × Bj , appear to be quite plausible. In fact, several interesting observations could

be made for data from the last decade. For example, as can be seen in Figure 4(a),

the occurrence of Sichuan’s earthquake in April 2008 comes with a significant increase

in the coefficients of the fuzzy sets covering that area: the red line increase steeply a

few weeks before the shock, which caused about 80,0000 causalities.

The same can be noticed in subfigure (b) before Tohoku’s earthquake in March 2011,

whose location was (38.32◦N,142.36◦E). The coefficient of the green line increases by

a factor of 4 till few hours before the earthquake, indicating an increased hazard rate
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for the (fuzzy) area around (φ, η) = (120, 120). Another interesting observation is the

increasing estimated hazard in the epicenter of both earthquakes, as shown in Figure

5.

6 Case Study: Twitter Data

Our second case study is based on data collected from Twitter5, which is an online

microblogging web site. Twitter is a service that allows users to send short messages

of up to 140 characters known as “tweets”. Every tweet is attributed by some meta

data, including the ID of the user who wrote it and the time the tweet was sent.

Further attributes can be extracted from the tweet with the permission of the user.

Those attributes indicate the geolocation of the user when she posted her tweet; this is

supported by a GPS (Global Positioning System) functionality embedded in a mobile

device or a tablet PC. The geolocation is represented as a tuple (lo, la) with an entry

for the longitude and for the latitude. Table 2 shows an example of Twitter data

written in Json6 format.

We collected tweets generated inside the bounding box of Germany, which is deter-

mined by the corner points (lo, la) = (5.53, 47.16) and (15.2, 55.03). This data was

collected during a timespan of about two months, namely between 20th March 2012

and 27th May 2012. In total, we collected about 4.9 million tweets coming mainly from

Germany and its surrounding countries (Denmark, Poland, Czech Republic, Austria,

Switzerland, France, Belgium and the Netherlands). Surprisingly, only 1.8 million of

them were from inside Germany.

Like in the previous study on earthquakes, we apply a discretization on the area

of Germany, considering every intersection point of the two coordinates with φ ∈
{5.5, 5.6, . . . , 15.2} for longitude and η ∈ {47.1, 47.2, . . . , 55.1} for latitude, provided

this intersection lies inside the borders of Germany. As a result, we end up with 5013

intersection points, which are considered as the instances (data streams) xj to be kept

under observation. The next step is to find a proper representation of the instances

in terms of covariates. Here, we decided to describe every instance by the normalized

vector of Mahalanobis distances to the center of each of the 16 German states. Thus,

each instance is represented in terms of vector

xj = (xj1, . . . , x
j
16) ∈ R16 ,

where xji is the distance of the location xj from the (center of the) ith German state.

By sorting the tweets according to their creation times, considering only those coming

from Germany and assigning every tweet to the closest instance xj , we obtain a parallel

stream of events that can again be processed by our method described in Section 3.

We fix the window size to 3 days and the shift parameter ∆t to one day. As a result,

we again obtain time-dependent estimates (8) of the parameters β1, . . . , β16 associated

with the 16 German states. Figure 6 shows how the estimated parameters change over

time, compared with the base line hazard α0 that is also plotted in each subfigure.

An increasing parameter βi can be interpreted as follows: The closer a location xj to

5http://www.twitter.com/
6http://json.org/
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Year Month Day UTC Time Latitude Longitude Mag. Depth Catalog

hhmmss.mm

2012 01 01 003008.77 12.008 143.487 5.1 35 PDE-W

2012 01 01 003725.28 63.337 -147.516 3.0 65 PDE-W

2012 01 01 004342.77 12.014 143.536 4.4 35 PDE-W

2012 01 01 005008.04 -11.366 166.218 5.3 67 PDE-W

2012 01 01 012207.66 -6.747 130.007 4.2 145 PDE-W

Table 1: An example of earthquake data: 5 earthquakes that occurred at the first day of

2012.

favorited:false, text:’Stau: A8 München Richtung Stuttgart 6 km zur Ausfahrt

im Schneckentempo..’, truncated:false, created at:Fri Feb 10 10:38:47 +0000 2012,

retweeted:false, retweet count:0, coordinates:type:Point, coordinates:[9.55755, 48.6333],

..., entities:user mentions:[], urls:[], hashtags:[], geo:type:Point, coordinates:[48.6333,

9.55755], ..., place:bounding box:type:Polygon, coordinates:[[[9.534815, 48.616779],

[9.594667, 48.616779], [9.594667, 48.640891], [9.534815, 48.640891]]], place type:city,

..., country code:DE, attributes:, full name:Aichelberg, Göppingen, name:Aichelberg,

id:29ef9f01a553e601, country:Germany, ..., id str:###, user:default profile:true, noti-

fications:null, ..., time zone:Berlin, created at:Fri Sep 03 14:25:38 +0000 2010, veri-

fied:false, geo enabled:true..., favourites count:0, lang:de, ..., followers count:335, ..., lo-

cation:Karlsruhe, ..., name:###, ..., listed count:21, following:null, screen name:###,

id:###, ..., statuses count:10935, utc offset:3600, friends count:0, ..., id:###, ...

text:’top atmosphere in Weserstadion today, a very good match...’, ..., cre-

ated at:Tue Apr 10 21:37:28 +0000 2012, place:bounding box:type:Polygon, coordi-

nates:[[[8.481599, 53.011035], [8.990593, 53.011035], [8.990593, 53.228969], [8.481599,

53.228969]]], country:Germany, attributes:, full name:Bremen, Bremen, .., coun-

try code:DE, name:Bremen, id:9467fbdc3cdbd2ef, place type:city, coordinates:type:Point,

coordinates:[8.837596, 53.06693] , retweeted:false, in reply to status id:null, ..., trun-

cated:false, contributors:null, possibly sensitive:false, in reply to screen name:null, favor-

ited:false, user:default profile:false, follow request sent:null, lang:de, friends count:200,

..., is translator:false, created at:Sat May 23 13:01:45 +0000 2009, id str:###, ...,

url:null, following:null, verified:false, ..., location:Germany, ..., statuses count:4537, ...,

time zone:Berlin, .., utc offset:3600, followers count:432, ..., id:###, retweet count:0

Table 2: Two examples of Twitter messages. Unimportant attributes are removed and

some others are obfuscated, whereas important attributes are written in bold. Both mes-

sages are artificially created.
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the corresponding state, the higher is the hazard or, say, the propensity of users to

send a tweet from that location.

As can be seen in Figure 6 (a) and (d), the parameter for the state Berlin is increasing

in the time between 2nd and 5th May while the parameter for the state Brandenburg

is decreasing. Looking for an explanation for this observation, we found that the

conference re:publica7 took place during that time. This conference is a big meeting

for bloggers from Germany and all around the world. Consequently, one can expect

that more bloggers were in Berlin and less in the surrounding area, including the state

of Brandenburg.

The opposite can be said about Saxony-Anhalt, which was seen as a gate for travelers,

so its parameter was also increasing during that time. The parameters associated

with the mentioned states are marked by the ’∗’ symbol in Figure 6. In a similar way,

Figure 6(d) shows how the hazard associated with the state Schleswig-Holstein, marked

by the ’+’ symbol, has increased on the 28th of April. This was supposedly a direct

effect of hosting a conference for a political German party, namely the “Piratenpartei”.

In a second experiment with the same stream of events, our aim was to observe

changes between the city and the countryside. This was done by considering only

instances located inside the states of Bremen and Lower Saxony8. Instances are now

described only by a single binary covariate, indicating whether an instance is located

in Bremen or not. Figure 7 shows how the corresponding parameter changes on a

weekly basis. Interesting patterns can be observed especially for the weekends. First,

there are normal weekends where people move from the condensed area of Bremen to

the surrounding state, causing a decrease in the hazard (less Tweets sent from inside

Bremen and more from outside); this pattern is marked by the ’+’ symbol. Second,

the weekends on which the local football club (Werder Bremen) has hosted a football

match in the German soccer league (Bundesliga), causing an increase in the hazard;

this group is marked by ’∗’ symbol.

To get an idea of the efficiency of the system, Figure 8 provides a summary of the

time required for a single adaptation step in the form of a histogram over runtimes.

As can be seen, the adaptation time is in the range of seconds and upper bounded by

one minute—compared to the shift length ∆t of one day, this time is almost negligible.

The peak of the distribution in the vicinity of 0 moreover suggests that the adaptation

effort is almost zero most of the time.

7 Conclusion

In this paper, we introduced an adaptive approach to survival analysis (event his-

tory analysis) on data streams. To this end, we adopted a sliding window approach

and proposed an adaptive (online) variant of a model that is closely related to the

well-known Cox proportional hazard model. In this approach, maximum likelihood

estimation of the model parameters is performed repeatedly, adapting the estimates

whenever the time window has been shifted.

7http://re-publica
8Bremen is the smallest state in Germany, containing only two cities. It is surrounded by the larger

state of Lower Saxony
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As a first proof of concept, we used our method for studying the occurrence of sig-

nificant earthquakes during the last decade. Here, an event is an earthquake, and a

statistical entity is a two-dimensional region on the globe characterized by its spatial

coordinates; more specifically, we make use of fuzzy discretization techniques in order

to capture the influence of the spatial location on the hazard rate in a flexible way.

The results we obtain are plausible and agree with expectation. For a region such as

Tohoku in Japan, one can observe a significant increase in the hazard rate prior to the

disastrous earthquake in 2011. Similar observations can be made for other significant

earthquakes such as Sichuan’s in 2008. Plausible results could also be obtained in a

second study using streams of almost 5 million Twitter messages. Interesting patterns

or irregularities in the time-dependent parameter estimations of our hazard model

could be explained by big events such as conferences or football matches.

Needless to say, our approach can be generalized and refined in various ways. So far,

for example, we simply assumed the length of the sliding window to be fixed and

predefined. However, noting that the window length should be chosen so as to achieve

an optimal compromise between the availability of data (if the window is too short,

it may not contain enough events) and the representativeness of the estimated hazard

rate for the current time point (if the window is too long, it may cover outdated events

that are no longer representative), appropriate means for dynamically adapting the

length are clearly desirable.

In the stream-based approach to EHA as presented in this paper, like in event history

analysis in general, event data is essentially assumed to be given. Or, stated differently,

the production of this data is not considered as being part of the system; instead,

events and the time points of their occurrence are provided by some external source.

In many contemporary applications, however, the detection of an event can be seen as

a non-trivial problem in itself. For example, suppose an event is defined as a Tweet

reporting about a disaster or a crime [25]. The production of an event sequence will

then call for efficient text mining and analysis techniques. We consider the combination

of our approach with methods for event detection [30, 2, 29, 28] as an interesting

challenge for future work.

Another direction of future work is the use of our approach for event prediction on data

streams. In fact, although the aspect of prediction has not been in the focus of this

paper, we already mentioned that hazard rate models can be used for predicting the

time span till the occurrence of the next event, both in terms of point predictions and

confidence intervals. Thus, they may provide an interesting alternative to existing

approaches to event prediction, which are based on other statistical and machine

learning methods [9, 4, 27].
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(a)

(b)

(c)

Figure 3: The collected dataset of earthquakes, plotted by their geographic coordinates.

The data contains earthquakes between the 1st January 2000 till the end of 27th March

2012. (a) earthquakes only; (b) with latitude and longitude lines added; (c) fuzzy partitions

on the two coordinates.
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Figure 4: Parameters for those areas with significant earthquakes in 2008 and 2011.
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Figure 5: The hazard values for those areas with significant earthquakes in 2008 and 2011.
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Figure 6: Parameters for the 16 German states together with the base line hazard α0.
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Figure 7: Base line hazard and parameter distinguishing the city of Bremen from the

surrounding state of Lower Saxony.
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Figure 8: Time needed for model adaptation.
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