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Abstract

Over the past years, methods for the automated induction of models and the ex-
traction of interesting patterns from empirical data have attracted considerable
attention in the fuzzy set community. This paper briefly reviews some typical ap-
plications and highlights potential contributions that fuzzy set theory can make to
machine learning, data mining, and related fields. The paper concludes with a crit-
ical consideration of recent developments and some suggestions for future research
directions.

1 Introduction

Aspects of knowledge representation and reasoning have dominated research
in fuzzy set theory (FST) for a long time, at least in that part of the theory
which lends itself to intelligent systems design and applications in artificial
intelligence (AI). Yet, problems of automated learning and knowledge acqui-
sition have more and more come to the fore during the recent years. This is
not very surprising in view of the fact that the “knowledge acquisition bot-
tleneck” seems to remain one of the key problems in the design of intelligent
and knowledge-based systems. Indeed, experience has shown that a purely
knowledge-driven approach, which aims at formalizing problem-relevant hu-
man expert knowledge, is difficult, intricate, and tedious. More often than
not, it does not even lead to fully satisfying results. Consequently, a kind of
data-driven adaptation of fuzzy systems is often worthwhile. In fact, such a
“tuning” even suggests itself since, in many applications, data is readily avail-
able. Indeed, recent research has shown that the traditional knowledge-driven
approach can be complemented by a data-driven one in a reasonable way. In
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the extreme case, the former is even completely replaced by the latter. For
example, several approaches in which fuzzy models (e.g. fuzzy rule bases) are
learned from data in a fully automated way have already been developed [4].

In addition to this internal shift within fuzzy systems research, an external
development has further amplified the aforementioned trends. This develop-
ment is is the great interest that the field of knowledge discovery in databases
(KDD) has attracted in diverse research communities in recent years. As a
response to the progress in digital data acquisition and storage technology,
along with the limited human capabilities in analyzing and exploiting large
amounts of data, this field has recently emerged as a new research discipline,
lying at the intersection of statistics, machine learning, data management,
and other areas. According to a widely accepted definition, KDD refers to
the non-trivial process of identifying valid, novel, potentially useful, and ul-
timately understandable structure in data [27]. The central step within the
overall KDD process is data mining, the application of computational tech-
niques to the task of finding patterns and models in data. Meanwhile, KDD
has established itself as a new, independent research field, including its own
journals and conferences.

The aim of this paper is to convey an impression of the current status and
prospects of FST in machine learning, data mining, and related fields. After a
brief introduction to these fields (section 2), we present a collection of typical
applications of FST (section 3). The examples are representative but are not
intended to provide a comprehensive review of the literature. In section 4, we
try to highlight in a more systematic way the potential contributions that FST
can make to machine learning and data mining. Finally, we conclude with a
critical consideration of recent developments and some suggestions for future
research directions in section 5.

2 Machine Learning, Data Mining, and Related Fields

The automated learning of models from empirical data is a central theme in
several research disciplines, ranging from classical (inferential) statistics to
more recent fields such as machine learning. Model induction may serve differ-
ent purposes, such as accurate prediction of future observations or intelligible
description of dependencies between variables in the domain under investiga-
tion, among other things. Typically, a model induction process involves the
following steps:

• data acquisition
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• data preparation (cleaning, transforming, selecting, scaling, ...)
• model induction
• model interpretation and validation
• model application

A common distinction of performance tasks in empirical 1 machine learning
is supervised learning (e.g. classification and regression), unsupervised learn-
ing (e.g. clustering) and reinforcement learning. Throughout the paper, we
shall focus on the first two performance tasks that have attracted much more
attention in the FST community than the latter one.

In unsupervised learning, the learning algorithm is simply provided with a
set of data. The latter typically consists of data points z ∈ Z, where Z is
the Cartesian product of the domains of a fixed set of attributes. That is, an
observation z is described in terms of a feature vector. Roughly speaking, the
goal in unsupervised learning is to discover any kind of structure in the data,
such as properties of the distribution, relationships between data entities, or
dependencies between attributes. This includes, e.g., nonparametric features
such as modes, gaps, or clusters in the data (section 3.1), as well as interesting
patterns like those discovered in association analysis (section 3.4).

The setting of supervised learning proceeds from a predefined division of the
data space into an input space X and an output space Y . Assuming a depen-
dency between the input attributes and the output, the former is considered
as the predictive part of an instance description (like the regressor variables
in regression analysis), whereas the latter corresponds to the target to be pre-
dicted (e.g. the dependent variable in regression). The learning algorithm is
provided with a set of labeled examples (x, y) ∈ X × Y. Again, the inputs
x are typically feature vectors. A distinction between different types of per-
formance tasks is made according to the structure of the output space Y .
Even though problems involving output spaces of a richer structure have been
considered recently (e.g. so-called ranking problems [33,30]), Y is typically a
one-dimensional space. In particular, the output is a categorical attribute (i.e.,
Y is a nominal scale) in classification. Here, the goal is to generalize beyond
the examples given by inducing a model that represents a complete mapping
from the input space to the output space (a hypothetical classification func-
tion). The model itself can be represented by means of different formalisms
such as, e.g., threshold concepts or logical conjunctions. In regression, the out-
put is a numerical variable, hence the goal is to induce a real-valued mapping

1 Here, empirical learning is used as an antonym to analytical learning. Roughly
speaking, analytical learning systems do not require external inputs, whereas such
inputs are essential for empirical learning systems. An example of analytical learning
is speedup learning.
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X → Y that approximates an underlying (functional or probabilistic) rela-
tion between X and Y well in a specific sense. So-called ordinal regression is
in-between regression and classification: the output is measured on an ordinal
scale.

As can be seen, supervised machine learning puts special emphasis on induc-
tion as a performance task. Moreover, apart from the efficiency of the induced
model, the predictive accuracy of that model is the most important quality
criterion. The latter refers to the ability to make accurate predictions of out-
puts for so far unseen inputs. The predictive accuracy of a model h : X → Y
is typically measured in terms of the expected loss, i.e., the expected value
of `(y, h(x)), where `(·) is a loss function Y × Y → R (and (x, y) an exam-
ple drawn at random according to an underlying probability measure over
X × Y . 2 )

Data mining has a somewhat different focus. Here, other aspects such as, e.g.,
the understandability, gain in importance. In fact, the goal in data mining
is not necessarily to induce global models of the system under consideration
(e.g. in the form of a functional relation between input and output variables)
or to recover some underlying data generating process, but rather to discover
local patterns of interest, e.g. very frequent (hence typical) or very rare (hence
atypical) events. Data mining is of a more explanatory nature, and patterns
discovered in a data set are usually of a descriptive rather than of a predictive
nature. Data Mining also puts special emphasis on the analysis of very large
data sets and, hence, on aspects of scalability and efficiency.

Despite these slightly different goals, the typical KDD process has much in
common with the process of inductive reasoning as outlined above, except for
the fact that the former can be (and indeed often is) circular in the sense
that the data mining results will retroact on the acquisition, selection, and
preparation of the data, possibly initiating a repeated pass with modified data,
analysis tools, or queries. A typical KDD process may comprise the following
steps:

• data cleaning
• data integration (combination of multiple sources)
• data selection
• data transformation (into a form suitable for the analysis)
• data mining
• evaluation of patterns
• knowledge presentation

2 Since this measure is normally unknown, the expected loss is approximated by
the empirical loss in practice, i.e., the average loss on a test data set.
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Recently, the interest in data mining has shifted from the analysis of large
but homogeneous data sets (relational tables) to the analysis of more complex
and heterogeneous information sources, such as e.g. texts, images, audio and
video data, and the term information mining has been coined to describe a
KDD process focused on this type of information sources [43].

There are several other fields that are closely related to machine learning
and data mining such as, e.g., classical statistics and various forms of data
analysis (distinguished by adjectives like multivariate, exploratory, Bayesian,
intelligent, ...) Needless to say, it is impossible to set a clear boundary between
these fields. Subsequently, we shall simply subsume them under the heading
“machine learning and data mining” (ML&DM), 3 understood in a wide sense
as the application of computational methods and algorithms for extracting
models and patterns from potentially very large data sets.

3 Typical Applications of Fuzzy Set Theory

The tools and technologies that have been developed in FST have the poten-
tial to support all of the steps that comprise a process of model induction or
knowledge discovery. In particular, FST can already be used in the data se-
lection and preparation phase, e.g., for modeling vague data in terms of fuzzy
sets [60], to “condense” several crisp observations into a single fuzzy one, or
to create fuzzy summaries of the data [44]. As the data to be analyzed thus
becomes fuzzy, one subsequently faces a problem of fuzzy data analysis [5].

The problem of analyzing fuzzy data can be approached in at least two princi-
pally different ways. First, standard methods of data analysis can be extended
in a rather generic way by means of an extension principle. For example, the
functional relation between the data points and the coefficients of a linear
regression function can be extended to the case of fuzzy data, where the ob-
servations are described in terms of fuzzy sets. Thus, the coefficients become
fuzzy as well. A second, often more sophisticated approach is based on embed-
ding the data into more complex mathematical spaces, such as fuzzy metric
spaces [18], and to carry out data analysis in these spaces [19].

If fuzzy methods are not used in the data preparation phase, they can still be

3 Our distinction between machine learning and data mining can roughly be seen as
a “modern” or extended distinction between descriptive and inductive statistics. We
note, however, that this view is not an opinio communis. For example, some people
have an even more general view of data mining that includes machine learning as a
special case.
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employed in a later stage in order to analyze the original data. Thus, it is not
the data to be analyzed that is fuzzy, but rather the methods used for analyzing
the data (in the sense of resorting to tools from FST). In the following, we shall
focus on this type of fuzzy data analysis (where the adjective “fuzzy” refers to
the term analysis, not to the term data), which is predominant in ML&DM.
In fact, our brief review of typical applications of FST (including possibility
theory) is more oriented toward these fields than toward methods from classical
statistics and multivariate data analysis (such as linear regression).

3.1 Fuzzy Cluster Analysis

Clustering methods are among the most important unsupervised learning tech-
niques. In data analysis, they are often routinely applied as one of the first
steps in order to convey a rough idea of the structure of a data set. Clustering
refers to the process of grouping a collection of objects into classes or “clus-
ters” such that objects within the same class are similar in a certain sense,
and objects from different classes are dissimilar. In addition, the goal is some-
times to arrange the clusters into a natural hierarchy (hierarchical clustering).
Also, cluster analysis can be used as a form of descriptive statistics, showing
whether or not the data consists of a set of distinct subgroups.

As input, clustering algorithms typically assume information about the (pair-
wise) similarity between objects e.g. in the form of a proximity matrix. Usually,
objects are described in terms of a set of measurements from which similar-
ity degrees between pairs of objects are derived, using a kind of similarity
or distance measure. There are basically three types of clustering algorithms:
Mixture modeling assumes an underlying probabilistic model, namely that the
data were generated by a probability density function, which is a mixture of
component density functions. Combinatorial algorithms do not assume such a
model. Instead, they proceed from an objective function to be maximized and
approach the problem of clustering as one of combinatorial optimization. So
called mode-seekers are somewhat similar to mixture models. However, they
take a non-parametric perspective and try to estimate modes of the component
density functions directly. Clusters are then formed by looking at the close-
ness of the objects to these modes that serve as cluster centers. The popular
K-means algorithm is maybe the most popular representative of this class.

In standard clustering, each object is assigned to one cluster in an unequivocal
way. Consequently, the individual clusters are separated by sharp boundaries.
In practice, such boundaries are often not very natural or even counterin-
tuitive. Rather, the boundary of single clusters and the transition between
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different clusters are usually “smooth” rather than abrupt. This is the main
motivation underlying fuzzy extensions to clustering algorithms [34]. In fuzzy
clustering an object may belong to different clusters at the same time, at least
to some extent, and the degree to which it belongs to a particular cluster is
expressed in terms of a membership degree. The membership functions of the
different clusters (defined on the set of observed points) is usually assumed
to form a partition of unity. This version, often called probabilistic cluster-
ing, can be generalized further by weakening this constraint: In possibilistic
clustering, the sum of membership degrees is constrained to be at least 1 [42].
Fuzzy clustering has proved to be extremely useful in practice and is now rou-
tinely applied also outside the fuzzy community (e.g. in recent bioinformatics
applications [31]).

3.2 Learning Fuzzy Rule Bases

The most frequent application of FST in machine learning is the induction
or the adaptation of rule-based models. This is hardly astonishing, since rule-
based models have always been a cornerstone of fuzzy systems and a central
aspect of research in the field, not only in ML&DM but also in many other
subfields, notably approximate reasoning and fuzzy control. (The terms fuzzy
system and fuzzy rule base are sometimes even used synonymously.)

Fuzzy rule bases can represent both classification and regression functions, and
different types of fuzzy models have been used for these purposes. In order to
realize a regression function, a fuzzy system is usually wrapped in a “fuzzifier”
and a “defuzzifier”: The former maps a crisp input to a fuzzy one, which is
then processed by the fuzzy system, and the latter maps the (fuzzy) output of
the fuzzy system back to a crisp value. For so-called Takagi-Sugeno models,
which are quite popular for modeling regression functions, the defuzzification
step is unnecessary, since these models output crisp values directly.

In the case of classification, the consequent of single rules such as

IF (size ∈ TALL) AND (weight ∈ LIGHT) THEN (class = A)

is usually a class assignment (i.e. a singleton fuzzy set). 4 Evaluating a rule
base (à la Mamdani-Assilan) thus becomes trivial and simply amounts to
“maximum matching”, that is, searching the maximally supporting rule for
each class. Thus, much of the appealing interpolation and approximation prop-
erties of fuzzy inference gets lost, and fuzziness only means that rules can be
4 More generally, a rule consequent can suggest different classes with different de-
grees of certainty.
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activated to a certain degree. There are, however, alternative methods which
combine the predictions of several rules into a classification of the query [12].

A plethora of strategies has been developed for inducing a fuzzy rule base
from the data given. Refraining from a detailed exposition, we only point out
one chief difference between these strategies. This difference concerns the way
in which individual rules or their condition parts are learned. One possibil-
ity is to (successively) identify regions in the input space that seem to be
qualified to form the (the extension of) a condition part of a rule. This can
be done by looking for clusters using clustering algorithms (see above), or
by identifying hyperboxes in the manner of so-called covering (separate and
conquer) algorithms [29]. By projecting the regions thus obtained onto the
various dimensions of the input space, rule antecedents of the form “X ∈ A”
are obtained, where X is an individual attribute and A is a fuzzy set (the
projection of the fuzzy region). The condition part of the rule is then given
by the conjunction of these antecedents. This approach is relatively flexible,
though it suffers from the disadvantage that each rule makes use of its own
fuzzy sets. Thus, the complete rule base might be difficult to interpret.

An alternative is to proceed from a fixed fuzzy partition for each attribute, i.e.,
a regular “fuzzy grid” of the input space, and to consider each cell of this grid
as a potential antecedent part of a rule [61]. This approach is advantageous
from an interpretability point of view. On the other hand, it is less flexible and
may produce inaccurate models when the one-dimensional partitions define a
multi-dimensional grid that does not reflect the structure of the data.

Especially important in the field of fuzzy rule learning are hybrid methods that
combine FST with other methodologies, notably evolutionary algorithms and
neural networks. For example, evolutionary algorithms are often used in order
to optimize (“tune”) a fuzzy rule base or for searching the space of potential
rule bases in a (more or less) systematic way [13]. Quite interesting are also
neuro-fuzzy methods [47]. For example, one idea is to encode a fuzzy system
as a neural network and to apply standard methods (like backpropagation) in
order train such a network. This way, neuro-fuzzy systems combine the repre-
sentational advantages of fuzzy systems with the flexibility and adaptivity of
neural networks.

3.3 Fuzzy Decision Tree Induction

Decision tree induction, well-known examples of which include the ID3 algo-
rithm [50] and its successor C4.5 and C5.0 [51] as well as the CART system [8],
are among the most widely applied supervised machine learning techniques.

8



The basic principle underlying most decision tree learners is that of parti-
tioning the set of given examples in a recursive manner until the subsets of
examples thus obtained are “homogeneous” enough (with respect to an out-
put attribute, which is typically a class label). Each inner node of a decision
tree defines a partition of the examples assigned to that node. This is done
by classifying elements according to the value of a specific input attribute.
The latter is selected according to a measure of effectiveness in improving the
homogeneity of the resulting partition, thereby supporting the overall objec-
tive of constructing a small (simple) tree. The recursive partitioning process
terminates if a stopping condition is satisfied, in which case the node becomes
a leaf of the tree.

Once the decision tree has been constructed, each path can be considered as a
rule. The antecedent part of a rule is a conjunction of constraints on attribute
values and the conclusion part determines a value for the class variable. New
examples are then classified on the basis of these rules, i.e., by looking at the
class label of the leaf node the attribute values of which match the description
of the example. Decision tree induction can thus be seen as a special form of
rule induction, where the potential rule bases are restricted to those having a
tree-like hierarchical structure. Since decision trees are derived in a top-down
fashion by means of a heuristic (greedy) strategy, the class of potential models
is searched in a rather efficient way, though optimality cannot be guaranteed.

Fuzzy variants of decision tree induction have been developed for quite a while
(e.g. [62,40]) and seem to remain a topic of interest even today (see [48] for a
recent approach and a comprehensive overview of research in this field). In fact,
these approaches provide a typical example for the “fuzzification” of standard
machine learning methods. In the case of decision trees, it is primarily the
“crisp” thresholds used for defining splitting predicates (constraints), such as
e.g. size ≤ 181, at inner nodes that have been criticized: Such thresholds
lead to hard decision boundaries in the input space, which means that a slight
variation of an attribute (e.g. size = 182 instead of size = 181) can entail a
completely different classification of an object (e.g. of a person characterized
by size, weight, gender, ...) Moreover, the learning process becomes unstable
in the sense that a slight variation of the training examples can change the
induced decision tree drastically. 5

In order to make the decision boundaries “soft”, an obvious is idea to apply
fuzzy predicates at the inner nodes of a decision tree, such as e.g. size ∈ TALL,
where TALL is a fuzzy set (rather than an interval). In other words, a fuzzy

5 Decision tree induction is known to have high variance, a property that has re-
cently been exploited in connection with ensemble learning techniques.
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partition instead of a crisp one is used for the splitting attribute (here size)
at an inner node. Since an example can satisfy a fuzzy predicate to a certain
degree, the examples are partitioned in a fuzzy manner as well. That is, an
object is not assigned to exactly one successor node in a unique way, but
perhaps to several successors with a certain degree. For example, a person
whose size is 181 cm could be an element of the TALL-group to the degree, say,
0.7 and of the complementary group to the degree 0.3.

The above idea of “soft recursive partitioning” has been realized in differ-
ent ways. Moreover, the problems entailed by corresponding fuzzy extensions
have been investigated. For example, how can splitting measures like entropy,
originally defined for ordinary sets of examples, be extended to fuzzy sets of
examples [14]? Or, how can a new object be classified by a fuzzy decision tree?

3.4 Fuzzy Association Analysis

As mentioned above, methods for learning dependencies in the data that are
expressed in terms of (IF–THEN) rules are quite popular. Rules of this form
are also extracted from data in so-called association analysis, by now one of
the most frequently applied data mining techniques. As an important differ-
ence between association rules and rule-based models for classification and
regression, we note that the former are of a descriptive nature. Moreover, as-
sociation rules are typically considered in isolation, i.e., as a particular type
of local pattern 6 , and not as an integral part of a rule base.

Association rules provide a means for representing dependencies between at-
tribute values of objects (data records) stored in a database. 7 Typically, an
association involves two sets of binary attributes (features), A and B. Then,
the intended meaning of a rule “IF A THEN B” is that an object having all
the features in A is likely to have all the features in B as well. In order to
decide whether a potential association is interesting or at least well-supported
by the data, it is evaluated by several quality measures. Standard measures
include the support of a rule, i.e. the number of objects in the database sat-
isfying both the condition A and the conclusion B, and its confidence, i.e.
the relative frequency of objects satisfying B among those satisfying A. Then,
the problem is to find all associations the support and confidence of which is

6 Even though dependencies between association rules are of course important. For
example, if one rule is more general than another one, only the first one should be
reported to the user of a data mining system.
7 In a sense, association analysis can be seen as an extension of statistical correlation
analysis.
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above a (user-specified) threshold. Since the number of candidate rules grows
exponentially with the number of attributes, this problem is computationally
complex [1,54].

Association rules of the above type are often employed in the context of
market-basket analysis, where an object is a purchase and features are as-
sociated with products or items. In this context, the association

IF {paper, envelopes} THEN {stamps}

suggests, for example, that a purchase containing paper and envelopes is likely
to contain stamps as well.

A generalization of binary association rules is motivated by the fact that a
database is usually not restricted to binary attributes but also contains at-
tributes with values ranging on (completely) ordered scales, such as numerical
or ordered categorical attributes. In quantitative association analysis, rule an-
tecedents and consequents are specified in terms of subsets of attribute values,
typically in the form of intervals. For example, “Employees at the age of 30
to 40 have incomes between $50,000 and $70,000”.

The use of fuzzy sets in connection with association analysis has been pro-
posed by numerous authors (see [10,16] for recent overviews), with motiva-
tions closely resembling those in the case of rule learning and decision tree
induction. Again, by allowing for “soft” rather than crisp boundaries of inter-
vals, fuzzy sets can avoid certain undesirable threshold effects [57], this time
concerning the quality measures of association rules rather than the classifi-
cation of objects. Moreover, identifying fuzzy sets with linguistic terms allows
for a comprehensible and user-friendly presentation of rules discovered in a
database. Example: “Middle-aged employees receive considerable incomes.”

Many standard techniques for association rule mining have been transferred to
the fuzzy case, sometimes in a rather ad-hoc manner. Indeed, publications on
this topic are often more concerned with issues of data preprocessing, e.g. the
problem of finding good fuzzy partitions for the quantitative attributes, rather
than the rule mining process itself. Still, more theoretically-oriented research
has recently been started [23]. For example, the existence of different types
of fuzzy rules [24] suggests that fuzzy associations might be interpreted in
different ways and, hence, that the evaluation of an association cannot be in-
dependent of its interpretation. In particular, one can raise the question which
generalized logical operators can reasonably be applied in order to evaluate
fuzzy associations, e.g, whether the antecedent part and the condition part
should be combined in a conjunctive way (à la Mamdani rules) or by means of
a generalized implication (as in implication-based fuzzy rules) [35]. Moreover,
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since standard evaluation measures for association rules can be generalized in
many ways, it is interesting to investigate properties of particular generaliza-
tions and to look for an axiomatic basis that supports the choice of specific
measures [23].

3.5 Fuzzy Methods in Case-Based Learning

Case-based or instance-based learning algorithms have been applied success-
fully in fields such as machine learning and pattern recognition during the
recent years [3,15]. The case-based learning (CBL) paradigm is also of central
importance in case-based reasoning (CBR), a problem solving methodology
that goes beyond the standard prediction problems of classification and re-
gression that are usually considered in machine learning [52,41].

As the term suggests, in CBL special importance is attached to the concept
of a case. A case or an instance can be thought of as a single experience, such
as a pattern (along with its classification) in pattern recognition or a problem
(along with a solution) in CBR. Rather than inducing a global model (theory)
from the data and using this model for further reasoning, as inductive, model-
based machine learning methods typically do, CBL systems simply store the
data itself. The processing of the data is deferred until a prediction (or some
other type of query) is actually requested, a property that qualifies CBL as
a lazy learning method [2]. Predictions are then derived by combining the
information provided by the stored examples, primarily by those cases that
are similar to the new query. In fact, the major assumption underlying CBL

is a commonsense principle suggesting that “similar problems have similar
solutions”. This “similarity hypothesis” serves as a basic inference paradigm
in various domains of application. For example, in a classification context, it
translates into the assertion that “similar objects have similar class labels”.

Similarity-based inference has also been a topic of interest in FST, which
is hardly astonishing since similarity is one of the main semantics of fuzzy
membership degrees [53,56]. Along these lines, a close connection between case-
based learning and fuzzy rule-based reasoning has been established in [21,22].
Here, the aforementioned “similarity hypothesis” has been formalized within
the framework of fuzzy rules. More precisely, each observed case, consisting
of a problem x (e.g. an object) and an associated solution y (e.g. a class
label), is encoded in terms of a so-called possibility rule: If a query x0 is
similar to x, then its solution y0 is possibly similar to y. On the basis of such
rules, case-based inference can be realized as a special type of fuzzy set-based
approximate reasoning. Note that this “possibilistic” variant of the similarity
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hypothesis takes the heuristic and, hence, uncertain character of similarity-
based inference into consideration.

A possibilistic variant of the well-known k-nearest neighbor classifier, which
constitutes the core of the family of CBL algorithms, has been presented in
[37]. Among other things, this paper emphasizes the ability of possibility the-
ory to represent partial ignorance as a special advantage in comparison to
probabilistic approaches. In fact, this point seems to be of critical importance
in case-based learning, where the reliability of a classification strongly depends
on the existence of cases that are similar to the query. Consider the extreme
situation where the case library does not contain any case similar to the query.
In other words, nothing is known about the query. This situation of complete
ignorance can be represented in an adequate way in possibility theory (either
by the possibility distribution π ≡ 1, or by the distribution δ ≡ 0, depending
on whether possibility is interpreted as “potential possibility” or “evidential
support”). In probability theory, complete ignorance is usually modeled by
the uniform distribution, as suggested by the principle of insufficient reason.
In our situation, this distribution is given by p ≡ 1/c, where c is the number
of potential class labels. The adequacy of this distribution as a representa-
tion of ignorance has been called into question [25]. In particular, one cannot
distinguish between complete ignorance and the situation where one can be
quite sure that the class labels are indeed equi-probable, since the distribution
p ≡ 1/c has been derived from a large enough number of similar cases. From a
knowledge representational point of view, this clearly shows the advantage of
absolute (possibilistic) over relative (probabilistic) degrees of support in CBL.
For example, telling a patient that your experience does not allow any state-
ment concerning his prospect of survival is very different from telling him that
his chance is fifty-fifty.

The use of OWA-operators as generalized aggregation operators in case-based
learning has been proposed in [63]. In fact, there are several types of ag-
gregation problems that arise in CBL. One of these problems concerns the
derivation of a global degree of similarity between cases: Typically, one pro-
ceeds from local similarity degrees pertaining to individual (one-dimensional)
attributes of a case (e.g. the size of a person), since specifying the similarity
with respect to a single aspect is much easier than providing a global similarity
directly. Rather, a global degree of similarity is derived indirectly, by aggre-
gating the local similarity degrees. Usually, this is done by means of a simple
linear combination, and this is where OWA-operators provide an interesting,
more flexible alternative. A second aggregation problem in CBL concerns the
combination of the evidences in favor of different class labels that come from
the neighbors of the query case. In [38], it is argued that cases retrieved from
a case library must not be considered as independent information sources, as
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implicitly done by most case-based learning methods. To take interdependen-
cies between the neighbored cases into account, a new inference principle is
developed that combines potentially interacting pieces of evidence by means of
the (discrete) Choquet-integral. This method can be seen as a generalization
of weighted nearest neighbor estimation.

3.6 Possibilistic Networks

So-called graphical models, including Bayesian networks [49] and Markov net-
works [45], have been studied intensively in recent years. The very idea of such
models is to represent a high-dimensional probability distribution (defined on
the Cartesian product of the domains of all attributes under consideration)
in an efficient way, namely by factorizing it into several low-dimensional con-
ditional or marginal distributions. This is accomplished by exploiting certain
independence relations between subsets of attributes. The graphical model it-
self represents just these (in-)dependence relations: A node corresponds to an
attribute, and an edge represents a direct dependency. Efficient algorithms for
propagating evidence in graphical models have been developed to obtain the
conditional distribution of certain attributes given the values of other vari-
ables.

Moreover, methods for learning graphical models from data have been devised.
A graphical model basically consists of two components, a qualitative and a
quantitative one. The former consists of the dependence and independence
relations (as represented by the graph), the latter of the associated (condi-
tional, low-dimensional) probability distributions. Correspondingly, there are
two types of learning methods: those which assume the qualitative part to be
given and, hence, learn only the probability distributions, and those which
aim at learning the complete model, including the independence relations.

By their very nature, graphical models of the above kind provide a suitable
means for representing probabilistic uncertainty. However, they cannot easily
deal with other types of uncertainty such as imprecision or incompleteness.
This has motivated the development of possibilistic networks as a possibilistic
counterpart to probabilistic networks [6]. This approach relies upon possibil-
ity theory as an underlying uncertainty calculus, which makes it particularly
suitable for dealing with imprecise data (in the form of set-valued specifica-
tions of attribute values). In this approach, the interpretation of possibility
distributions is based on the so-called context model [32], hence possibility
degrees are considered as a kind of upper probability.
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4 Potential Contributions of Fuzzy Set Theory

4.1 Graduality

The ability to represent gradual concepts and fuzzy properties in a thorough
way is one of the key features of fuzzy sets. This aspect is also of primary
importance in the context of ML&DM.

In machine learning, for example, the formal problem of concept learning has
received a great deal of attention. A concept is usually identified with its ex-
tension, that is a subset C of an underlying set (universe) U of objects. For
example, C might be the concept “dog” whose extension is the set of dogs
presently alive, a subset of all creatures on earth. The goal of (machine) learn-
ing is to induce an intensional description of a concept from a set of (positive
and negative) examples, that is a characterization of a concept in terms of its
properties (a dog has four legs and a tail, it can bark, ...). Now, it is widely
recognized that most natural concepts have non-sharp boundaries. To illus-
trate, consider concepts like woods, river, lake, hill, street, house, or chair.
Obviously, these concepts are vague or fuzzy, in that one cannot unequivo-
cally say whether or not a certain collection of trees should be called a wood,
whether a certain building is really a house, and so on. Rather, one will usually
agree only to a certain extent that an object belongs to a concept. Thus, an
obvious idea is to induce fuzzy concepts, that are formally identified by a fuzzy
rather than a crisp subset of U . Fuzzy concepts can be characterized in terms
of fuzzy predicates (properties) which are combined by means of generalized
logical connectives. In fact, one should recognize that graduality is not only
advantageous for expressing the concept itself, but also for modeling the qual-
ifying properties. For example, a “firm ground” is a characteristic property of
a street, and this property is obviously of a fuzzy nature (hence it should be
formalized accordingly).

Likewise, in data mining, the patterns of interest are often vague and have
boundaries that are non-sharp in the sense of FST. To illustrate, consider the
concept of a “peak”: It is usually not possible to decide in an unequivocal
way whether a timely ordered sequence of measurements (e.g. the expression
profile of a gene in a microarray experiment, to mention one of the topical
application areas of fuzzy data mining) has a “peak” (a particular kind of
pattern) or not. Rather, there is a gradual transition between having a peak
and not having a peak. Taking graduality into account is also important if
one must decide whether a certain property is frequent among a set of objects,
e.g., whether a pattern occurs frequently in a data set. In fact, if the pattern is
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specified in an overly restrictive manner, it might easily happen that none of
the objects matches the specification, even though many of them can be seen
as approximate matches. In such cases, the pattern might still be considered
as “well-supported” by the data.

Unfortunately, the representation of graduality is often foiled in machine learn-
ing applications, especially in connection with the learning of predictive mod-
els. In such applications, a fuzzy prediction is usually not desired, rather one
is forced to come up with a definite final decision. Classification is an obvi-
ous example: Usually, a decision in favor of one particular class label has to
be made, even if the object under consideration seems to have partial mem-
bership in several classes simultaneously. This is the case both in theory and
practice: In practice, the bottom line is the course of action (e.g. the choice
among a set of applicants) one takes on the basis of a prediction, not the
prediction itself. In theory, a problem concerns the performance evaluation of
a fuzzy classifier: 8 The standard benchmark data sets (e.g. those from the
UCI repository or the StatLib archive 9 ) have crisp rather than fuzzy labels.
Moreover, a fuzzy classifier cannot be compared with a standard (non-fuzzy)
classifier unless it eventually outputs crisp predictions.

Needless to say, if a fuzzy predictor is supplemented with a “defuzzification”
mechanism (like a winner-takes-all strategy in classification), many of its mer-
its are lost. In the classification setting, for instance, a defuzzified fuzzy classi-
fier does again produce hard decision boundaries in the input space. Thereby,
it is actually reduced to a standard classifier.

Here is an example often encountered in the literature: Suppose the premise
of a classification rule to be a conjunction of antecedents of the form xi ∈
Ai, where xi is an attribute value and Ai a fuzzy set, and let the rules be
combined in a disjunctive way. Moreover, let the consequent of a rule be simply
a class assignment. If the standard minimum and maximum operators are used,
respectively, as a generalized logical conjunction and disjunction, it is easy to
see that the classifier thus obtained induces axis-parallel decision boundaries
in the input space, and that the same boundaries can be produced by means
of interval-based instead of fuzzy rules.

If a classifier is solely evaluated on the basis of its predictive accuracy, then all
that matters is the decision boundaries it produces in the input space. Since a
defuzzified fuzzy classifier does not produce a decision boundary that is prin-
cipally different from the boundaries produced by alternative classifiers (such
as decision trees or neural networks), fuzzy machine learning methods don’t

8 The same problem occurs for probabilistic classifiers.
9 http://www.ics.uci.edu/˜mlearn, http://stat.cmu.edu/
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have much to offer with regard to generalization performance. And indeed,
fuzzy approaches to classification do usually not improve predictive accuracy.

Let us finally note that “graduality” is of course not reserved to fuzzy meth-
ods. Rather, it is inherently present also in many standard learning methods.
Consider, for example, a concept learner (binary classifier) c : X → [0, 1]
the output of which is a number in the unit interval, expressing a kind of
“propensity” of an input x to the concept under consideration. Classifiers of
such kind abound, a typical example is a multilayer perceptron. In order to ex-
tend such classifiers to multi-class problems (involving more than two classes),
one common approach is to apply a one-against-all strategy: For each class y,
a separate classifier cy(·) is trained which considers that class as the concept to
be learned and, hence, instances of all other classes as negative examples. The
prediction for a new input x is then given by the class that maximizes cy(x).
Now, it is of course tempting to consider the cy(x) as (estimated) membership
degrees and, consequently, the collection {cy(x) | y ∈ Y} of these estimations
as a fuzzy classification.

4.2 Interpretability

A primary motivation for the development of fuzzy sets was to provide an
interface between a numerical scale and a symbolic scale which is usually
composed of linguistic terms. Thus, fuzzy sets have the capability to inter-
face quantitative patterns with qualitative knowledge structures expressed in
terms of natural language. This makes the application of fuzzy technology
very appealing from a knowledge representational point of view. For example,
it allows association rules discovered in a database to be presented in a lin-
guistic and hence comprehensible way. In fact, the user-friendly representation
of models and patterns is often emphasized as one of the key features of fuzzy
methods.

The use of linguistic modeling techniques does also produce some disadvan-
tages, however. A first problem concerns the interpretation of fuzzy mod-
els: Linguistic terms and, hence, models are highly subjective and context-
dependent. It is true that the imprecision of natural language is not necessar-
ily harmful and can even be advantageous. 10 A fuzzy controller, for example,
can be quite insensitive to the concrete mathematical translation of a linguis-
tic model. One should realize, however, that in fuzzy control the information
flows in a reverse direction: The linguistic model is not the end product, as in
ML&DM, it rather stands at the beginning.

10 See Zadeh’s famous principle of incompatibility between precision and meaning.
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It is of course possible to disambiguate a model by complementing it with
the semantics of the fuzzy concepts it involves (including the specification of
membership functions). Then, however, the complete model, consisting of a
qualitative (linguistic) and a quantitative part, becomes cumbersome and will
not be easily understandable. This can be contrasted with interval-based mod-
els, the most obvious alternative to fuzzy models: Even though such models
do certainly have their shortcomings, they are at least objective and not prone
to context-dependency.

Another possibility to guarantee transparency of a fuzzy model is to let a user
of a data mining system specify all fuzzy concepts by hand, including the fuzzy
partitions for all of the variables involved in the study under consideration.
This is rarely done, however, mainly for two reasons. Firstly, the job is of course
tedious and cumbersome if the number of variables is large. Secondly, much
flexibility for model adaptation is lost, because it is by no means guaranteed
that accurate predictive models or interesting patterns can be found on the
basis of the fuzzy partitions as pre-specified by the user. In fact, in most
methods the fuzzy partitions are rather adapted to the data in an optimal
way, so as to maximize the model accuracy or the interestingness of patterns.

A second problem with regard to transparency concerns the complexity of
models. A rule-based classifier consisting of, say, 40 rules each of which has
a condition part with 5-7 antecedents, will hardly be comprehensible as a
whole, even if the various ingredients might be well understandable. Now, since
models that are simple, e.g. in the sense of including only a few attributes or
a few rules, will often not be accurate at the same time, there is obviously a
conflict between accuracy and understandability and, hence, the need to find
a tradeoff between these criteria [9].

In fact, this tradeoff concerns not only the size of models, but also other
measures that are commonly employed in order to improve model accuracy.
In connection with rule-based models, for example, the weighting of individual
rules can often help to increase the predictive accuracy. On the other hand,
the interpretation of a set of weighted rules is anything but trivial.

4.3 Robustness

It is often claimed that fuzzy methods are more robust than non-fuzzy meth-
ods. Of course, the term “robustness” can refer to many things, e.g., to the
sensitivity of an induction method towards violations of the model assump-
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tions. 11 In connection with fuzzy methods, the most relevant type of robust-
ness concerns sensitivity towards variations of the data. Roughly speaking, a
learning or data mining method is considered robust if a small variation of
the observed data does hardly alter the induced model or the evaluation of a
pattern. 12

A common argument supporting the claim that fuzzy models are in this sense
more robust than non-fuzzy models refers to the already mentioned “boundary
effect”, which occurs in various variants and is arguably an obvious drawback
of interval-based methods. In fact, it is not difficult to construct convincing
demonstrations of this effect: In association analysis (cf. section 3.4), for ex-
ample, a small shift of the boundary of an interval can have a drastic effect on
the support of a fuzzy association rule if many data points are located near the
boundary. This effect is alleviated when using fuzzy sets instead of intervals.

Unfortunately, such examples are often purely artificial and, hence, of lim-
ited practical relevance. Moreover, there is no clear conception of the concrete
meaning of robustness. Needless to say, without a formal definition of robust-
ness, i.e., certain types of robustness measures, one cannot argue convincingly
that one data mining method is more robust than another one. For example, it
makes a great difference whether robustness is understood as a kind of expected
or a kind of worst-case sensitivity: It is true that a shifting of data points can
have a stronger effect on, say, the support of an interval-based association rule
than on the support of a fuzzy association. However, if the data points are not
located at the boundary region of the intervals, it can also happen that the
former is not affected at all, whereas a fuzzy rule is almost always affected at
least to some extent (since the “boundary” of a fuzzy interval is much wider
than that of a standard interval). Consequently, if robustness is defined as a
kind of average rather than maximal sensitivity, the fuzzy approach might not
be more robust than the non-fuzzy one.

4.4 Representation of Uncertainty

Machine learning is inseparably connected with uncertainty. To begin with,
the data presented to learning algorithms is imprecise, incomplete or noisy
most of the time, a problem that can badly mislead a learning procedure.
But even if observations are perfect, the generalization beyond that data, the

11 This type of sensitivity is of special interest in robust statistics.
12 Note that we speak about robustness of the learning algorithm (that takes a set
of data as input and outputs a model), not about robustness of the induced model
(that takes instances as input and outputs, say, a classification).
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process of induction, is still afflicted with uncertainty. For example, observed
data can generally be explained by more than one candidate theory, which
means that one can never be sure of the truth of a particular model.

Fuzzy sets and possibility theory have made important contributions to the
representation and processing of uncertainty. In ML&DM, like in other fields,
related uncertainty formalisms can complement probability theory in a rea-
sonable way, because not all types of uncertainty relevant to machine learning
are probabilistic and because other formalisms are more expressive than prob-
ability.

To illustrate the first point, consider the problem of inductive reasoning as
indicated above: In machine learning, a model is often induced from a set of
data on the basis of a heuristic principle of inductive inference such as, e.g.,
the well-known Occams’s razor. As one can never be sure of the truth of the
particular model suggested by the heuristic principle, it seems reasonable to
specify a kind of likelihood for all potential candidate models. This is done,
e.g., in Bayesian approaches, where the likelihood of models is characterized
in terms of a posterior probability distribution (probability of models given
the data). One can argue, however, that the uncertainty produced by heuristic
inference principles such as Occam’s razor is not necessarily of a probabilistic
nature and, for example, that the derivation of a possibility distribution over
the model space is a viable alternative. This idea has been suggested in [36] in
connection with decision tree induction: Instead of learning a single decision
tree, a possibility distribution over the class of all potential trees is derived on
the basis of a possibilistic variant of Occam’s razor.

The second point, concerning the limited expressivity of probability distribu-
tions, has been illustrated nicely in section 3.5, where we have argued that
possibility distributions are more suitable for representing partial ignorance
in case-based learning. In a similar way, possibility theory is used for modeling
incomplete and missing data in possibilistic networks, as outlined in section
3.6.

Finally, we note that apart from possibility theory, other formalisms can be
used to model various forms of uncertainty and incomplete information in
learning from data. For example, belief functions have been extensively em-
ployed in this connection (e.g. [17,26]).

20



4.5 Incorporation of Background Knowledge

Roughly speaking, inductive learning can be seen as searching the space of
candidate hypotheses for a most suitable model. The corresponding search
process, regardless whether it is carried out in an explicit or implicit way,
is usually “biased” in various ways, and each bias usually originates from a
sort of background knowledge. For example, the representation bias restricts
the hypothesis space to certain types of input-output relations such as, e.g.,
linear or polynomial relationships. Incorporating background knowledge is ex-
tremely important, because the data by itself would be totally meaningless if
considered from an “unbiased” point of view [46].

Fuzzy set-based modeling techniques provide a convenient tool for making
expert knowledge accessible to computational methods and, hence, to incor-
porate background knowledge in the learning process. Here, we briefly outline
two possibilities.

One very obvious approach is to combine rule-based modeling and learning.
For example, an expert can describe an input-output relation in terms of a
fuzzy rule base (as in fuzzy control). Afterwards, the membership functions
specifying the linguistic terms that have been employed by the expert can be
adapted to the data in an optimal way. 13 In other words, the expert specifies
the rough structure of the rule-based model, while the fine-tuning is done in
a data-driven way. Let us note that specifying the structure of a model first
and adapting that structure to the data afterwards is a general strategy for
combining knowledge-based and data-driven modeling, which is not reserved
to rule-based models; it is used, for example, in graphical models (cf. section
3.6) as well.

An alternative approach, called constraint-regularized learning, aims at ex-
ploiting fuzzy set-based modeling techniques within the context of the regu-
larization (penalization) framework of inductive learning [39]. Here, the idea is
to express vague, partial knowledge about an input-output relation in terms
of fuzzy constraints and to let such constraints play the role of a penalty
term within the regularization approach. Thus, an optimal model is one that
achieves an optimal tradeoff between fitting the data and satisfying the con-
straints.

13 Here, the expert knowledge implements a kind of search bias, as it determines the
starting point of the search process and, hence, the local optimum in the space of
models that will eventually be found.
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4.6 Generalized Aggregation Operators

Many ML&DM methods make use of logical and arithmetical operators for
representing relationships between attributes in models and patterns. In de-
cision tree induction, for example, each inner node represents an equality or
an inequality predicate, and these predicates are combined in a conjunctive
way along a path of a tree. In nearest neighbor classification, each neighbor
provides a certain amount of evidence in favor of the class it belongs to. To
make a final decision, this evidence must be aggregated either way, which in
the standard approach is done by simply adding them up.

Now, a large repertoire of generalized logical (e.g. t-norms and t-conorms)
and arithmetical (e.g. Choquet- and Sugeno-integral) operators have been de-
veloped in FST and related fields. Thus, a straightforward way to extend
standard learning methods consists of replacing standard operators by their
generalized versions. In fact, several examples of this idea have been presented
in previous sections.

The general effect of such generalizations is to make models more flexible.
For example, while a standard decision tree can only produce axis-parallel
decision boundaries, these boundaries can become non-axis-parallel for fuzzy
decision trees where predicates are combined by means of a t-norm. Now, it
is well-known that learning from empirical data will be most successful if the
model class under consideration has just the right flexibility, since both over-
and underfitting of a model can best be avoided in that case. Therefore, the
question whether a fuzzy generalization will pay off cannot be answered in
general: If the original (non-fuzzy) hypothesis space is not flexible enough,
the fuzzy version will probably be superior. On the other hand, if the former
is already flexible enough, a fuzzification might come along with a danger of
overfitting.

5 Conclusions

All things considered, it is beyond question that FST has the potential to
contribute to machine learning and data mining in various ways. In fact, the
previous sections have shown that substantial contributions have already been
made. Yet, our remarks also suggest that much scope for further developments
is still left. According to our opinion, however, it is very important to focus
on the right issues, that is to say, to concentrate more on the strengths and
distinctive features of FST.
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In particular, we doubt that FST will be very conducive to generalization per-
formance and model accuracy, albeit the latter is still the dominant quality
criterion in machine learning research. This somewhat sceptical view has at
least two reasons: Firstly, after several years of intensive research the field of
machine learning has reached a somewhat mature state, and a large repertoire
of quite sophisticated learning algorithms is now available. Regarding predic-
tive accuracy, a significant improvement of the current quality level can hardly
be expected.

Secondly, and perhaps more importantly, FST does not seem to offer fun-
damentally new concepts or induction principles for the design of learning
algorithms, comparable, e.g., to the ideas of resampling and ensemble learning
[20] (like bagging [7] and boosting [28]) or the idea of margin maximization
underlying kernel-based learning methods [55], that might raise hope for an
improved generalization performance. As mentioned above, even though fuzzi-
fying standard learning methods, e.g. by using fuzzy partitions of numeric
attributes or generalized logical and arithmetic operators, can have an effect
on the decision boundaries of a classifier or the regression function produced
in the case of numeric prediction, the gain in predictive accuracy is mostly
insignificant.

In this connection, we also like to question a current research trend in the
FST community. It seems that the shift from (knowledge-driven) modeling to
(data-driven) learning, as signified in section 1, comes along with a tendency
to view fuzzy systems as pure function approximators. In fact, in many re-
cent publications fuzzy sets simply serve as a special kind of basis or kernel
function. 14 Thus, there is a high danger of losing sight of the original ideas
and intentions of FST, and to produce another type of “black box” approach
instead. Truly, renaming a basis function a “fuzzy set” does not mean that a
model will suddenly become comprehensible.

Rather than suggesting new solutions to problems for which alternative meth-
ods from established fields such as, e.g., approximation theory, neural net-
works, and machine learning, will probably be more successful, more emphasis
should be put on the distinguished features of FST. In this connection, let us
highlight the following points:

1. FST has the potential to produce models that are more comprehensible,
less complex, and more robust.

2. FST, in conjunction with possibility theory, can contribute considerably to
the modeling and processing of various forms of uncertain and incomplete

14 In [11], for example, a support vector machine is trained and then turned into a
fuzzy rule base by identifying each support vector with a fuzzy rule.
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information.
3. Fuzzy methods appear to be particularly useful for data pre- and post-

processing.

Concerning the first point, our critical comments in previous sections have
shown that, despite of the high potential, many questions are still open. For
example, notions like “comprehensibility”, “simplicity”, or “robustness” still
lack an underlying formal theory including a quantification of their intuitive
meaning in terms of universally accepted measures. This is probably one of
the reasons why model accuracy is still regarded as a more concrete and,
hence, more important quality criterion. Anyway, we think that the tradeoff
between accuracy on the one side and competitive criteria like interpretability,
simplicity, and robustness on the other side is an issue of central importance
and a problem to that FST can contribute in a substantial way. In fact, fuzzy
information granulation appears to be an ideal tool for trading off accuracy
against complexity and understandability of models. Of course, a necessary
prerequisite for studying this tradeoff in a more rigorous way and, hence, a
challenge for future research, is a better understanding and formalization of
these alternative criteria.

The second point refers to an aspect that is of primary importance in ML&DM,
and that has already been touched on in section 4.4. Meanwhile, the coex-
istence of various forms of uncertainty, not all of which can be adequately
captured by probability theory, has been widely recognized. Still, in machine
learning, and more generally in the AI community, fuzzy sets and related
uncertainty calculi have not yet obtained a proper acceptance. This situa-
tion might be further impaired by the increasing popularity of probabilistic
methodology, which in machine learning can mainly be ascribed to the success
of statistical learning theory [59] as a solid foundation of empirical learning,
and in AI to the general acceptance of the Bayesian framework for knowledge
representation and reasoning under uncertainty. For the FST community, it
is all the more important to show that alternative uncertainty formalisms can
complement probability theory in a reasonable way.

Concerning the third point, we have the feeling that this research direction
has not received enough attention so far. In fact, even though FST seems to
be especially qualified for data pre- and postprocessing, e.g. for data summa-
rization and reduction, approximation of complex and accurate models, or the
(linguistic) presentation of data mining results, current research is still more
focused on the inductive reasoning or data mining process itself. In this re-
spect, we see a high potential for further developments, especially against the
background of the current trend to analyze complex and heterogeneous infor-
mation sources that are less structured than standard relational data tables.
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Finally, there are some other research directions that are worth further explo-
ration. For example, so far most of the work in the FST community has been
methodologically oriented, focusing on the fuzzy extension of standard learning
methods, whereas both the experimental validation and the theoretical analy-
sis of fuzzy machine learning methods have received much less attention. As
mentioned above, validating the predictive performance of a fuzzy method in
an empirical way is not as easy, since fuzzy labels for comparison are rarely
available in practice. What is a good fuzzy prediction? This question natu-
rally arises if fuzzy predictions are not defuzzified, and it becomes even more
intricate if predictions are expressed in terms of still more complex uncer-
tainty formalisms such as, e.g., lower and upper possibility bounds, type-II
fuzzy sets, or belief functions. Regarding theoretical analyses of fuzzy learning
methods, it would be interesting to investigate whether fuzzy extensions are
profitable from a theoretical point of view. For example, is it possible that a
class of concepts is, say, PAC-learnable 15 by the fuzzy extension of a learning
algorithm but not by the original version? Such results would of course be
highly welcome as a formal justification of fuzzy learning methods.
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[34] F. Höppner, F. Klawonn, F. Kruse, and T. Runkler. Fuzzy Cluster Analysis.
Wiley, Chichester, 1999.
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