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Abstract

So-called classifier chains have recently been proposed as an appealing

method for tackling the multi-label classification task. In this paper, we an-

alyze the influence of a potential pitfall of the learning process, namely the

discrepancy between the feature spaces used in training and testing: While

true class labels are used as supplementary attributes for training the binary

models along the chain, the same models need to rely on estimations of these

labels when making a prediction. We provide first experimental results sug-

gesting that the attribute noise thus created can affect the overall prediction

performance of a classifier chain.

1 Introduction

Multi-label classification (MLC) has attracted increasing attention in the machine

learning community during the past few years [4]. The goal in MLC is to induce a

model that assigns a subset of labels to each example, rather than a single one as in

multi-class classification. For instance, in a news website, a multi-label classifier can

automatically attach several labels—usually called tags in this context—to every

article; the tags can be helpful for searching related news or for briefly informing

users about their content.
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Current research on MLC is largely driven by the idea that optimal prediction per-

formance can only be achieved by modeling and exploiting statistical dependencies

between labels. Roughly speaking, if the relevance of one label may depend on the

relevance of others, then labels should be predicted simultaneously and not sepa-

rately. This is the main argument against simple decomposition techniques such as

binary relevance (BR) learning, which splits the original multi-label task into several

independent binary classification problems, one for each label.

Until now, several methods for capturing label dependence have been proposed in

the literature, including a method called classifier chains (CC) [3]. This method

enjoys great popularity, even though it has been introduced only lately. As its

name suggests, CC selects an order on the label set—a chain of labels—and trains

a binary classifier for each label in this order. The difference with respect to BR

is that the feature space used to induce each classifier is extended by the previous

labels in the chain. These labels are treated as additional attributes, with the goal

to model conditional dependence between a label and its predecessors. CC performs

particularly well when being used in an ensemble framework, usually denoted as

ensemble of classifier chains (ECC), which reduces the influence of the label order.

Our study aims at gaining a deeper understanding of CC’s learning process. More

specifically, we address a potential pitfall of this method: Since information about

preceding labels is only available for training, this information has to be replaced

by estimations (coming from the corresponding classifiers) at prediction time. As

a result, CC has to deal with a specific type of attribute noise: While a classifier

is learned on “clean” training data, including the true values of preceding labels,

it is applied on “noisy” test data, in which true labels are replaced by possibly

incorrect predictions. Obviously, this type of noise may affect the performance

of each classifier in the chain. More importantly, since each classifier relies on

its predecessors, a single false prediction might be propagated and possibly even

reinforced along the chain.

The rest of the paper is organized as follows. The next section introduces the setting

of MLC, and Section 3 explains the classifier chains method. Section 4 is devoted to a

deeper discussion of the aforementioned pitfalls of CC, along with some experiments

for illustration purposes. The paper ends with a couple of concluding remarks in

Section 5.

2 Multi-Label Classification

Let L = {λ1, λ2, . . . , λm} be a finite and non-empty set of class labels, and let X be

an instance space. We consider an MLC task with a training set S = {(x1,y1), . . . ,

(xn,yn)}, generated independently and identically according to a probability dis-
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tribution P(X,Y) on X × Y . Here, Y is the set of possible label combinations,

i.e., the power set of L. To ease notation, we define yi as a binary vector yi =

(yi,1, yi,2, . . . , yi,m), in which yi,j = 1 indicates the presence (relevance) and yi,j = 0

the absence (irrelevance) of λj in the labeling of xi. Under this convention, the

output space is given by Y = {0, 1}m. The goal in MLC is to induce from S a

hypothesis h : X −→ Y that correctly predicts the subset of relevant labels for

unlabeled query instances x.

The most-straight forward and arguably simplest approach to tackle the MLC prob-

lem is binary relevance (BR). The BR method reduces a given multi-label problem

with m labels to m binary classification problems. More precisely, m hypotheses

hj : X −→ {0, 1}, j = 1, . . . ,m, are induced, each of them being responsible for

predicting the relevance of one label, using X as an input space. In this way, the

labels are predicted independently of each other and no label dependencies are taken

into account.

In spite of its simplicity and the strong assumption of label independence, it has been

shown theoretically and empirically that BR performs quite strong in terms of de-

composable loss functions [1], including the well-known Hamming loss LH(y,h(x)) =
1
m

∑m
i=1[[yi 6= hi(x)]]. The Hamming loss averages the standard 0/1 classification

error over the m labels and hence corresponds to the proportion of labels whose

relevance is incorrectly predicted. Thus, if one of the labels is predicted incorrectly,

this accounts for an error of 1
m

. Another extension of the standard 0/1 classification

loss is the subset 0/1 loss LZO(y,h(x)) = [[y 6= h(x)]]. Obviously, this measure is

more drastic and already treats a mistake on a single label as a complete failure.

The necessity to exploit label dependencies in order to minimize the generalization

error in terms of the subset 0/1 loss has been shown in [1].

3 Classifier Chains

While following a similar setup as BR, classifier chains (CC) seek to capture la-

bel dependencies. CC learns m binary classifiers linked along a chain, where each

classifier deals with the binary relevance problem associated with one label. In the

training phase, the feature space of each classifier in the chain is extended with

the actual label information of all previous labels in the chain. For instance, if the

chain follows the order λ1 → λ2 → . . . → λm, then the classifier hj responsible for

predicting the relevance of λj is of the form

hj : X × {0, 1}j−1 −→ {0, 1} . (1)

The training data for this classifier consists of instances (xi, yi,1, . . . , yi,j−1) labeled

with yi,j, that is, original training instances xi supplemented by the relevance of the
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labels λ1, . . . , λj−1 preceding λj in the chain.

At prediction time, when a new instance x needs to be labeled, a label subset

y = (y1, . . . , ym) is produced by successively querying each classifier hj. Note,

however, that the inputs of these classifiers are not well-defined, since the sup-

plementary attributes yi,1, . . . , yi,j−1 are not available. These missing values are

therefore replaced by their respective predictions: y1 used by h2 as an additional

input is replaced by ŷ1 = h1(x), y2 used by h3 as an additional input is replaced by

ŷ2 = h2(x, ŷ1), and so forth. Thus, the prediction y is of the form

y =
(
h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), . . .

)
Realizing that the order of labels in the chain may influence the performance of the

classifier, and that an optimal order is hard to anticipate, the authors in [3] propose

the use of an ensemble of CC classifiers. This approach combines the predictions of

different random orders and, moreover, uses a different sample of the training data

to train each member of the ensemble. Ensembles of classifier chains (ECC) have

been shown to increase prediction performance over CC by effectively using a simple

voting scheme to aggregate predicted relevance sets of the individual CCs: For each

label λj, the proportion ŵj of classifiers predicting yj = 1 is calculated. Relevance

of λj is then predicted by using a threshold t, that is, ŷj = [[ŵj ≥ t]].

4 The Problem of Error Propagation in CC

The learning process of CC violates a key assumption of machine learning, namely

that the training data is representative of the test data in the sense of being identi-

cally distributed. This assumption does not hold for the chained classifiers in CC:

While using the true label data yj as input attributes during the training phase,

this information is replaced by estimations ŷj at prediction time. Needless to say,

yj and ŷj will normally not follow the same distribution.

From the point of view of the classifier hj, which uses the labels y1, . . . , yj−1 as

additional attributes, this problem can be seen as a problem of attribute noise.

More specifically, we are facing the “clean training data vs. noisy test data” case,

which is one of four possible noise scenarios that have been studied quite extensively

in [5]. For CC, this problem appears to be vital: Could it be that the additional

label information, which is exactly what CC seeks to exploit in order to gain in

performance (compared to BR), eventually turn out to be a source of impairment?

Or, stated differently, could the additional label information perhaps be harmful

rather than useful? This question is difficult to answer in general. In particular,

there are several factors involved, notably the following:

4



• The length of the chain: The larger the number j − 1 of preceding classifiers

in the chain, the higher is the potential level of attribute noise for a classifier

hj. For example, if prediction errors occur independently of each other with

probability ε, then the probability of a noise-free input is only (1−ε)j−1. More

realistically, one may assume that the probability of a mistake is not constant

but will increase with the level of attribute noise in the input. Then, due to

the recursive structure of CC, the probability of a mistake will increase even

more rapidly along the chain.

• The order of the chain: Since some labels might be inherently more difficult to

predict than others, the order of the chain will play a role, too. In particular,

it would be advantageous to put simpler labels in the beginning and harder

ones more toward the end of the chain.

• The accuracy of the binary classifiers : The level of attribute noise is in direct

correspondence with the accuracy of the binary classifiers along the chain.

More specifically, these classifiers determine the input distributions in the test

phase. If they are perfect, then the training distribution equals the test dis-

tribution, and there is no problem. Otherwise, however, the distributions will

differ.

• The dependency among labels : Perhaps most interestingly, a (strong enough)

dependence between labels is a prerequisite for both, an improvement and a

deterioration through chaining. In fact, CC cannot gain (compared to BR)

in case of no label dependency. In that case, however, it is also unlikely to

loose, because a classifier hj will most likely1 ignore the attributes y1, . . . , yj−1.

Otherwise, in case of pronounced label dependence, it will rely on these at-

tributes, and whether or not this is advantageous will depend on the other

factors above.

In the following, we present two experimental studies that are meant to illustrate

the problem of error propagation in classifier chains.

4.1 Experiment with Real Data

Our intuition is that attribute noise in the test phase can produce a propagation

of errors through the chain, thereby affecting the performance of the classifiers de-

pending on their position in the chain. More specifically, we expect classifiers in the

beginning of the chain to systematically perform better than classifiers toward the

1The possibility to ignore parts of the input information does of course also depend on the type

of classifier used.

5



2 4 6 8 10

0.
00

0.
04

0.
08

0.
12

label position

po
si

tio
n-

w
is

e 
re

la
tiv

e 
in

cr
ea

se
 o

f c
la

ss
ifi

ca
tio

n 
er

ro
r

BR - all
CC - emotions
CC - scene
CC - yeast-10

Figure 1: Results of the first experiment: position-wise relative increase of classifi-

cation error (mean plus standard error bars).

end. In order to verify this conjecture, we perform the following simple experiment:

We train a CC classifier on 500 randomly generated label orders. Then, for each

label order and each position, we compute the performance of the classifier on that

position in terms of the relative increase of classification error compared to BR. Fi-

nally, these errors are averaged position-wise (not label-wise). For this experiment,

we used three standard MLC benchmark data sets: emotions (593 examples, 72

attributes, 6 labels), scene (2407, 294, 6), yeast-10 (2417, 103, 10); the latter is a

reduction of the original yeast data set to the ten most frequent labels and their

instances.

The results in Figure 1 clearly confirm our expectations. In two cases, CC starts to

loose immediately, and the loss increases with the position. In the third case, CC is

able to gain on the first positions but starts to loose again later on.

4.2 Experiment with Synthetic Data

In a second experiment, we used a synthetic setup that was proposed in [2] to analyze

the influence of label dependence. The input space X is two-dimensional and the

underlying decision boundary for each label is linear in these inputs. More precisely,

the model for each label is defined as follows:

hi(x) =

{
1 aj1x1 + aj2x2 ≥ 0

0 otherwise
(2)
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Figure 2: Example of synthetic data: the top three labels are generated using τ = 0,

the three at the bottom with τ = 1.

The input values are drawn randomly from the unit circle. The parameters aj1 and

aj2 for the j-th label are set to aj1 = 1 − τr1, aj2 = τr2, with r1 and r2 randomly

chosen from the unit interval. Additionally, random noise is introduced for each

label by independently reversing a label with probability π = 0.1. Obviously, the

level of label dependence can be controlled by the parameter τ ∈ [0, 1]: The smaller

τ , the stronger the dependence tends to be (see Figure 2 for an illustration).

For different label cardinalities m ∈ {5, 10, 15, 20, 25}, we run 10 repetitions of the

following experiment: We created 10 different random model parameter sets (two for

each label) and generated 10 different training sets, each consisting of 50 instances.

For each training set, a model is learned and evaluated (in terms of Hamming and

subset 0/1 loss) on an additional data set comprising 1000 instances.

Figure 3 summarizes the results in terms of the average loss divided by the cor-

responding Bayes loss (which can be computed since the data generating process

is known); thus, the optimum value is always 1. Comparing BR and CC, the big

picture is quite similar to the previous experiment: The performance of CC tends to

decrease with an increasing number of labels. In the case of less label dependence,

this can already be seen for only five labels. The case of high label dependence

is more interesting: While CC seems to gain from exploiting the dependency for

a small to moderate number of labels, it cannot extend this gain to more than 15

labels.
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Figure 3: Results of the second experiment for τ = 0 (top—high label dependence)

and τ = 1 (bottom—low label dependence).

5 Conclusion

This paper has thrown a critical look at the classifier chains method for multi-label

classification, which has been adopted quite quickly by the MLC community and is

now commonly used as a baseline when it comes to comparing methods for exploiting

label dependency. Notwithstanding the appeal of the method and the plausibility

of its basic idea, we have argued that, at second sight, the chaining of classifiers

begs an important flaw: A binary classifier that has learned to rely on the values

of previous labels in the chain might be misled when these values are replaced by

possibly erroneous estimations at prediction time. The classification errors produced

because of this attribute noise may subsequently be propagated or even reinforced

along the entire chain. Roughly speaking, what looks as a gift at training time may

turn out to become a handicap in testing.

Our results clearly show that this problem is relevant, and that it may strongly

impair the performance of the CC method. There are several lines of future work.

First, it is of course desirable to complement this study by meaningful theoretical

results supporting our claims. Second, it would be interesting to investigate to what
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extent the problem of attribute noise also applies to the probabilistic variant of

classifier chains introduced in [1].
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