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Abstract

Inducing a classification function from a set of examples in the form of labeled

instances is a standard problem in supervised machine learning. In this paper, we

are concerned with ambiguous label classification (ALC), an extension of this setting

in which several candidate labels may be assigned to a single example. By extending

three concrete classification methods to the ALC setting (nearest neighbor classifi-

cation, decision tree learning, and rule induction) and evaluating their performance

on benchmark data sets, we show that appropriately designed learning algorithms

can successfully exploit the information contained in ambiguously labeled examples.

Our results indicate that the fundamental idea of the extended methods, namely

to disambiguate the label information by means of the inductive bias underlying

(heuristic) machine learning methods, works well in practice.

Keywords: machine learning; classification; missing data; inductive bias; nearest

neighbor estimation; decision trees; rule induction.
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1 Introduction

One of the standard problems in (supervised) machine learning is inducing a classification

function from a set of training data, i.e., a function which assigns objects to classes or

categories. In fact, a large repertoire of corresponding classification methods is now

available.

Usually, the training data consists of a set of labeled examples, i.e., a set of objects (in-

stances) whose correct classification is known. Over the last years, however, several vari-

ants of the standard classification setting have been considered. For example, in multi-label

classification a single object can have several labels (belong to several classes), that is, the

labels (classes) are not mutually exclusive [25]. In semi-supervised learning, only a part

of the objects in the training set is labeled [1]. In multiple-instance learning, a positive

or negative label is assigned to a so-called bag rather than to an object directly [8]. Each

bag is a collection of several instances. A bag is labeled negative if all the instances it

contains are negative, otherwise it is labeled positive. Given a set of labeled bags, the

task is to induce a model that will label unseen bags and instances correctly.

In this paper, we are concerned with another extension of the standard classification

setting that has recently been introduced in [16, 19], and that we shall subsequently refer

to as ambiguous label classification (ALC). In this setting, an example might be labeled

in a non-unique way by a subset of classes, just like in multi-label classification. In ALC,

however, the existence of a (unique) correct classification is assumed, and the labels are

simply considered as candidates.

In [16, 19], the authors rely on probabilistic methods in order to learn a classifier in the

ALC setting. The approach presented in this paper can be seen as an alternative strategy

which is more in line with standard (heuristic) machine learning methods. Our idea is

to exploit the inductive bias underlying these methods in order to disambiguate label

information. This idea, as well as the relation between the two approaches, is discussed

in more detail in section 3. Before, the problem of ALC is introduced in a more formal

way (section 2). In section 4, three concrete methods for ALC are proposed, namely
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extensions of nearest neighbor classification, decision tree learning, and rule induction.

Experimental results are presented in section 5. In section 6, wie briefly outline two

alternative applications of ALC. The paper concludes with a summary of the results in

section 7.

2 Ambiguous Label Classification

Let X denote an instance space, where an instance typically (though not necessarily)

corresponds to the attribute–value description x of an object. In this case, X = X1 ×
X2 × . . . × X�, with Xı the domain of the ı-th attribute, and an instance is represented

as a vector x = (x1 . . . x�) ∈ X . Moreover, let L = {λ1 . . . λm} be a set of labels (classes).

Training data shall be given in the form of a set D of examples (xı, Lxı), ı = 1 . . . n,

where xı = (x1
ı . . . x�

ı) ∈ X and Lxı ⊆ L is a set of candidate labels associated with

instance xı. Lxı is assumed to contain the true label λxı, and xı is called an ambiguous

example if |Lxı| > 1. Note that this includes the special case of a completely unknown

label (Lx = L), as considered in semi-supervised learning. Here, however, we usually have

the case in mind where 1 ≤ |Lx| < |L|. For example, in molecular biology the functional

category of a protein is often not exactly known, even though some alternatives can

definitely be excluded [11].

The learning task is to select, on the basis of D, an optimal model (hypothesis) h : X → L
from a hypothesis space H. Such a model assigns a (unique) label λ = h(x) to any instance

x ∈ X . Optimality usually refers to predictive accuracy, i.e., an optimal model is one that

minimizes the expected loss (risk) with respect to a given loss function L× L → R.

3 Learning from Ambiguous Examples

Needless to say, even ambiguous data may comprise important information. The approach

proposed in this paper is based on the observation that the benefit of this information

might indeed be especially high if it is considered, not as an isolated piece of knowledge,
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Figure 1: Classification problem with three labels: black (λ1), grey (λ2), light (λ3). The
instance with a question mark is either black or grey. Assigning label grey allows one to
fit a very simple decision tree (as represented by the axis-parallel decision boundaries).
Note that this hypothetical labeling also provides important information on the decision
boundary between the grey and light class.

but in conjunction with the other data and the model assumptions underlying the hy-

pothesis space H. To illustrate this important point, consider a simple example in which

the true label λxı of an instance xı is known to be either λ1 or λ2. Moreover, we seek

to fit a classification tree to the data, which basically amounts to assuming that X can

be partitioned by axis-parallel decision boundaries. Now, by setting λxı = λ2 we might

find a very simple classification tree for the complete data, while λxı = λ1 requires a

comparatively complex model (see Fig.1). Relying on the simplicity heuristic underlying

most machine learning methods [9], this finding clearly suggests that λxı = λ2. In other

words, looking at the original information λxı ∈ {λ1, λ2} with a view that is “biased” by

the model assumptions, namely with the eyes of a decision tree inducer, the benefit of

this information has highly increased.

As can be seen, the inductive bias underlying the learning process can help to disambiguate

the label information given. This shows that ambiguous label information might indeed

be useful and, in particular, suggests that it might be easier for learning methods with

a strong inductive bias to exploit such information than for methods with a weak bias.

Both these conjectures will be supported by our experimental results in section 5.

As an aside, note that not only the model assumptions might provide evidences for the

true class label, but also vice versa: Once the label information has been disambiguated,

it gives in turn information about the true model. In Fig. 1, for example, hypothetical
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labeling (grey) provides important information on the decision boundary between the grey

and light class.

The above example has shown that candidate labels can appear more or less likely against

the background of the underlying model assumptions. In fact, the insight that fitting a

model to the data might change the likelihood of candidate labels can be formalized more

rigorously in a probabilistic context. Assuming a parameterized model Mθ, the goal can

roughly be stated as finding the parameter

θ∗ = arg max
θ

n∏
ı=1

Pr(λxı ∈ Lxı | xı, θ).

This approach gives rise to an EM (expectation-maximization) approach in which model

adaptation and modification of label information are performed alternately: Given a

distribution Dı over each label set Lxı , an optimal parameter θ∗ is determined. Using

this parameter resp. the associated model Mθ∗ , the probabilities of the labels λ ∈ Lxı

are then re-estimated. This process of estimating parameters and adjusting probabilities

starts with the uniform distribution and iterates until convergence is eventually achieved

[16, 19].

On the one hand, this approach is rather elegant and first empirical evidence has been

gathered for its practical effectiveness [16, 19]. On the other hand, the assumption of a

parameterized model basically restricts its applicability to statistical classification meth-

ods. Moreover, model optimization by means of EM can of course become quite costly

from a computational point of view. Our idea of disambiguating label information by

implementing a simplicity bias can be seen as an alternative strategy. As heuristic ma-

chine learning in general, this approach is of course theoretically not as well-founded as

probabilistic methods. Still, heuristic methods have been shown to be often more effective

and efficient in practical applications.

Given ambiguous label information, the EM approach estimates a model by means of

likelihood maximization. Analogously, our approach looks for a model that is as much as

possible in agreement with the label information. However, instead of likelihood maxi-
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mization, it employs a heuristic strategy to induce that model. Here, the implicit assump-

tion is that, if two models are both compatible with the data, the simpler one is more

likely than the complex one. In the re-estimation step, the EM approach assigns new

probabilities to the candidate labels, whereas our approach is more drastic and makes a

definite decision in favor of one label. As a consequence, our approach does not require

an iteration of the process.

Unfortunately, standard machine learners generally cannot exploit the information pro-

vided by ambiguous data, simply because they cannot handle such data. This is one

motivation underlying the development of methods for ALC (as will be done in section

4). Note that a straightforward strategy for realizing ALC is a reduction to standard

classification: Let the class of selections, F(D), of a set D of ambiguous data be given by

the class of compatible (standard) samples

S = {(x1, αx1), (x2, αx2), . . . , (xn, αxn)} (1)

such that αxı ∈ Lxı for all 1 ≤ ı ≤ n. In principle, a standard learning method could

be applied to all samples S ∈ F(D), and an apparently most favorable model could

be selected among the models thus obtained. However, since the number of selections,

|F(D)| =
∏n

ı=1 |Lxı|, will usually be huge, this strategy is of course not practicable.

4 Methods for ALC

In this section, we present three relatively simple extensions of standard learning algo-

rithms to the ALC setting, namely k-nearest neighbor classification, decision tree learning,

and rule induction.

4.1 Nearest Neighbor Classification

In k-nearest neighbor (k-NN) classification [7], the label λest
x0

assigned to a query x0 is

given by the label that is most frequent among x0’s k nearest neighbors, where nearness
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is measured in terms of a similarity or distance function. In weighted k-NN, the neighbors

are moreover weighted by their distance [34]:

λest
x0

df
= arg max

λ∈L

k∑
ı=1

ωı I(λ = λxı), (2)

where xı is the ı-th nearest neighbor; λxı and ωı are, respectively, the label and the weight

of xı, and I(·) is the standard {true, false} → {0, 1} mapping. A simple definition of the

weights is ωı = 1 − dı · (
∑k

j=1 dj)
−1, where the dı are the corresponding distances.

Now, a relatively straightforward generalization of (2) to the ALC setting is to simply

replace I(λ = λxı) by I(λ ∈ Lxı):

λest
x0

df
= arg max

λ∈L

k∑
ı=1

ωı I(λ ∈ Lxı). (3)

Thus, a neighbor xı is allowed not one single vote only, but rather one vote for each

acceptable label. If the maximum in (3) is not unique, one among the labels with highest

score is simply chosen at random.1

4.2 Decision Tree Induction

Another standard learning method, whose extension to the ALC setting might be of

interest, is decision tree induction [30, 2]. The basic strategy of decision tree induction is

to partition the data in a recursive manner. This strategy can of course be maintained for

ALC. Besides, with regard to the stopping condition of the recursive partitioning scheme,

note that a further splitting of a (sub)set of examples D is not necessary if

L(D)
df
=

⋂
xı∈D

Lxı �= ∅, (4)

hence, (4) defines a natural stopping condition. The corresponding node in the decision

tree then becomes a leaf, and any label λ ∈ L(D) can be chosen as the prescribed label

associated with that node. Finally, pruning a fully grown tree can principally be done

1A reasonable alternative is to choose the prevalent class in the complete training set.
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in the same way as pruning standard trees. In our implementation, we used the pruning

technique that is also implemented in C4.5 [30].

The main modification of the standard algorithm concerns the “goodness of split” mea-

sure. In decision tree induction, such measures are used to select an attribute according

to which the data is partitioned. Roughly speaking, the idea is to make a set of examples

(or, more precisely, the subsets of examples obtained after splitting) as “pure” as possible

in terms of the class distribution. A commonly used measure of purity is the entropy of

this distribution.

But what is the purity, or rather the decision capability of a set of ALC-examples D?

Let qı denote the frequency of the label λı in the set of examples D, i.e., the number

of examples (xj, Lxj) such that λı ∈ Lxj . Thus defined, the qı do obviously satisfy the

inequality

q1 + . . . + qm ≥ 1. (5)

However, (5) does no longer hold with an equality, as it does in the case where each

example has a unique label. Formally, the standard entropy measure

H(D) = −
m∑

ı=1

qı · log2(qı) (6)

and, hence, the common information gain criterion could still be applied. However, en-

tropy has a meaningful interpretation only for probability distributions. Apart from that,

this measure does not appear reasonable in our context: The stopping condition (4) obvi-

ously suggests a measure that is monotone increasing in the qı, since the larger the qı, the

higher the chance to satisfy the condition of a non-empty intersection (after few further

splits). As opposed to this, the entropy measure does not only reward high values qı (close

to 1), but also small values close to 0.

Inequality (5) and the fact that the qı can be considered as upper bounds to the true

relative frequencies of the labels λı might suggest looking at generalized uncertainty cal-

culi such as, e.g., evidence theory or possibility theory [10]. For example, plausibility
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degrees in evidence theory can also be interpreted as upper probability bounds, the sum

of which is only lower-bounded by 1. And indeed, entropy-like measures, just like other

measures of uncertainty originally established within the framework of probability, have

been generalized to alternative frameworks such as evidence theory and possibility theory

[23]. These are, however, either measures of non-specificity or measures of conflict, and

none of these types of measures is actually useful in our context.

The perhaps simplest monotone measure is

max(q1 . . . qm), (7)

and this measure is indeed interesting since satisfaction of condition (4) is equivalent

to max(q1 . . . qm) = 1. A drawback of the measure is of course that it is completely

determined by only one of the qı. Thus, it completely ignores the remaining values

and is hence not very discriminative. For example, it does not distinguish between the

distributions (.1, .1, .1, .7) and (0, 0, .7, .7), since the maximum is in both cases .7.

This problem could be avoided by a measure that indeed favors distributions with large

values qı but still takes the remaining values into account, at least to some extent. This

property is satisfied by so-called ordered weighted average (OWA) operators [35] which de-

rive a weighted average of m values after reordering them. Thus, given weights w1 . . . wm,

the highest value is always weighted by w1, the second-highest by w2, and so on. As a

particular OWA operator of that type we used

Oγ
df
=

∑m
ı=1 γm−1 rı

(1 − γ)m/(1 − γ)
, (8)

where 0 ≤ γ < 1 and rı is the ı–th largest value in the sequence q1 . . . qm; the maximum

operator (7) is obviously a special case of (8), as it is recovered for γ = 0.

As a further alternative, more directly related to the standard entropy, we considered a
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measure of “potential entropy” which is defined by

H∗(D)
df
= min

S∈F(D)
H(S), (9)

where F(D) is the set of selections (1). As can be seen, (9) is the standard entropy ob-

tained for the most favorable instantiation of the ALC-examples (xı, Lxı). It corresponds

to the “true” entropy that would have been derived if this instantiation was compatible

with the ultimate decision tree. Taking this optimistic attitude is justified since the tree

is indeed constructed in a hopefully optimal manner.

Computing (9) comes down to solving a combinatorial optimization problem and becomes

intractable for large samples. Therefore, we devised two heuristic approximations of (9).

The first approximation is

H∗
1(D)

df
= H(S∗), (10)

where the selection S∗ is defined as follows: The labels λı are first put in a (total)

“preference” order according to their frequency: λı is preferred to λj if qı > qj (ties are

broken by coin flipping). Then, the most preferred label λı ∈ Lxı is chosen for each

example xı. Clearly, the idea underlying this selection is to make the distribution of

labels as skewed (non-uniform) as possible, as distributions of this type are favored by

the entropy measure.

The second approximation is defined as follows: Without loss of generality, suppose q1 ≥
q2 ≥ . . . ≥ qm. Then,

H∗
2(D)

df
= −

m∑
ı=1

q′ı log2(q
′
ı), (11)

where q′ı = qı if q1 + . . .+ qı ≤ 1 and = max (1 − (q1 + . . . + qı−1), 0) otherwise. Note that

(11) may underestimate the potential entropy (there might be no selection that agrees

with the modified frequencies q′ı), whereas (10) is provably an upper bound.

To evaluate and compare the performance of the different splitting measures introduced
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above, we have conducted a number of controlled experiments using synthetic data. This

data was derived on the basis of randomly generated decision trees that serve as reference

models. For each experiment, a decision tree of this kind is generated as follows: In a first

step, a standard tree is grown in a recursive manner, starting with the root of the tree

and flipping a (biased) coin to decide whether the current node becomes an inner node or

a leaf. The probability of a node to become an inner node is given by 0.8− t/10, where t

is the depth of the node. Once a leaf node has been generated, a decision λ ∈ {λ1 . . . λm}
is assigned to that node at random. Likewise, each inner node is assigned one among k

possible attributes at random. We let each attribute Xj assume the v values xj ∈ {1 . . . v},
for fixed v ∈ N, so that an inner node does always have v successors.

In a second step, additional labels are assigned to the leaf nodes of the tree. More

precisely, at every leaf node, the labels are added independently of each other with a

fixed probability p. Finally, it is checked whether the expanded tree thus obtained can

be simplified, i.e., whether one of the inner nodes satisfies the stopping condition (4) and

should hence become a leaf.

A set of training examples is then generated by choosing 1,000 instances x at random,

using a uniform distribution over X . The labels Lx of these examples are derived from

the above reference tree. For the training examples, a decision tree is induced using one

of the splitting measures discussed above. The performance of a measure is quantified

in terms of the ratio between the complexity of the induced tree (number of leaf nodes)

and the complexity of the reference tree.2 The expected performance of each splitting

measure is approximated by averaging over 2,000 experiments.

The tables 1–4 show the experimental results for different settings of the parameters

k, m, v, p (recall that k = number of attributes, m = number of labels, v = number of

values per attribute, p = probability of adding a split; qualitatively similar results were

obtained for various other settings, not presented here due to reasons of space). More

precisely, each table shows the results for the different splitting measures discussed above

and different parameters p. For comparison purpose, and despite of the aforementioned

2Note that this ratio can thoroughly assume values < 1, since the training examples might be explained
by a model which is simpler than the model that has generated the data.
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p 0.00 0.20 0.40 0.60 0.80
H∗

1 1.01 1.05 1.18 1.27 1.14
H∗

2 1.01 1.24 1.48 1.36 1.15
H 1.01 1.28 1.73 1.90 1.63
O0 1.62 1.64 1.54 1.46 1.22
O0.2 1.40 1.42 1.44 1.40 1.20
O0.4 1.30 1.33 1.39 1.38 1.22
O0.6 1.22 1.26 1.38 1.45 1.29
O0.8 1.17 1.28 1.51 1.68 1.47

Table 1: Setting k = 12, m = 10, v = 3.

p 0.00 0.20 0.40 0.60 0.80
H∗

1 0.94 0.97 0.99 0.89 0.64
H∗

2 0.94 1.01 1.05 0.91 0.63
H 0.94 1.24 1.40 1.27 0.93
O0 1.09 1.10 1.07 0.94 0.66
O0.2 1.04 1.09 1.08 0.96 0.66
O0.4 1.01 1.06 1.08 0.97 0.67
O0.6 0.98 1.07 1.11 1.01 0.71
O0.8 0.97 1.12 1.20 1.11 0.80

Table 2: Setting k = 12, m = 10, v = 4.

semantic problems, we also included results for the standard entropy formula (6) applied

to the values qı.

The results clearly show that the measure H∗
1 consistently outperforms the other can-

didates. Moreover, this measure yields models that are only slightly more or even less

complex than the reference models. This suggests that H∗
1 is indeed a very good measure,

in fact not only in comparison to the alternatives but also in view of “absolute” standards.

p 0.00 0.20 0.40 0.60 0.80
H∗

1 1.01 1.03 1.12 1.22 1.12
H∗

2 1.01 1.12 1.43 1.32 1.13
H 1.01 1.30 1.78 1.91 1.62
O0 1.49 1.45 1.45 1.38 1.19
O0.2 1.31 1.30 1.35 1.32 1.16
O0.4 1.20 1.21 1.29 1.30 1.17
O0.6 1.12 1.15 1.27 1.35 1.23
O0.8 1.08 1.18 1.43 1.59 1.43

Table 3: Setting k = 12, m = 15, v = 3.
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p 0.00 0.20 0.40 0.60 0.80
H∗

1 1.01 1.04 1.18 1.26 1.15
H∗

2 1.01 1.19 1.52 1.38 1.17
H 1.01 1.33 1.89 2.03 1.73
O0 1.71 1.65 1.61 1.51 1.25
O0.2 1.46 1.46 1.49 1.42 1.23
O0.4 1.32 1.35 1.42 1.42 1.25
O0.6 1.24 1.29 1.43 1.51 1.32
O0.8 1.16 1.31 1.60 1.77 1.54

Table 4: Setting k = 18, m = 10, v = 3.

In our ALC-extension of decision tree learning, we will hence employ this measure.

As it was to be expected, the standard entropy H yields good results for p close to 0 but

quickly breaks down as p increases. The results of the best OWA-measures are somewhat

comparable to those of H∗
2. As a disadvantage, however, note that the performance

strongly depends on the parameter γ which has to be adjusted to the parameter p: The

larger p, the smaller γ should be chosen.

4.3 Rule Induction

Since each path from the root of a decision tree to a leaf node defines a single rule, a

decision tree can be considered as a set of rules having a particular structure. These

rules are induced by following a divide-and-conquer strategy. An alternative approach

is to learn rules in a more direct way, using a separate-and-conquer or covering strategy

[14]. Separate-and-conquer rule learning constitutes another important class of machine

learning algorithms. Concrete implementations include the AQ-family [26, 27], CN2 [5, 4],

Ripper [6] and Foil [29].

In order to learn a concept, i.e., to separate positive from negative examples, covering

algorithms learn one rule after another. Each rule covers a subset of (positive) examples,

namely those that satisfy the condition part of the rule (usually a conjunction of selectors

of the form attribute = value). The covered examples are then removed from the training

set. This process is iterated until no positive examples remain. Covering algorithms

can be extended to the m-class case (m > 2) in several ways. For example, following a
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one-versus-rest strategy, CN2 learns rules for each class in turn, starting with the least

frequent one. Since in the m-class case the order in which rules have been induced is

important,3 the rules thus obtained have to be treated as a decision list.

A key component of all covering algorithms is a “find-best-rule” procedure for finding

a good or even optimal rule that partly covers the current training data. Starting with

a maximally general rule, CN2 follows a top-down approach in which the the candidate

rules are successively specialized (e.g. by adding conditions). The search procedure is

implemented as a beam search, guided by the Laplace-estimate as a heuristic evaluation:

L(r)
df
=

p + 1

n + p + 2
, (12)

where r is the rule to be evaluated, p is the number of positive examples covered by

r, and n the number of negative examples. As a stopping criterion, CN2 employs a

statistical significance test (likelihood ratio) that decides whether or not the distribution

of positive and negative examples covered by the rule is significantly different from the

overall distribution in the complete training set.

In order to adapt CN2 to the ALC setting, we have made the following modifications:

Motivated by our previous findings for generalizations of the entropy measure, we have

turned the Laplace-estimate into a “potential” Laplace-estimate: Considering label λj as

the positive class, p = pj is given by the number of all examples xı covered by the rule r

and such that λj ∈ Lxı. This way, (12) can be derived for each label, and the maximal

value is adopted as an evaluation of the rule:

L(r) = max
1≤j≤m

pj + 1

|r| + 2
,

where |r| is the number of examples covered by the rule. The consequent of r is then

given by the label λj for which the maximum is attained.

As noted before, CN2 learns classes in succession, starting with the smallest (least fre-

quent) one. As opposed to this, we learn rules without specifying a class in advance.

3Conflicts are possible due to rules with different consequences and overlapping condition parts.
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Rather, the most suitable class is chosen adaptively, depending on the condition part of

a rule. In fact, the label predicted by a rule can even change during the search process.

This modification is in agreement with our goal of disambiguating by implementing a

simplicity bias. Moreover, the focusing on one particular label is less useful in the ALC

setting. In fact, in the presence of ambiguously labeled examples, it may easily happen

that a rule r is dominated by a class λj while all of its direct specializations are dominated

by other classes.

5 Experimental Results

The main purpose of our experimental study was to provide evidence for the conjecture

that a suitable ALC-method is able to exploit the information contained in ambiguously

labeled examples. More specifically, the goal is to show that using an ALC-method is

usually better than the obvious alternative, namely to ignore ambiguous data and learn

with a standard algorithm from the remaining (exactly labeled) examples. We hence used

the latter approach as a baseline method.

Note that this conjecture is by far not trivial. In fact, whether or not ambiguous data can

be useful will strongly depend on the performance of the ALC-method. If this method is

not able to exploit the information contained in that data, ambiguous examples might be

misleading rather than helpful. In this connection, recall our supposition that the weaker

the inductive bias of a learning method, the more likely that method might be misled by

ambiguous examples.

5.1 Experimental Setup

We have worked with “contaminated” versions of standard benchmark data sets (in which

each instance is assigned a unique label), which allowed us to conduct experiments in a

controlled way. In order to contaminate a given data set, we have devised two different

strategies:
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• Random model: For each example in the training set, a biased coin is flipped in

order to decide whether or not this example will be contaminated; the probability of

contamination is p. In case an example xı is contaminated, the set Lxı of candidate

labels is initialized with the original label λxı , and all remaining labels λ ∈ L\{λxı}
are added with probability q, independently of each other. Thus, the contamination

procedure is parameterized by the probabilities p and q, where p corresponds to

the expected fraction of ambiguous examples in a data set. Moreover, q reflects

the “average benefit” of a contaminated example xı: The smaller q is, the smaller

the (average) number of candidate labels becomes and, hence, the more informative

such an example will be. In fact, note that the expected cardinality of Lxı , in the

case of contamination, is given by 1 + (m − 1)q.

• Bayes model: The random model implicitly assumes that candidate labels occur

independently of each other. In practice, this idealized assumption will rarely be

valid. For example, the probability that a label is added will usually depend on

the true label. In order to take this type of dependency into account, our second

approach to contamination works as follows: First, a Naive Bayes classifier is trained

using the original data, and a probabilistic prediction is derived for each input xı.

Let Pr(λ | xı) denote the probability of label λ as predicted by the classifier. Whether

or not an example is contaminated is decided by flipping a biased coin as before.

In the case of contamination, the true label λxı is again retained. Moreover, the

other m − 1 labels λ ∈ L \ {λxı} are arranged in an increasing order according to

their probability Pr(λ | xı). The k-th label in this order, λ(k), is then added with

probability (2 · k · q)/m. Thus, the expected cardinality of Lxı is again 1+ (m−1)q,

but the probabilities of the individual labels are now biased in favor of the labels

found to be likely by the Bayes classifier.

Intuitively, the Bayes model should come along with a decrease in performance for the

ALC approach (while the baseline method is of course not affected). Roughly speaking,

since the Bayes model contaminates the data in a more “systematic” way, one might

expect that disambiguating the data becomes more difficult. To illustrate, consider the
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extreme example where the true class is always λ1, i.e., all instances do have label λ1.

Now, if additional labels are added in a purely random way, most learning methods will

still be able to recognize the default rule 
 ⇒ λ1 as a model. When always adding label

λ2, however, a distinction between the correct model and the one that always predicts λ2

becomes impossible.

The experimental results have been obtained in the following way: In a single experiment,

the data is randomly divided into a training set and a test set of the same size. The training

set is contaminated as outlined above. From the contaminated data, a model is induced

using an ALC-extension of a classification method (kNN, decision trees, rule induction).

Moreover, using the classification method in its standard form, a model is learned from

the reduced training set that consists of the non-contaminated examples. Then, the

classification accuracy of the two models is determined by classifying the instances in the

test set. The expected classification accuracy of a method – for the underlying data set

and fixed parameters p, q – is approximated by averaging over 1,000 such experiments.

This was done for a number of benchmark data sets from the UCI repository.

For decision tree learning and rule induction, all numeric attributes have been discretized

in advance using hierarchical entropy-based discretization [12].4 For the NN classifier, we

used the simple Euclidean distance measure, and we didn’t include feature selection or

feature weighting (even though it is well-known that irrelevant features can badly dete-

riorate and, on the other hand, that feature weighting can greatly improve performance

[32]). In fact, we didn’t try to optimize the performance of the three learning methods

themselves, because this was not the goal of the experiments. Rather, the purpose of the

study was to compare – under equal conditions – ALC learning with the baseline method.

Below, we present results for the five UCI data sets5 in table 5 and a few combinations

of (p, q)-parameters; qualitatively quite similar results have been obtained for other data

sets.

4Discretization was done in advance for the complete data set, not separately for each training set.
5The output attribute in the Housing data is actually a numeric variable (price of a house). We

discretized this attribute using an equi-width partition of size 10.
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name instances attributes classes
1 dermatology 385 34 6
2 ecoli 336 7 8
3 housing 506 13 10
4 glass 214 9 6
5 zoo 101 16 7

Table 5: Data sets used in the experiments.

5.2 NN Classification

Regarding NN classification, it is quite obvious that (3) will perform poorly in the case

k = 1. In fact, the 1-NN rule simply amounts to guessing one among the labels suggested

by the nearest neighbor, so the probability of a correct classification will be low if this

neighbor is contaminated. The expected classification rate of 1-NN can be calculated

exactly for our random model: If the original classification rate (for the non-contaminated

data) is c, then the rate after contamination becomes6

c − pc

(
1 − 1 − (1 − q)m

mq

)
+

p(1 − c)

m − 1

(
1 − 1

mq
+ (1 − q)m

)

Note that this rate is linear decreasing in p. This result was confirmed by our experiments.

For example, Fig. 2 shows results for the GLASS data. The classification accuracy for

q = 0.3 is plotted as a function of the parameter p.7 As can be seen, in the case k = 1

the standard classifier is obviously superior to the ALC-version. In fact, the accuracy of

the standard classifier remains surprisingly high, a visible deterioration only occurs when

p becomes large.

This changes, however, when increasing the neighborhood size k. In fact, the standard

version becomes inferior to the ALC-version for k = 5 already. Intuitively, this can be

explained by the fact that the larger the number of neighbors, the smaller the probability

that the top-label suggested by these neighbors through majority vote will be changed by

contamination. Roughly speaking, relying on a nearby contaminated neighbor is better

6We omit the derivation which is rather lengthy.
7In order to obtain a smooth curve, we carried out 50,000 instead of only 1,000 experiments. Since

the approximations are almost exact, we plotted the averages without standard deviations.
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Figure 2: Classification accuracy (y-axis) for the Glass data as a function of the “contam-
ination” p (x-axis): NN classification with k = 1 and k = 5, using the standard (dashed,
blue lines) and ALC-version (solid, red lines).

than looking at a non-contaminated example that is faraway (because the close ones have

been removed).

The results for k-NN classification with k = 5 are summarized in table 6, where (r)

stands for the random model and (b) for the Bayes model. As can be seen, the ALC

version is generally superior to the standard 5-NN classifier. Exceptions (marked with a

*) only occur in cases where both p and q are large, that is, where the data is strongly

contaminated. We obtained similar results for k = 7, 9, 11.

The results do not convincingly confirm the supposition that the ALC version will perform

better for the random model than for the Bayes model. Even though it is true that the

results for the former are better than for the latter in most cases, the corresponding

difference in performance is only slight and much smaller than expected. In general, it

can be said that the contamination model does hardly influence the performance of the

classifier most of the time. In fact, there is only one noticeable exception: For the Zoo

data, the performance for the random model is much better than for the Bayes model in

the case of highly contaminated data.
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Figure 3: Classification accuracy (y-axis) for the Zoo data as a function of the “contami-
nation parameter ” p (x-axis): Standard decision tree induction (dashed, blue lines) and
ALC-version for the random model (solid, red lines).

5.3 Decision Tree Induction

For decision tree induction, the ALC-version consistently outperforms the standard ver-

sion. In fact, as the results in table 7 show, the difference between the ALC-version and

the standard version is even larger than for NN classification (see also Fig. 3). This con-

firms our conjecture that the stronger the inductive bias underlying the generalizer, the

more successful ALC will be.

Again, the results also show that a systematic contamination of the data, using the

Bayesian instead of the random model, does hardly affect the performance of ALC classi-

fication. It is true that the classification performance deteriorates on average, but again

only slightly and not in every case.

An interesting exception to the above findings is the Housing data (indeed, not only for

decision tree learning but also for NN classification, cf. table 6). First, for this data the

standard version is down the line better than the ALC-version. Second, the ALC-version

is visibly better in the case of the Bayesian model than in the case of the random model.

The most plausible explanation for this is the fact that for the Housing data the classes are

price categories and hence do have a natural order. That is, we actually face a problem of

ordinal classification rather than standard classification.8 Moreover, the Bayesian model

8Consequently, ordinal classification methods [17, 24, 28, 13, 3] should be applied, and the results for
this data set should not be overrated in our context.
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tends to add classes that are, in the sense of this ordering, neighbored to the true price

category, thereby distorting the original class information but slightly. Compared to this,

ambiguous information will be much more conflicting in the case of the random model.

With regard to complexity, let us note that both approaches induce decision trees of

approximately the same size. On average, the ALC-tree has three leaves more than the

standard tree, probably due to the fact that it learns on larger training sets.

5.4 Rule Induction

The experimental results for rule induction are summarized in table 8. Again, the ALC

version outperforms the standard version most of the time, especially for large p-values.

Since the results are rather similar to those for decision tree learning, we refrain from a

more detailed discussion.

5.5 Summary of Experimental Results

In summary, the experiments show that our ALC extensions of standard learning methods

can successfully deal with ambiguous label information. In fact, except for some rare

cases, these extensions yield better results (in terms of classification performance) than

the baseline method (which ignores ambiguous examples and applies standard learning

methods).

Fig. 4 provides a graphical illustration of the gain in classification accuracy for the ALC

approach in comparison with the baseline method.9 This statistic is interesting for at least

two reasons. Firstly, it suggests that the gain is a monotone increasing function of the

parameter p (probability of contamination). With regard to the parameter q, however, the

dependency appears to be non-monotone: The gain first increases but then decreases for

large enough q-values. These findings are intuitively plausible. In fact, since q represents

a kind of “expected benefit” of an ambiguous example, the utility of such an example

is likely to become negative for large q-values. Consequently, it might then be better to

9We have omitted the Housing data due to the aforementioned reasons.
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Figure 4: Gain in classification accuracy (percentage) for the ALC approach (random
model) in comparison with the baseline method. A block of three bars shows the gain
for NN classification, decision tree learning, and rule learning (from left to right). The
first, second, and third block correspond, respectively, to the q-values .3, .5, and .7. The
p-value is always .9.

simply ignore such examples, at least if enough other examples are available.

Secondly, the performance gain for decision tree learning seems to be slightly higher than

the one for rule induction, at least on average, and considerably higher than the gain

for NN classification. This ranking is in perfect agreement with our conjecture that the

stronger the inductive bias of a learning method, the more useful ALC will be.

6 Alternative Applications

In this section, we briefly outline two alternative applications for which ALC methods

might potentially be useful. However, we only give a sketch of the basic ideas, as an

in-depth investigation is beyond the scope of this paper.

6.1 Decision Making

In ALC, the labels Lx associated with an instance x are considered as alternatives in-

cluding the correct classification. However, instead of considering Lx as an ambiguous

labeling, one can also imagine an application scenario in which it characterizes a set of

admissible alternatives. In that case, a distinguished correct label does simply not exist.
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Instead, each λ ∈ Lx is allowed, which means that the risk of a model h : X → L now

becomes

R(h)
df
=

∫
X

(1 − I(h(x) ∈ Lx)) d μ, (13)

where μ is a probability measure over X .

In connection with the admissibility interpretation, an obvious concern is to exploit the

additional freedom of having several instead of only one admissible label per instance in

order to reduce the complexity of a model. Thus, just like in ALC, the problem can roughly

be stated as inducing an as simple as possible model that is (to a large extent) consistent

with the data. Note, however, that looking for a simple model has a completely different

reason in ALC, where the idea is that a simpler model is also more likely to select the

correct labels among the candidates. Nevertheless, the same learning algorithms could

in principle be applied for both types of application, despite of the differences in the

underlying semantic interpretations.

The admissibility semantics is natural in the case where labels represent decisions or

actions rather than classes. More specifically, suppose that the instances x ∈ X encode

decision problems, that is, situations in which an agent must choose one among a set L of

potential actions. In this scenario, there will usually not exist one unique “correct” action

for each decision problem x. Particularly, a “satisficing” decision maker in the sense of

H. Simon [31] may be able to divide L into actions that are acceptable for a problem x

and those that are non-acceptable. Here, it is assumed that different actions are more or

less useful for a problem and that an action λ is acceptable for a problem x if the utility

of applying λ to solve x exceeds a certain threshold. Thus, knowing that a set of actions

Lx is acceptable for a problem x gives rise to an example (x, Lx). Examples of this type

represent the agent’s experience. By generalizing beyond this experience, the agent may

try to induce a theory in the form of a decision model, which prescribes acceptable actions

for all situations x ∈ X . This kind of experience-based decision making is closely related

to the idea of case-based decision theory [15].
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The interesting point in connection with this application concerns the relation between the

agent’s “ambition” and the complexity of the decision model: Usually, the more ambitious

the agent is (i.e., the larger the utility threshold), the more complex the decision model

will be. To illustrate, consider the problem of choosing the dose of a drug for different

patients. A simple decision model that prescribes different doses for males, females, and

children might lead to acceptable results (the utility of a decision depends on the patient’s

state of health after the treatment), whereas optimizing the results might require a more

complex model that differentiates more precisely between patients, e.g., by taking other

attributes in addition to sex and age into account. Of course, a medical doctor might

thoroughly prefer the simple model to a more complex (and maybe more expensive) one.

More generally, if an ALC method is available for inducing decision models, the utility

threshold might be used as a parameter for controlling the tradeoff between the complexity

of a model and its performance (decision quality): The smaller the threshold, the larger

the admissible sets Lx, and the less complex the decision model [18].

6.2 Model Pruning

ALC might also be useful as a kind of pruning technique. The idea is as follows: Pruning

a model such as, e.g., a decision tree or a rule-based classifier, roughly means simplifying

that model at the cost of mis-classifying some of the examples in the training set. That is,

the label assigned to these examples by the pruned model is different from the prescribed

label. Now, if the final (mis-)labeling of an instance would have been allowed from the

start, the pruned model might have been inferred directly by means of an ALC method.

In other words, tolerating for some mis-classifications can be interpreted as a kind of

pruning, at least if the learning method is able to utilize the additional flexibility in

order to induce a simpler model. More specifically, it concerns a pre-pruning strategy,

comparable to the use of evaluation measures in rule induction that allow a rule to cover

some negative examples.

But how can one anticipate the mis-classifications? Or, stated differently, which labels

should be added, i.e., which mis-classifications should be tolerated? Intuitively, the critical
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examples that often lead to complex models are (i) noisy instances and outliers and (ii)

instances located near a decision boundary. Since the label of such examples is usually

different from the label of closely neighbored instances, we suggest the following approach

(that requires a distance measure over X ): For an instance xı, define Lxı by the originally

prescribed label λxı plus the majority label among xı’s k nearest neighbors. In other

words, the strategy is to be tolerant with examples whose k-nearest neighbor (k-NN)

classification is not completely certain.

To illustrate the potential effectiveness of the idea, consider the following extreme example:

Suppose that the true model can be represented by a simple decision tree. Unfortunately,

the data D contains one instance xı that is erroneously labeled with λ1 instead of λ2.

Since decision tree induction is rather sensitive toward noisy data, the tree induced from

D might be very complicated, and even post-pruning that tree might not recover the

true model. Now, by including λ2 as an alternative classification, as suggested by xı’s

neighborhood, the true model might have been obtained directly (e.g., by means of the

ALC-extension of decision tree induction as introduced in section 4).

ALC-pruning as outlined above is related to other pruning techniques. For example,

Wilson [33] proposed a kind of instance-based pruning for the nearest neighbor method

itself. From the original training set he completely removes all instances that do not

agree with the majority of their k nearest neighbors. Likewise, the following procedure is

proposed by John [20] for learning robust decision trees: A decision tree is first grown on

the complete training data and then pruned by converting some selected inner nodes of

the tree to leaf nodes (and, as usual, assigning majority classes as labels). After pruning,

some of the examples will of course be mis-classified. Now, it is argued that pruning a

node of a decision tree effectively removes all instances that were not in the majority

class of the subset of examples used to build that node’s subtree. In other words, these

instances are “locally uninformative” or perhaps even harmful. Then, however, one might

wonder why they should still have an influence on the global structure of the tree (as they

do have even after pruning). Consequently, it is suggested to remove the mis-classified

instances from the training set and then to retrain on the remaining data. This procedure
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is iterated until pruning does not change the rebuilt decision tree.

Compared to the above strategies, our approach is less drastic: Critical or potentially mis-

leading examples are not completely ignored. Rather, alternative classifications, suggested

by the local neighborhood of an example, are tolerated so as to put a learning algorithm

into the position to ignore a misleading labeling. In fact, ALC-pruning is also a kind of

instance-based pruning technique, but one that does not prune by removing potentially

harmful examples but rather by correcting possibly misleading label information.

Note that the inductive bias of the overall learning algorithm, including ALC-pruning as

a preprocessing step, will be a combination of the k-NN bias and the bias of the actual

learning method applied afterwards. Consequently, the actual learning method is to some

extent biased by k-NN. However, since k-NN (with small k) has a rather weak bias, this

effect is indeed limited.

7 Concluding Remarks

In order to successfully learn a classification function in the ALC setting, where examples

can be labeled in an ambiguous way, we proposed several extensions of standard machine

learning methods. The idea is to exploit the inductive bias underlying these (heuristic)

methods in order to disambiguate the label information. In fact, our speculation was that

looking at the label information with a “biased view” may remove the ambiguity of that

information to some extent. This speculation gives furthermore rise to the conjecture

that ALC learning methods with a strong (and of course approximately correct) bias

can exploit the information provided by ambiguous examples better than methods with

a weak bias. This conjecture has been supported empirically by experiments that have

been carried out for three concrete learning techniques, namely ALC extensions of nearest

neighbor classification, decision tree learning, and rule induction. The experiments also

showed that applying our ALC methods to the complete data will usually yield better

results than learning with a standard method from the subset of exactly labeled examples,

at least if the expected benefit of the ambiguous examples is not too low.
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data method q p = .1 p = .5 p = .9
derma ALC (r) .3 .959 (.013) .955 (.014) .943 (.017)

ALC (b) .3 .959 (.013) .955 (.015) .940 (.018)
standard .3 .958 (.014) .948 (.018) .910 (.039)
ALC (r) .5 .958 (.014) .949 (.015) .890 (.028)
ALB (b) .5 .958 (.014) .946 (.016) .874 (.031)
standard .5 .957 (.014) .945 (.019) .851 (.067)
ALC (r) .7 .959 (.014) .938 (.019) .746 (.050)
ALC (b) .7 .958 (.014) .936 (.018) .745 (.046)
standard .7 .958 (.014) .945 (.020)∗ .833 (.072)∗

ecoli ALC (r) .3 .845 (.025) .832 (.025) .798 (.024)
ALC (b) .3 .846 (.025) .830 (.028) .798 (.029)
standard .3 .845 (.026) .827 (.028) .743 (.059)
ALC (r) .5 .844 (.027) .815 (.023) .715 (.039)
ALC (b) .5 .843 (.022) .814 (.028) .709 (.045)
standard .5 .843 (.027) .815 (.030) .691 (.099)
ALC (r) .7 .844 (.022) .801 (.029) .582 (.050)
ALC (b) .7 .841 (.024) .802 (.032) .593 (.052)
standard .7 .842 (.024) .820 (.034)∗ .699 (.087)∗

glass ALC (r) .3 .634 (.041) .620 (.043) .592 (.045)
ALC (b) .3 .638 (.040) .622 (.041) .592 (.044)
standard .3 .630 (.041) .604 (.048) .510 (.070)
ALC (r) .5 .636 (.042) .611 (.042) .542 (.052)
ALC (b) .5 .635 (.042) .607 (.043) .529 (.051)
standard .5 .633 (.042) .599 (.045) .438 (.077)
ALC (r) .7 .633 (.042) .602 (.045) .463 (.061)
ALC (b) .7 .631 (.042) .604 (.045) .453 (.060)
standard .7 .631 (.041) .595 (.051) .408 (.077)

housing ALC (r) .3 .488 (.027) .461 (.029) .423 (.017)
ALC (b) .3 .476 (.026) .457 (.029) .412 (.032)
standard .3 .486 (.028) .455 (.030) .403 (.032)
ALC (r) .5 .476 (.028) .431 (.030) .320 (.034)
ALC (b) .5 .477 (.027) .445 (.031) .367 (.032)
standard .5 .474 (.028) .444 (.030) .362 (.046)∗

ALC (r) .7 .486 (.027) .440 (.033) .271 (.035)
ALC (b) .7 .478 (.029) .443 (.030) .324 (.032)
standard .7 .484 (.027) .454 (.031)∗ .369 (.048)∗

zoo ALC (r) .3 .926 (.038) .912 (.041) .887 (.054)
ALC (b) .3 .925 (.038) .911 (.042) .886 (.055)
standard .3 .925 (.039) .896 (.053) .782 (.104)
ALC (r) .5 .924 (.037) .901 (.048) .824 (.072)
ALC (b) .5 .925 (.039) .895 (.048) .777 (.091)
standard .5 .923 (.038) .889 (.059) .667 (.155)
ALC (r) .7 .922 (.038) .885 (.058) .673 (.110)
ALC (b) .7 .924 (.039) .881 (.060) .609 (.111)
standard .7 .921 (.038) .884 (.061) .655 (.162)

Table 6: Results for 5-NN classification (classification rate and standard deviation).
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data method q p = .1 p = .5 p = .9
derma ALC (r) .3 .860 (.046) .841 (.051) .809 (.069)

ALC (b) .3 .861 (.047) .839 (.055) .802 (.069)
standard .3 .858 (.049) .814 (.063) .654 (.129)
ALC (r) .5 .858 (.047) .818 (.057) .742 (.098)
ALB (b) .5 .854 (.047) .816 (.058) .736 (.082)
standard .5 .858 (.049) .807 (.069) .488 (.155)
ALC (r) .7 .855 (.048) .802 (.059) .618 (.125)
ALC (b) .7 .854 (.048) .801 (.063) .659 (.092)
standard .7 .855 (.048) .799 (.075) .446 (.154)

ecoli ALC (r) .3 .705 (.039) .676 (.041) .645 (.043)
ALC (b) .3 .707 (.038) .682 (.038) .663 (.039)
standard .3 .704 (.043) .655 (.058) .543 (.115)
ALC (r) .5 .703 (.039) .658 (.042) .611 (.051)
ALC (b) .5 .703 (.038) .669 (.039) .639 (.045)
standard .5 .700 (.041) .646 (.059) .517 (.139)
ALC (r) .7 .700 (.039) .648 (.043) .567 (.065)
ALC (b) .7 .701 (.039) .661 (.040) .635 (.051)
standard .7 .699 (.041) .643 (.064) .509 (.149)

housing ALC (r) .3 .348 (.038) .321 (.043) .282 (.045)
ALC (b) .3 .348 (.038) .333 (.042) .311 (.044)
standard .3 .353 (.039)∗ .334 (.051)∗ .313 (.088)∗

ALC (r) .5 .346 (.038) .308 (.043) .246 (.047)
ALC (b) .5 .348 (.038) .331 (.044) .294 (.043)
standard .5 .353 (.039)∗ .336 (.051)∗ .306 (.099)∗

ALC (r) .7 .348 (.038) .301 (.046) .261 (.062)
ALC (b) .7 .352 (.036) .321 (.044) .286 (.078)
standard .7 .350 (.042)∗ .337 (.052)∗ .302 (.104)∗

glass ALC (r) .3 .557 (.059) .533 (.065) .507 (.072)
ALC (b) .3 .559 (.059) .534 (.069) .496 (.080)
standard .3 .553 (.063) .514 (.086) .437 (.120)
ALC (r) .5 .556 (.055) .525 (.066) .460 (.085)
ALC (b) .5 .555 (.054) .513 (.078) .434 (.082)
standard .5 .551 (.064) .497 (.091) .395 (.152)
ALC (r) .7 .554 (.056) .507 (.075) .410 (.092)
ALC (b) .7 .557 (.057) .504 (.079) .382 (.065)
standard .7 .554 (.064) .493 (.093) .389 (.172)

zoo ALC (r) .3 .876 (.057) .841 (.063) .806 (.066)
ALC (b) .3 .876 (.058) .843 (.060) .807 (.063)
standard .3 .876 (.059) .814 (.084) .654 (.171)
ALC (r) .5 .877 (.057) .827 (.067) .765 (.079)
ALC (b) .5 .876 (.057) .830 (.063) .753 (.103)
standard .5 .873 (.060) .811 (.091) .552 (.245)
ALC (r) .7 .873 (.055) .820 (.069) .696 (.102)
ALC (b) .7 .874 (.054) .825 (.066) .553 (.206)
standard .7 .873 (.061) .807 (.092) .500 (.272)

Table 7: Results for decision tree induction.

28



data set method q p = .1 p = .5 p = .9
Dermatology ALC (r) .3 .836 (.042) .812 (.047) .770 (.058)

ALC (b) .3 .836 (.042) .815 (.048) .775 (.056)
standard .3 .832 (.043) .765 (.064) .618 (.093)
ALC (r) .5 .832 (.042) .784 (.057) .685 (.071)
ALB (b) .5 .834 (.043) .786 (.055) .702 (.064)
standard .5 .832 (.044) .747 (.065) .513 (.128)
ALC (r) .7 .825 (.044) .748 (.063) .633 (.084)
ALC (b) .7 .829 (.041) .763 (.059) .645 (.070)
standard .7 .825 (.046) .736 (.068) .476 (.143)

Ecoli ALC (r) .3 .747 (.033) .741 (.037) .730 (.047)
ALC (b) .3 .746 (.033) .739 (.043) .715 (.054)
standard .3 .745 (.034) .723 (.056) .630 (.113)
ALC (r) .5 .745 (.034) .735 (.044) .701 (.064)
ALC (b) .5 .744 (.034) .725 (.052) .636 (.077)
standard .5 .745 (.035) .723 (.061) .577 (.138)
ALC (r) .7 .746 (.033) .726 (.053) .638 (.072)
ALC (b) .7 .748 (.032) .709 (.060) .504 (.140)
standard .7 .746 (.033) .718 (.064) .577 (.144)

Glass ALC (r) .3 .655 (.048) .632 (.049) .615 (.055)
ALC (b) .3 .657 (.049) .642 (.052) .612 (.060)
standard .3 .655 (.050) .617 (.067) .528 (.116)
ALC (r) .5 .659 (.047) .621 (.054) .565 (.062)
ALC (b) .5 .659 (.048) .617 (.059) .465 (.109)
standard .5 .655 (.049) .607 (.075) .431 (.157)
ALC (r) .7 .656 (.049) .606 (.055) .497 (.084)
ALC (b) .7 .657 (.048) .601 (.066) .220 (.101)
standard .7 .658 (.050)∗ .605 (.076) .408 (.176)

Housing ALC (r) .3 .446 (.032) .424 (.033) .397 (.039)
ALC (b) .3 .446 (.032) .423 (.036) .389 (.042)
standard .3 .447 (.034)∗ .411 (.046) .328 (.091)
ALC (r) .5 .445 (.031) .411 (.034) .349 (.053)
ALC (b) .5 .445 (.030) .402 (.039) .281 (.071)
standard .5 .443 (.034) .407 (.049) .302 (.102)
ALC (r) .7 .446 (.032) .395 (.041) .300 (.060)
ALC (b) .7 .444 (.031) .384 (.045) .125 (.049)
standard .7 .448 (.034)∗ .409 (.049) .313 (.105)∗

Zoo ALC (r) .3 .898 (.053) .862 (.068) .815 (.079)
ALC (b) .3 .897 (.054) .862 (.070) .804 (.091)
standard .3 .896 (.055) .847 (.087) .723 (.168)
ALC (r) .5 .897 (.054) .838 (.070) .720 (.098)
ALC (b) .5 .899 (.052) .837 (.081) .618 (.153)
standard .5 .901 (.053)∗ .843 (.085)∗ .612 (.247)
ALC (r) .7 .889 (.052) .812 (.088) .598 (.125)
ALC (b) .7 .891 (.055) .807 (.092) .300 (.191)
standard .7 .893 (.054)∗ .835 (.089)∗ .564 (.272)

Table 8: Results for rule induction.
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In summary, our idea to “disambiguate via biased induction” can be seen as a simple

yet effective alternative to the probabilistic approaches proposed in [16, 19]. Indeed, let

us again emphasize that these two approaches, just like machine learning and statistical

methods in general, are not competing but complementary, in the sense that they apply to

different types of learning methods: The expectation-maximization approach assumes a

parameterized (statistical) model and is not immediately applicable to machine learning

methods as those considered in this paper. For example, it is not applicable to k-NN

classification, as there are no parameters to estimate.10 Likewise, we are not aware of

suitable statistical approaches to rule induction. In the case of decision trees, a statistical

model amenable to ML estimation has indeed been proposed in [21]. But even if a classifier

can be trained in both ways, heuristically and via maximum likelihood, the former will

definitely be much more efficient than the latter. For example, the decision tree learned

in [22] for 12 binary input variables already involved more than 1,000 parameters, and

convergence was not achieved before approximately 100 training epochs.

Despite the fact that our approach has its own right to exist, independently of the statisti-

cal alternative, exploring the relation between the two approaches is of course interesting

and worth further investigation. Another interesting topic of future work concerns a

detailed elaboration of the alternative applications of ALC as outlined in section 6.
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