
Comparing Methods for Knowledge-Driven and Data-Driven Fuzzy Modeling:
A Case Study in Textile Industry

*Maryam Nasiri
Software Engineering Institute

University of Siegen
Siegen, Germany

nasiri@informatik.uni-siegen.de
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Abstract: The aim of this study is to compare different approaches to fuzzy systems design from different perspec-
tives: knowledge-driven versus data-driven and rule-based (flat) versus tree-based (hierarchical). More specifically,
our comparison is focused on two of the arguably most important criteria in fuzzy systems design, namely accuracy
and interpretability. We compare two approaches to data-driven fuzzy modeling, namely fuzzy rule-based inference
using the well-established Takagi-Sugeno approach, and so-called fuzzy pattern trees, an alternative approach that
has been proposed only recently. In contrast to the flat structure of fuzzy rule systems, pattern trees are hierarchical
models. These methods are compared in the context of a concrete case study, namely the modeling of color yield in
polyester high temperature dyeing as a function of disperse dyes concentration, temperature and time. As a baseline,
we include Mamdani models designed in a knowledge-driven way. Our results show that, at least in this particular
application, Takagi-Sugeno systems offer the best predictive accuracy, whereas Mamdani models are preferable in
terms of interpretability. Fuzzy pattern trees seems to offer a good trade-off between both criteria.

1 INTRODUCTION

While aspects of knowledge representation and reasoning
have dominated research in fuzzy logic for a long time, prob-
lems of automated learning and knowledge acquisition have
more and more come to the fore during the recent years. This
is not very surprising in view of the fact that the “knowledge
acquisition bottleneck” seems to remain one of the key issues
in the design of intelligent and knowledge-based systems. In-
deed, experience has shown that a purely knowledge-driven
approach, which aims at formalizing problem-relevant human
expert knowledge, is difficult, intricate, and tedious most of
the time. Consequently, a kind of data-driven construction of
fuzzy systems is often worthwhile [1]. In fact, such a “tuning”
even suggests itself in many applications where data is read-
ily available. In some applications, such as learning on data
streams, where models need to be learned and updated con-
tinuously in an online manner, data-driven adaptation is even
essential [2, 3].

The transparency and interpretability of fuzzy systems is
often emphasized as one of their key advantages, especially in
comparison to so-called “black-box” approximation methods
such as neural networks. Indeed, a primary motivation for the
development of fuzzy sets was to provide an interface between
a numerical scale and a symbolic scale usually composed of
linguistic terms. Thus, fuzzy sets have the capability to in-
terface quantitative patterns with qualitative knowledge struc-
tures expressed in terms of natural language. This makes the
application of fuzzy technology very appealing from a knowl-
edge representational point of view.

However, if models are extracted from data in an auto-
matic way instead of being designed by a human expert, in-
terpretability becomes a critical issue. For example, a lin-

guistic representation may become difficult if the fuzzy sets
have been induced by the learning algorithm in a data-driven
way, since the existence of appropriate linguistic interpreta-
tions cannot be guaranteed in that case. Another problem
that may hamper interpretability concerns the complexity of
models consisting of a potentially large number of interacting
pieces, for example rules in a rule-based system. Since ac-
curate models typically require a certain level of complexity,
accuracy and understandability are to some extent conflicting
goals [4, 5].

Due to these reasons, the interpretability of fuzzy models
is clearly not self-evident and does not come for free, espe-
cially when these models are constructed in a data-driven way.
Research in this field is still hampered by the lack of accepted
criteria for measuring interpretability in a more or less objec-
tive way, although some advances have recently been made
[6, 7]. In this paper, we therefore opt for another approach:
Instead of looking for generic evaluation measures, we com-
pare different methods in the context of a concrete case study,
namely the modeling of color yield in polyester high temper-
ature dyeing.

More specifically, we compare fuzzy rule-based inference
and so-called fuzzy pattern trees (FPT), an alternative ap-
proach to fuzzy systems design that has been proposed only
recently. Whereas rule-based systems have a “flat” struc-
ture, fuzzy pattern trees are hierarchical models. As argued
in [8], they are thus able to represent models in more com-
pact way. Regarding fuzzy inference systems (FIS), we com-
pare a knowledge-driven and a data-driven approach, namely
Mamdani [9] and Takagi-Sugeno systems [10]. In fact, wile
the former are quite convenient from a modeling perspective,
more efficient learning algorithms exist for the latter.

The remainder of the paper is organized as follows. In



the next section, we briefly recall the basic conception of the
fuzzy models included in our study. Our application, the mod-
eling of color yield in polyester high temperature dyeing, is
outlined in Section 3. The results of our case study are then
presented and discussed in Section 4. The paper ends with
some concluding remarks in Section 5.

2 METHODS

Due to space restrictions, we mainly restrict to a descrip-
tion of the architectures of the fuzzy models used in our study,
without explaining algorithms for learning them from data.
For technical details of that kind, we refer to the related lit-
erature. We also refrain from explaining Mamdani models,
which we assume to be widely known.

2.1 Takagi-Sugeno Systems

Takagi-Sugeno (TS) fuzzy systems allow for modeling
R

p → R mappings in a convenient and flexible way [10]. A
single rule in a (single output) TS fuzzy system is of the form

IF (x1 IS μi1) AND ... AND (xp IS μip)

THEN li = wi0 + wi1x1 + wi2x2 + ...+ wipxp

where x = (x1, . . . , xp) is the p-dimensional input vector and
μij the fuzzy set describing the j-th antecedent of the rule.
Typically, these fuzzy sets are associated with a linguistic la-
bel. The AND connective is modeled in terms of a t-norm, i.e.,
a generalized logical conjunction [11]. The output l i = li(x)
is the so-called consequent function of the rule.

The output of a TS system consisting of C rules is a linear
combination of the outputs produced by the individual rules,
where the contribution of each rule is given by its normalized
degree of activation:

f̂(x) = ŷ =

C∑

i=1

Ψi(x) · li(x) (1)

with

Ψi(x) =
μi(x)∑C
j=1 μj(x)

, (2)

where μi(x) denotes the activation degree of the i-th rule. The
latter is defined by the conjunctive (t-norm) combination of
the rule antecedents, i.e., the degrees of membership of the
feature values xj in the fuzzy sets μij :

μi(x) =

p⊗

j=1

μij(xj) (3)

As can be seen, a TS fuzzy model is a parameterized map-
ping which is defined by the choice of the input space (via
feature selection) including its dimensionality p, the num-
ber of rules, C, and the parameters of each single rule, i.e.,
the fuzzy sets μij (j = 1, . . . , p) and the weight vector
wi = (wi0, wi1, . . . wip). For learning TS models from data,
i.e., from a given set if examples (xi, yi), we make use of the
method proposed in [12].

2.2 Fuzzy Pattern Trees

Pattern tree induction was recently introduced as a novel
machine learning method for classification in [13] and fur-
ther developed for regression in [8]. Roughly speaking, a
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Fig. 1: Example of a fuzzy pattern tree: The output is large if attribute A is
high or if the truth degree of a second criterion is high, namely that B is low
and that the average between the conditions that B and C are medium is high.
The tree also shows the concrete propagation of values from the bottom to the
top; in this case, the output is high to the degree 0.7.

fuzzy pattern tree is a hierarchical, tree-like structure, whose
inner nodes are marked with generalized (fuzzy) logical and
arithmetic operators (namely t-norms, t-conorms, average and
ordered weighted average operators), and whose leaf nodes
are associated with fuzzy predicates on input attributes (fuzzy
subsets of the attribute’s domain, possibly associated with a
linguistic term); see Fig. 1 for an illustration. A pattern tree
propagates information from the bottom to the top: A node
takes the values of its descendants as input, combines them
using the respective operator, and submits the output to its
predecessor.

Just like TF models, a pattern tree can implement a map-
ping R

p → R. Note that the direct output of a pattern tree is
in [0, 1]. One can think of this value as the degree of member-
ship of a fuzzy subset G of an underlying domain Y ⊆ R. For
example, if Y is an interval [a, b], i.e., if the original output
variable is lower-bounded by a and upper-bounded by b, then
the membership function could be given by a simple linear
scaling

G : y �→ y − a

b− a
.

Thus, the corresponding fuzzy set could be interpreted as a
model of the linguistic term “large”. Likewise, if the original
output is unbounded, a possible re-scaling is

G : y �→ 1

1 + exp(−αy)
.

Considering the fuzzy set G as a fuzzy predicate or, say,
property of the output variable (e.g., being large), a fuzzy pat-
tern tree can be seen as a model that specifies criteria on the
input attributes which imply this property to hold. From a
modeling point of view, the pattern tree approach is based on
three important conceptions:

• fuzzification of input attributes;
• hierarchical structuring of a functional dependency

through recursive partitioning of criteria into sub-criteria;
• flexible aggregation of sub-criteria by means of parame-

terized fuzzy operators.



Pattern trees are interesting for several reasons. From a learn-
ing point of view, they offer a flexible model class that is able
to fit non-linear functions in a quite accurate way, possesses
desirable monotonicity properties and can easily handle miss-
ing or imprecise input values [14]. Moreover, pattern trees
are interesting from an interpretation point of view. A tree
can be considered as a kind of generalized logical description
of properties that guarantee a “large” output. The description
itself is compact and modular due to its hierarchical structure.

Different algorithms have been proposed for learning a
pattern tree classifier from a given set of data, namely meth-
ods that construct trees in a bottom-up [13] and in a top-down
manner [14]. A variant of pattern tree induction suitable for
learning regression functions was proposed in [8].

3 POLYESTER DYEING

The most important man made fiber is Polyethylene ter-
phethalate (PET) commonly known as polyester. This poly-
mer contains ester groups (-CO-O-) in its main molecu-
lar chain and is produced by melt spinning process. Ester
groups are a result of the reaction between bi-functional car-
boxylic acids and bi-functional alcohols. The absence of re-
active groups, capable of undergoing reaction with anionic
and cationic dyes as well as being a hydrophob, has limited
dyeing and printing of unmodified polyethylene terphethalate
fibers to only disperse dyes. Moreover, under normal dyeing
conditions, the compact structure of polyethylene terphetha-
late fibers makes the penetration of disperse dyes inside them
very difficult. Dyeing of polyethylene terephthalate fibers
therefore requires special conditions such as high temperature
(∼130◦C), dry heat (190-220◦C), or using carrier in the dye
bath [15, 16, 17, 18].

The chemical structure of disperse dyes contains polar
groups such as -NHR, -OH and NH2 but there are no ionic
groups present which leads to their very low solubility in wa-
ter [15, 19, 20]. Azo, anthraquinone, and nitro diphenylamine
constitue the three main chemical structure of disperse dyes.
However, as far as the application is concerned, these dyes are
divided into four groups namely A, B, C, and D [15, 20]. Tem-
perature, time, and disperse dye concentration are the primary
factors affecting the color yield in dyeing polyethylene tereph-
thalate. The overall picture of the relative importance of these
factors can be seen in models representing the color yield as
a function of them. These models may also have applications
in processing and cost minimization [15].

Our objective is to present a model for the color yield of
polyethylene terephthalate dyed with specific disperse dyes
by high temperature method. The model will represent color
yield as a function of time, temperature and dye concentration
for each dye. K/S has a direct relationship with the color
yield. K/S shows the ratio of absorbed light by an opaque
substrate relative to the scattered light from it. This ratio is
calculated by Kubelka-Munk theory as follows:

(K/S)λ =
(1−Rλ)

2

2Rλ
,

where Rλ is the reflectance of sample of infinite thichness to
light of given wavelength, expressed in fractional form [15,
21].

Dye Concentr. (% owf) Temperature (◦C) Time (min)
0.75 100 12
1,50 110 24
3,00 115 36
4.50 120 48
6,00 125

130

TABLE I: DYEING CONDITIONS .

Index Name Chromophore
C.I. Disperse Blue 266 Mono Azo
C.I. Disperse Brown 1
C.I. Disperse Blue 56 Anthraquinone
C.I. Disperse Red 60
C.I. Disperse Yellow 7 Diazo
C.I. Disperse Yellow 23
Mixture Not Known

TABLE II: THE DISPERSE DYES EMPLOYED FOR SAMPLES DYEING.

4 MODELING OF POLYESTER DYEING

As mentioned before, the present study aims to model
variations of color yield of polyester samples dyed with differ-
ent disperse dyes versus time, temperature, and disperse dye
concentration in the high temperature (HT) polyester dyeing
process. To this end, Mamdani and Takagi-Sugeno systems as
well as fuzzy pattern trees are used.

Dyeing of the samples (5 g) was carried out by Polymat
laboratory dyeing machine (AHIBA 1000) with the following
recipe:

Disperse dye x%
pH 5.5
L:R 50:1

and according to a set of values for dye concentration, dyeing
temperature and dyeing time in the form of a matrix shown in
Table i [22]. After dyeing, reduction clearing for the samples
was carried out for 10 minutes in a bath (65◦C) containing
sodium hydroxide 38◦Be, sodium dithionite and a nonionic
detergent [15, 22]. The disperse dyes employed are listed in
Table ii [15, 22].

From the values for concentration, temperature and time,
120 combinations were constructed, for which the output K/S
was determined experimentally. Thus, for a single disperse
dye, a data set with 120 observations was obtained (hence 7
such data sets in total), where each observations consists of
three values of the input attributes (concentration, tempera-
ture, time) and one value for the output (K/S).

4.1 Fuzzy Models

The Mamdani inference system, representing the color
yield of C.I. Disperse Blue 266 as a function of time, tem-
perature, and disperse dye concentration in the high tempera-
ture (HT) polyester dyeing, was developed in a knowledge-
driven way, formalizing expert knowledge in a proper way
[23]: First, membership functions for input and output vari-
ables regarding HT dyeing of polyester for C.I. Disperse Blue
266, one of mono Azo Disperse Dyes, have been determined.



Concentration Time Temperature
Fuzzy Set Mean Std Mean Std Mean Std
Low 0.30 1.00 13.1 14.2 100 7.8
Medium 3.38 0.89 — — 117 3.0
High 5.86 1.33 44.4 11.7 129 4.0

TABLE III: PARAMETERS OF GAUSSIAN FUZZY SETS FOR INPUT VARI-
ABLES.

Fuzzy Set Mean Std
Very Low 0.00 3.30
Low 4.11 1.42
Medium 12.8 1.69
High 19.3 1.86
Very High 29.80 3.50

TABLE IV: PARAMETERS OF GAUSSIAN FUZZY SETS FOR OUTPUT VARI-
ABLE.

Gaussian membership functions were used for all input and
output variables. The values for mean and standard deviation
of membership functions for each variable are given in Tables
iii and iv.

In the second stage, the eight rules blow were defined ac-
cording to the physical and chemical structure of polyester
fiber, HT dyeing of polyester, and the behavior of 120 sam-
ples dyed in C.I. Disperse Blue 266 [23]:

1. If (temperature is low) and (time is low) and (concentra-
tion is low), then (K/S is very low).

2. If (temperature is medium) and (concentration is high),
then (K/S is high).

3. If (temperature is high) and (concentration is low), then
(K/S is medium).

4. If (temperature is low) and (time is high) and (concentra-
tion is low), then (K/S is very low).

5. If (temperature is high) and (concentration is high), then
(K/S is very high).

6. If (temperature is medium) and (time is low) and (con-
centration is high), then (K/S is medium).

7. If (temperature is medium) and (time is high) and (con-
centration is high), then (K/S is high).

8. If (Temperature is low) and (time is low) and (concentra-
tion is high), then K/S is low.

In a manner similar to the one described above, the proposed
method was applied to C.I. Disperse Brown 1, which has a
chemical structure similar to C.I. Disperse Blue 266, with no
changes in the FIS designed for the previous dye. The ob-
tained FIS has been applied for Anthraquinone dyes.

Regarding to different chemical structure of other dyes,
the behavior of each of them has been studied and the pa-
rameters of temperature according to change of color yield in
each of them during change of temperature have been defined
as shown in Table v.

As mentioned before, the TS fuzzy systems and the fuzzy
pattern trees have been determined in a purely data-driven
manner, using the learning algorithms proposed in [12] and
[8], respectively.

Mixture Diazo
Fuzzy Set Mean Std Mean Std
Low 106.70 9.68 100.00 5.00
Medium 123.10 2.43 115.00 5.00
High 131.70 4.00 130.00 5.00

TABLE V: PARAMETERS OF FUZZY SETS FOR VARIABLE ‘TEMPERATURE’
FOR MIXTURE AND ANTHRAQUNONE DYES.

Dyes Mamdani TS FPT
Blue 266 3.3663 1.28±0.13 2.23±0.16
Brown 1 4.3129 2.25±0.14 2.68±0.13
Blue 56 3.7985 1.46±0.07 2.74±0.28
Red 60 4.6461 2.09±0.07 3.03±0.14
Yellow 7 4.9089 1.11±0.08 2.29±0.08
Yellow 23 4.1213 1.31±0.11 2.84±0.16
Mixture 3.9760 1.39±0.07 1.92±0.04

TABLE VI: ACCURACY IN TERMS OF RMSE ± STANDARD DEVIATION.

4.2 Accuracy

The accuracy of the three models has been determined by
means of a 5-fold cross validation, repeated 10 times. The
average results in terms of root mean squared error (RMSE)
are shown in Table vi for all 7 data sets. These results convey a
relatively clear picture: TS models provide the most accurate
solutions, followed by fuzzy pattern trees. The knowledge-
driven Mamdani models cannot compete with the two data-
driven approaches and produce a significantly higher error.

4.3 Interpretability

From an interpretability point of view, the situation is
quite different. Obviously, Mamdani models are well inter-
pretable, since these models have been designed by hand.

The models produced by the Takagi-Sugeno approach are
much less interpretable, for several reasons. First of all, rules
of the TS type are arguably more difficult to understand than
Mamdani rules. Besides, a TS model as a whole is sometimes
difficult to grasp, especially if the number of rules is large. In
our study, despite the low dimensionality of the input space,
the number of rules can become as large as 13; see Table vii
for an overview of the model size.

Second, the models learned in a data-driven way do not
reflect the chemical structures and behavior of each dye in
a proper way. For example, the fuzzy partitions induced for
the input variables are often non-intuitive. As an illustration,
Table viii shows the parameters of the Gaussian fuzzy sets in-
duced for the attribute ‘temperature’ for C.I. Disperse Blue

# fuzzy sets
Dyes # rules Te Co Ti
C.I. Disperse Blue 266 13 3 4 4
C.I. Disperse Brown 1 8 2 2 3
C.I. Disperse Blue 56 10 3 2 4
C.I. Disperse Red 60 9 3 2 2
C.I. Disperse Yellow 7 9 2 3 2
C.I. Disperse Yellow 23 13 5 4 3
Mixture 12 4 4 3

TABLE VII: SIZE OF TAKAGI-SUGENO MODELS.



Blue 266 Brown 1 Yellow 7
Fuzzy Set Mean Std Mean Std Mean Std
Low 104.3 6.97 105.8 8.42 110.1 13.11
Medium 121.4 8.42 — — — —
High 130.0 0.30 121.1 8.23 123.2 4.81

TABLE VIII: PARAMETERS OF FUZZY SETS FOR VARIABLE ‘TEMPERA-
TURE’ IN DIFFERENT DATA SETS.

Conc high 

AND 

Temp high 

Fig. 2: Fuzzy pattern tree for dyes mixture.

266, C.I. Disperse Brown 1 and C.I. Disperse Yellow 7, re-
spectively. Consider the fuzzy sets for temperature in the case
of C.I. Disperse Blue 266 and C.I. Disperse Brown 1. These
fuzzy sets are not at all in agreement with our expectation. C.I.
Disperse Blue 266 needs higher temperature than C.I. Dis-
perse Brown 1 to have a high color yield, and if we select a
lower standard deviation for “low” in Table 3 or shift the mean
of temperature variable to lower variables, we can obtain bet-
ter results and lower RMSE for C.I. Disperse Brown 1. As can
be seen in Table viii, mean and standard deviation of “low” for
C.I. Disperse Brown 1 are higher than for C.I. Disperse Blue
266.

Another point concerns the influence of individual input
variables on the model output. As an example, the effect of
the variable ‘time’ for the above-mentioned dyes can be con-
sidered. Although time has not an important effect in compar-
ison with temperature and concentration, and these dyes are
not sensible toward time, in comparison with temperature and
concentration, variable ‘time’ has more fuzzy sets for these
dyes; see Table vii. We can consider the fuzzy sets for tem-
perature in the case of C.I. Disperse Yellow 7 as another ex-
ample. The K/S values of the samples dyed with C.I. Disperse
Yellow 7 rise steadily with time and reach a peak at 110◦c, but
beyond this value, an increase of temperature does not have a
significant effect on K/S. Therefore, the mean value 110.10 ◦c,
regarding Table viii, is not acceptable as a mean of the fuzzy
set for ‘low’ for this dye. In general, Takagi-Sugeno models
learned in a data-driven way are not monotone, despite the
fact that the output (K/S) is a monotone increasing function of
all input variables (time, temperature, concentration), and this
monotonicity also holds for the data sets.

In comparison, fuzzy pattern trees are easier to interpret;
see Fig. 2 for an example of a very simple model and Fig. 3
for a more complex (but still manageable) one. The first model
can simply be interpreted as follows: The output (K/S) is high
if the concentration is high and the temperature is high.

The selection of relevant variables, as realized by pattern
trees, appears to be quite reasonable. As an example, we can
consider the above result for C.I. Disperse Yellow 7, but also
for C.I. Disperse Red 60. The variable ‘time’ does not have
an important effect on dyeing regarding chemical structure
of these dyes. This is indeed reflected by the corresponding
fuzzy pattern trees, in which this variable does either not occur

Conc high 

AVG 

OR 

AVG Temp high 

Time high AND 

Temp high Conc high 

Fig. 3: Fuzzy pattern tree for dyes C.I. Disperse Yellow 7.

at all, or at least does not play an important role. In contrast,
time plays a significant roll for mixture dye in high tempera-
ture conditions, and in these cases, it indeed occurs repeatedly
in the fuzzy pattern trees. In the same way, results of fuzzy
pattern trees for Diazo dyes, C.I. Disperse Yellow 7 and C.I.
Disperse Yellow 23 show the importance of concentration, as
it was expected.

As another nice feature of pattern trees, let us mention that
they can easily guarantee a monotone influence of an input
variable on the output. This is simply accomplished by re-
stricting the choice of fuzzy sets in the leaf nodes to the single
fuzzy set ‘high’.

5 CONCLUSIONS

There are at least two important conclusions that can be
drawn from our case study. First, regarding the comparison
of fuzzy rule-based inference systems, we can confirm pre-
vious experience with Mamdani and Takagi-Sugeno models:
The former are quite amenable to a knowledge-driven design,
whereas a specification of TS models by hand is much more
difficult. On the other hand, TS models can be learned quite
efficiently in a data-driven way. In fact, the models thus pro-
duced are more accurate than Mamdani models. The price to
pay, however, is a loss in terms of interpretability.

Second, fuzzy pattern trees can be considered as a viable
alternative for fuzzy systems design, as they seem to offer a
reasonable compromise between accuracy and interpretabil-
ity. Due to their hierarchical structure, pattern trees are often
more compact than a flat rule base, and thus offer models of
smaller size. This model class is clearly worth further investi-
gation.
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