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Abstract
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sion without resorting to a numerical index. A natural partial ordering in terms of
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probability measures defined by probabilistic entropy refines the (partial) ordering
defined by possibilistic specificity. This result, also valid for other dispersion indices,
is discussed against the background of related work in statistics, mathematics (in-
equalities on convex functions), and the social sciences. Finally, an application of the
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the induction of decision forests is proposed.
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1 Introduction

The principle of maximum entropy plays an important role in probability the-
ory, especially in the case of incomplete probabilistic models (see e.g. Paris
[24]). It is instrumental in selecting a probability distribution in agreement
with the available constraints, preserving as much indeterminateness as possi-
ble. Moreover, entropy faithfully accounts for existing dependencies and only
assumes independence where no justification to the contrary can be found
[16,18]. There are axiomatic characterizations of the Shannon entropy func-
tion (Shore and Johnson [27]). Paris [24] has strongly advocated the selection
of the maximum entropy probability as being a reasonable default choice un-
der incomplete information. Entropy can also be viewed as one of the many
dispersion indices that one can find in the literature (see Morales et al. [22]).

In possibility theory, “least commitment” information principles similar to
entropy exist (e.g. Dubois et al. [9]): When a set of constraints delimits a
family of possibility distributions, the least committed choice is the minimally
specific distribution. The underlying idea is to consider any situation as being
possible as long it is not explicitly ruled out by the constraints. This principle
obviously suggests maximizing possibility degrees.

There also exists a natural partial information ordering between possibility
distributions, called the specificity relation. This ordering is based on fuzzy set
inclusion: If a possibility distribution π : W → [0, 1] is pointwisely dominated
by another distribution π′ : W → [0, 1], i.e., π(w) ≤ π′(w) for all w ∈ W , the
former is said to be more specific than the latter (and strictly more specific if
π(w) < π′(w) for at least one w ∈ W ). The natural measure of non-specificity
in agreement with this partial ordering is the sum of the possibility degrees
(also the scalar cardinality of the corresponding fuzzy set). 1

Intuitively, there is a connection between ideas of probabilistic dispersion and
possibilistic specificity: large dispersion and low specificity suggest distribu-
tions with wide supports. One may see some analogy between maximal en-
tropy and minimal specificity principles, especially in the light of the Laplace
indifference principle: In the possibilistic framework, the case of complete ig-
norance is adequately represented by the uniform distribution π ≡ 1 (all states
w are completely possible). Likewise, if a unique probability distribution must
be picked, the aforementioned indifference principle suggests selecting the uni-
form distribution p ≡ |W |−1. For these distributions, the Shannon entropy and
the additive possibilistic measure of non-specificity coincide with the Hartley
entropy of a set (Higashi and Klir [14]), that is, the logarithm of the number
of elements in the set. These authors use an additive index of possibilistic

1 Of course, here we assume the domain W to be finite or at least countable.
Otherwise, the sum must be replaced by an integral.
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non-specificity that looks like Shannon entropy.

The temptation to relate specificity and entropy at a formal level is great. For
instance, Klir [17] suggested equating numerical entropy and (additive) non-
specificity indices for the purpose of transforming possibility distributions into
probability distributions and conversely. This is debatable, however, because
the entropy scale and the specificity scale are not commensurate. Maung [20]
has tried to justify the principle of minimal specificity by adapting Paris’
rationality axioms to the possibilistic setting.

Regarding the information-based comparison of distributions, there is an im-
portant difference between the probability and possibility settings. In the un-
certainty literature, the comparison between probability distributions is often
based on a type of entropy index without reference to an underlying intuitive
partial ordering, which would be directly defined between probability distri-
butions reflecting their relative informativeness. There are actually several
entropy indices and dispersion indices (such as the Gini index) but the par-
tial ordering that decides if a probability measure is more informative than
another one is far less known. Yet, in information theory, authors such as
Morales et al. [22], have pointed out that any well-behaved information mea-
sure is Schur-concave and satisfies a monotonicity condition with respect to a
natural informativeness ordering between probability distributions. Also, there
is an old paper by Birnbaum [1] suggesting such a qualitative comparison of
probability functions on the real line in terms of what is called their peaked-
ness, independently of the notion of entropy. It basically consists of checking
the nestedness of confidence intervals of various confidence levels extracted
from the probability distribution. Of course, the nestedness property of confi-
dence intervals strongly suggests a similarity between the relative peakedness
of probability distributions and the relative specificity of possibility distribu-
tions. On the other hand, the more peaked a probability distribution, the less
spread out and, hence, indeterminate it is, and the lower its entropy should
be.

The aim of this paper is to establish a connection between possibilistic speci-
ficity and a variant of the peakedness relation between probability distribu-
tions, known in mathematics, information theory, and the social sciences. This
relation compares them in terms of dispersion and is refined by Shannon en-
tropy, as well as many other information or dispersion indices. Checking the
peakedness relation between two probability distributions comes down to com-
paring, in terms of specificity, possibility distributions whose cuts are optimal
prediction intervals of the original probability distributions around their mode.
These possibility distributions are in fact the most specific transforms from
probability to possibility, already proposed by Dubois and Prade [4], and Del-
gado and Moral [3] in the eighties. The paper thus establishes a new link
between possibility and probability theories. The proposed qualitative com-

3



parison test between probability distributions may arguably be considered
as the natural information ordering between probability functions, something
which is not always known in the uncertainty literature. We show that this
type of ordering is akin to stochastic dominance. It also corresponds to a
concept of majorization, studied in the early XXth centuries by Hardy and
colleagues [13], for comparing vectors of positive numbers having the same
sum (and hence cannot be compared component-wise), and furthermore used
in the social sciences for the comparison of social welfare of societies of agents
[23] .

The next section introduces a generalized notion of cumulative distribution,
and describes the relative peakedness of probability functions in terms of
stochastic dominance with respect to a particular choice of cumulative distri-
bution. The relation between possibilistic specificity and probabilistic peaked-
ness is shown, noticing that the chosen form of cumulative distribution corre-
sponds to a well-known type of probability-possibility transformation. To make
the paper self-contained, a direct proof, establishing the consistency between
the possibilistic specificity ordering and the probabilistic entropy measure, is
given in section 3. A discussion of related work in the statistical, mathematical,
and social science literature is provided in section 4. It enables the obtained
results to be generalized to a large class of dispersion indices. An application
of the possibilistic specificity ordering in the field of machine learning or, more
specifically, the induction of decision forests is proposed in section 5.

2 A notion of Comparative Dispersion: The Peakedness Ordering

When comparing probability distributions in terms of their informativeness
(or dually in terms of dispersion), it is clear that the more peaked a distribu-
tion, the more informative, the less dispersed it is. Probability distributions on
finite sets can be viewed as vectors the components of which sum to 1. Because
of this property, it is difficult to compare probability distributions pointwisely.
Therefore, many authors resort to information indices like Shannon entropy,
or dispersion indices like the Gini index. The aim of this section is to propose
a notion similar to stochastic dominance that captures the notion of relative
peakedness of probability distributions, and to show its close relation to pos-
sibility theory, where the pointwise comparison of possibility vectors is the
natural way to go when comparing distributions in terms of specificity.
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2.1 Generalized Cumulative Distributions

Let Pr(·) be a probability measure on the real line with density p(·). The
cumulative distribution of Pr(·) is denoted F p(·) and defined by F p(x) =
Pr((−∞, x]). When comparing random variables X1 and X2 with cumulative
distributions F1(·) and F2(·) respectively, it is usual (for instance in economy)
to use the notion of stochastic dominance: X1 stochastically dominates X2 if
and only if F1 ≤ F2 (pointwisely). Stochastic dominance can be equivalently
defined in terms of survival functions Sp(x) = Pr([x, +∞)) : X1 stochastically
dominates X2 if and only if S1 ≥ S2 (pointwisely). Strict dominance holds
when S1 ≥ S2 and S1(x) > S2(x) for at least one x. Dominance thus defined
is a natural approach to deciding whether one random variable is larger than
another one, since when X1 stochastically dominates X2, the probability for
X1 being larger than any threshold x is always larger than the corresponding
probability for X2.

Interestingly, the notion of cumulative distribution is based on the existence of
the natural ordering of numbers. Consider a probability distribution defined
over a finite domain W of cardinality n. In this case, no obvious notion of
cumulative distribution exists, unless W is endowed with a total preordering
�, that is, a reflexive, complete, and transitive relation:

Definition 1 The �-cumulative distribution of a probability distribution p(·)
on a finite, completely preordered set (W,�) is the function F p

� : W → [0, 1]
defined by F p

�(w) = Pr({u ∈ W : w � u}).

Consider another probability distribution q(·) on W . The corresponding stochas-
tic �-dominance relation between p(·) and q(·) can be defined by the pointwise
inequality F p

� ≤ F q
�. If the elements of W are numbered in such a way that

wj � wi if and only if i ≥ j, then p(·) can be viewed as a probability dis-
tribution on {1, 2 . . . n}, and F p

� coincides with a genuine survival function of
Pr(·) on {1, 2 . . . n}. In other words, a generalized cumulative distribution can
always be considered as a simple one, up to a reordering of elements. In the
following, p(wi) is denoted pi for short.

A probability distribution p(·) is more peaked than another one q(·) if the
elements of W are more tightly clustered around the most frequent item(s)
according to p(·) than around the most frequent item(s) according to q(·).
Consider �-cumulative distributions of p(·) and q(·), with respect to the or-
derings induced, respectively, by the probabilities pi and qi: xi �p xj iff pi ≤ pj

and xi �q xj iff qi ≤ qj . It is possible to use such generalized cumulative distri-
butions to decide whether a probability distribution p(·) is more peaked than
another one q(·). The idea is to define mappings from W to natural numbers
{1, 2 . . . |W |} that correspond to the above suggested re-orderings of elements
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Fig. 1. The probability distribution on the left is (strictly) less peaked than the one
on the right.

from the most probable to the least probable, and to use stochastic dominance
on {1, 2 . . . |W |} to compare p(·) and q(·), the “largest” random variable on
the integers corresponding to the most peaked one on W .

Let a = O(p) be the ordered probability vector obtained from p(·) by rear-
ranging the probability degrees pi in a non-increasing order. That is,

a = (a1 . . . an) = (pσ(1) . . . pσ(n)),

where σ is a permutation of {1 . . . n} such that pσ(i) ≥ pσ(j) for i < j. Likewise,
we denote by b = (b1 . . . bn) = O(q) the ordered probability vector associated
with q(·). Now, a and b can be viewed as probability distributions over the set
{1, 2 . . . n}.

Obviously, F p
�p(xσ(i)) = Pr({i . . . n}) =

∑n
k=i ak. Then, in terms of survival

functions, Sa(i) = Pr({i . . . n}):

Definition 2 A probability distribution p(·) on W is said to be more peaked
than a probability distribution q(·) in the wide sense if and only if Sa(i) ≤ Sb(i)
for all i = 1 . . . n, where a = O(p), b = O(q).

The meaning of this definition is that if a random variable X1 on W is more
peaked than X2, then for any integer i, the probability of picking a realization
of X1 not among the i most probable ones is less or equal to the probability
of picking a realization of X2 not among the i most probable ones. Hence,
relative peakedness can be viewed as stochastic dominance in the appropriate
space.

Example 3 For the two probability distributions specified by the probability
vectors

p = ( .05 .20 .25 .25 .20 .05 ),

q = ( .30 .15 .05 .05 .15 .30 )
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(see Fig. 1 for a graphical illustration) we obtain

Sa = ( 1.0 .75 .50 .30 .10 .05 ),

Sb = ( 1.0 .70 .40 .25 .10 .05 ).

Since Sa ≥ Sb (and Sa(2) > Sb(2)), p(·) is (strictly) less peaked than q(·).

2.2 Relative Peakedness and Possibilistic Specificity

A possibility distribution π(·) is a mapping from W to the unit interval such
that π(w) = 1 for some w ∈ W . A possibility degree π(w) expresses the
absence of surprise about w being the actual state of the world. It generates a
set function Π(·) called a possibility measure such that Π(A) = maxw∈A π(w).
The degree of necessity (certainty) of an event A is computed from the degree
of possibility of the complementary event Ac as N(A) = 1 − Π(Ac).

In the following definition, we recall a basic notion from possibility theory
(e.g. Dubois et al. [9]) already mentioned in the introduction.

Definition 4 We say that a possibility distribution π(·) is more specific than
a possibility distribution ρ(·) iff π ≤ ρ pointwisely. It is strictly more specific
if π ≤ ρ and π(w) < ρ(w) for at least one w ∈ W .

Clearly, the more specific π(·), the more informative it is. If π(wi) = 1 for
some wi and π(wj) = 0 for all j 	= i, then π(·) is maximally specific (full
knowledge); if π(wi) = 1 for all i, then π(·) is minimally specific (complete
ignorance).

A numerical degree of possibility can be viewed as an upper bound to a proba-
bility degree [7]. Namely, with every possibility distribution π(·) one can asso-
ciate a non-empty family of probability measures dominated by the possibility
measure:

P(π) = {Pr(·) | Pr(A) ≤ Π(A) for all A ⊆ W }.

On such a basis, it is possible to change representation from possibility to
probability and conversely. Changing a probability distribution into a possi-
bility distribution means losing information as the variability expressed by
a probability measure is changed into incomplete knowledge or imprecision.
Some principles for this transformation have been suggested in [8]. They come
down to selecting a most specific element from the set of possibility measures
dominating Pr(·), that is,

∀A ⊆ W : Π(A) ≥ Pr(A)
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with Π(A) = maxw∈A π(w) and Pr(A) =
∑

w∈A p(w). A minimal consistency
between the ordering induced by the probability distribution and the one of
the possibility distribution, π(w) > π(w′) whenever p(w) > p(w′), is also
required.

Let π = T (p) be the possibility distribution derived from the probability dis-
tribution p(·) according to the following probability-possibility transformation
suggested by Dubois and Prade [4]:

πi =
n∑

j=i

aj, i = 1 . . . n. (1)

where a = O(p) and πi is short for π(wσ(i)). Obviously, 1 = π1 ≥ . . . ≥ πn.
Moreover, the possibility measure Π(·) associated with π(·) dominates the
corresponding probability measure Pr(·).

It turns out that T (p) is a maximally specific element of the family of possi-
bility measures that dominate the probability function Pr(·) induced by the
distribution p(·); see Dubois and Prade [4], and Delgado and Moral [3]. More-
over, if the ordering induced by p(·) on W is linear (i.e., ai 	= aj for all i 	= j)
then T (p) is the unique maximally specific possibility distribution which dom-
inates Pr(·) and respects the ordering induced by the probability assignment.
When there are elements of equal probability, the uniqueness of the maximally
specific dominating possibility distribution can be recovered if the ordering in-
duced by π(·) on W is requested to be the same as the ordering induced by
p (but then the equation defining T (p) must be adjusted accordingly). The
transformation T is hence called optimal.

As an aside, we note that the possibility function T (p) coincides with the
survival function Sa with respect to the ordering induced by the probability
values, as defined in the previous section.

In fact, any generalized cumulative (with respect to a weak order � on W )
distribution F p

� of a probability measure Pr(·) with distribution p(·) on W
can be viewed as a possibility distribution the associated measure of which
dominates Pr(·), i.e., maxw∈A F p

�(w) ≥ Pr(A), ∀A ⊆ W . This property holds
because a (generalized) cumulative distribution is constructed by computing
the probabilities of events Pr(A) in a nested sequence defined by the ordering
relation.

Probability-possibility transformations have been extended to the real line by
Dubois et al. [8] (see also Dubois et al. [10]). Let p(·) be a unimodal continuous
probability density with mode m. Suppose one tries to represent this infor-
mation by means of an interval I. Intuitively, I must be narrow enough to be
informative, and its probability must be high enough to let I be credible. It
can be proved that the most narrow prediction interval I such that Pr(I) ≥ λ,
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where λ is a fixed confidence level, is of the form Iλ = { x | p(x) ≥ θ } for some
threshold θ. Then, the most specific possibility transform (inducing the same
ordering as p(·) on the real line) is π = T (p) such that

∀x ∈ R : π(x) = π(y) = 1 − Pr([x, y]),

where [x, y] = Ip(x). Clearly, π(m) = 1.

In this case, define an ordering relation ≥m on the real line such that x ≥m y
if and only if |m− x| ≥ |y−m|; then π(x) = Sm(x) is the survival function of
p(·) with respect to the ordering ≥m.

As a result of this subsection, the peakedness relation for the comparison of
probability functions can be described in terms of the relative specificity of
their optimal probability transforms.

Definition 5 Let π = T (p) be the transformation (1) of an ordered probability
vector a, i.e., πi =

∑n
j=i aj. We say that a probability distribution p(·) on a

finite set W is more peaked than a distribution q(·) on W iff πi ≤ ρi for all
1 ≤ i ≤ n, where π = T (O(p)) and ρ = T (O(q)). We say that p(·) is strictly
more peaked than q(·) if it is more peaked and πi < ρi for at least one index
i ∈ {1 . . . n}.

In the previous numerical example 1, π = Sa and ρ = Sb, and p(·) is (strictly)
less peaked than q(·) because π(·) is (strictly) less specific than ρ(·).

Subsequently, the peakedness relation is understood in the sense of this defi-
nition. The “less peaked than” relation is obviously invariant under permuta-
tions of the involved probability vectors. Therefore, we restrict our attention
to ordered probability or possibility vectors in the next section.

3 From Peakedness to Dispersion Indices

The aim of this section is to prove that the peakedness relation, which is ex-
pressed in terms of possibilistic specificity, is consistent with the ordering of
probability distributions induced by Shannon entropy and many other dis-
persion indices. As will be seen in the next section, this result is not com-
pletely new, and related results already exist in mathematics and some other
fields outside the uncertainty community. However, to make the paper self-
contained, we provide an explicit direct (and to the best of our knowledge
novel) proof.
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3.1 The Main Result

The most popular probabilistic information index is entropy.

Definition 6 The entropy of a probability distribution p(·) is defined by

E(p) = −
n∑

j=1

pj · log pj. (2)

In the following, we consider a generalized form of entropy defined by

Δφ(p) =
n∑

j=1

φ(pj), (3)

where the function x �→ φ(x) is strictly concave on (0, 1). (Note that, in
particular, the function −x �→ x log(x) is strictly concave on (0, 1): its second
derivative is given by x �→ −1/x). The family (3) covers many dispersions
indices, for instance the Renyi family

Δk(p) =

∑n
j=1(pj)

k − 1

21−k − 1

This is a concave function with limk→1 Δk(p) = E(p). The quadratic case (k
= 2) is often considered. Besides, limk→0 Δk(p) = |{i|pi > 0}| − 1, the latter
being the size of the support of p(·).

The main result of this paper claims that the ordering induced by the Δφ

ordering (hence entropy in particular) refines the peakedness relation:

Theorem 7 If a probability vector a is less peaked than a vector b, then
Δφ(a) ≥ Δφ(b); if a is strictly less peaked than b, then Δφ(a) > Δφ(b).

Below, we shall prove this theorem in the following way: We construct a se-
quence of probability vectors a0, a1 . . . am such that a0 = a, am = b and ak+1 is
more peaked than ak. Moreover, this sequence will satisfy Δφ(ak) ≥ Δφ(ak+1)
(resp. Δφ(ak) > Δφ(ak+1)) for all 1 ≤ k ≤ m − 1.

Remark 8 Simple counterexamples can be constructed showing that an impli-
cation in the other direction, for instance that E(a) ≥ E(b) implies a to be less
peaked than b, does not hold. In fact, such an implication cannot be expected
since the entropy measure induces a total preorder on the class of probability
measures, whereas the peakedness relation defines only a partial ordering. In
other words, the former ordering is a proper refinement of the latter one.
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Other interesting indices fitting the framework are the Bayes probability of
error, e(p) = 1 − maxi pi, and the Gini index

G(p) =
n∑

i,j=1

min(pi, pj) − 1.

Interestingly, this information index is closely related to the following probability-
possibility transform[?]

π̂i =
n∑

j=1

min(pi, pj) − 1

since it is its equal to its amount of imprecision
∑n

j=1 π̂j − 1. It is easy to
show that it can also be written in terms of the imprecision of the optimal
probability-possibility transform (1) since G(p) = 2

∑n
j=1 πj as well. So, the

above theorem trivially holds for the Gini index. It holds in the wide sense for
e(p). Other information indices can be found in [22].

3.2 Auxiliary Result

Let a and b denote two (ordered) probability vectors such that a is strictly
less peaked than b. Starting with a0 = a, a distribution ak+1 will be obtained
from a distribution ak by shifting a part of the probability mass ak

j to ak
i

for appropriately defined indices j > i. More generally, a shifting operation
S(a, i, j, c) will transform an ordered vector a = (a1 . . . ai . . . aj . . . an) into the
ordered vector

ac = (a1 . . . ai + c . . . aj − c . . . an).

Note that if π = T (a) and πc = T (ac) denote, respectively, the possibilistic
transforms of a and ac, then

πc
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πk if k ≤ i

πk if j < k

πk − c if i < k ≤ j

(4)

Thus, πc ≤ π does obviously hold true, and ac is strictly more peaked than a
in the case where c > 0.

To guarantee a shifting operation S(a, i, j, c) to be valid in the scope of turning
a into b, the choice of c must satisfy the following conditions:

(i.) Proper ordering : ai−1 ≥ ai + c and aj − c ≥ aj+1

11



(ii.) Limited increase of specificity: πc ≥ ρ = T (b)

Recalling (4), the latter item means that

πc
k =

n∑
i=k

ai − c ≥
n∑

i=k

bi = ρk

for all i < k ≤ j. Define dk = ak − bk. Since π = T (a) ≥ T (b) = ρ by
assumption, we have

∑n
m=k dm ≥ 0 for all 1 ≤ k ≤ n. The condition πc ≥ ρ

can thus be written as

∀i < k ≤ j : c ≤
n∑

m=k

dm.

To satisfy both (i.) and (ii.), we hence need

c ≤ min

(
min
i<k≤j

n∑
m=k

dm, ai−1 − ai, aj − aj+1

)
. (5)

Since a 	= b, there exists j = max{k | ak 	= bk}. Of course, aj > bj since π ≥ ρ.
By definition, we also have dj = aj−bj = πj−ρj . Since a and b are probability
distributions, there must be some i < j such that bi > ai. So, let

i = max {k | 1 < k ≤ n, bk > ak and ak−1 > ak} (6)

if the set on the right-hand side is not empty (as will be assumed for the time
being).

In order to simplify the upper bound on the number c, we first derive a lower
bound on the quantity mini<k≤j

∑n
m=k dm that appears as the first argument

on the right-hand side of (5).

Lemma 9 mini<k≤j
∑n

m=k dm ≥ min{aj − bj , bi − ai} for all i < j.

Proof: Define D(k) =
∑n

m=k dm and D = mini<k≤j D(k) . We consider two
cases:
(a) D = D(j). In this case, the lemma obviously holds, since dm = am−bm = 0
for m > j and hence D(j) = aj − bj .
(b) D < D(j). In this case, there must be an index k0 with i < k0 < j and
such that D(k0) < D(k0 + 1). We claim that

D(i + 1) < D(i + 2) < . . . < D(k0). (7)

In fact, since D(k0) < D(k0 + 1) we have ak0 < bk0 . Thus, either i = k0 − 1
(in which case (7) does trivially hold), or ak0−1 = ak0 (since if ak0−1 > ak0

and ak0 < bk0, the index k0 is a potential candidate for the choice of i). In the
latter case, ak0−1 = ak0 < bk0 ≤ bk0−1 and therefore

D(k0 − 1) = D(k0) + (ak0−1 − bk0−1) < D(k0).
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This argument can be repeated, showing that (7) does indeed hold. This in
turn shows that D = D(i + 1). Moreover, we then have

D = D(i + 1) = D(i) − (ai − bi) = D(i) + (bi − ai) ≥ bi − ai

since D(i) ≥ 0.
Overall, we get D ≥ aj − bj in case (a) and D ≥ bi − ai in case (b). Thus, the
lemma does indeed hold. Q.E.D.

Now, if we let

c = min ( aj − bj , bi − ai, ai−1 − ai) (8)

then the above results and the fact that

aj − aj+1 = (aj − bj) + (bj − aj+1) ≥ (aj − bj) + (bj+1 − aj+1) = (aj − bj)

guarantee that (5) is satisfied. Moreover, the constant c is strictly positive,
since ai−1 − ai > 0, aj − bj > 0, bi − ai > 0 by construction.

Let us now turn to the case where the right-hand side of (6) is empty.

Lemma 10 Suppose that a is less peaked than b, and that the right-hand side
on (6) is empty. Then b1 > a1.

Proof: Suppose that a is less peaked than b. There is some k < j such that
bk > ak. Since the right-hand side on (6) is empty, it holds that bu > au

implies au = au−1 for all u < j. Moreover, since bk > ak, this implies in turn
bk−1 ≥ bk > ak−1. The fact that b1 > a1 follows immediately by repeating this
argument. Q.E.D.

Regarding the choice of c in the case of an empty right-hand side in (6),
the only difference concerns the condition ac

i−1 ≥ ac
i which simply becomes

unnecessary. Hence, one can define

c = min ( aj − bj , b1 − a1 ) (9)

and apply the shifting operation S(a, 1, j, c) in the same way as before.

3.3 Proof of the Main Result

Obviously, if the quantity c as defined in (8) (resp. (9)) is shifted from position
j to position i (resp. position 1), then either ac

j = bj or ac
i = bi or ac

i = ai−1.
In any case, at least one of the indices i or j will have a smaller value in the
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next iteration. Hence, the process of repeating the shifting operation, with i,
j, and c as specified above, is well-defined, admissible and turns a into b in a
finite number of steps.

Given the above results, Theorem 7 follows immediately from the next lemma
(recall that in each step of our iterative procedure, the constant c shifted from
index j to index i is strictly positive):

Lemma 11 Let Δφ(a) = −∑n
j=1 φ(aj). Then Δφ(a) > Δφ(ac) for c > 0.

Proof: It is easy to see that Δφ(a) > Δφ(ac) is equivalent to

φ(ai + c) + φ(aj − c) > φ(aj) + φ(aj).

Noting that ai > aj, this inequality holds because, by definition, the function
x �→ φ(x) is strictly convex on (0, 1). Q.E.D.

The above results show that the peakedness ordering proposed here underlies
many probabilistic information indices, which turn out to be in agreement with
possibilistic specificity. Theorem 7 is in particular valid for the standard Shan-
non entropy, and the logarithm log(·) in (2) can be replaced by any monotone
increasing function F (·) the second derivative F ′′(·) of which exists on (0, 1)
and satisfies F ′′(x)/F ′(x) > −2/x for all 0 < x < 1 (where F ′(·) denotes the
first derivative). In fact, one might thus be tempted to require the property
of coherence with the possibilistic specificity as a minimal prerequisite for any
probabilistic measure of dispersion. That is, any index of dispersion D should
satisfy the following axiom: For any probability assignments p(·) and q(·), de-
fine π = T (O(p)) and ρ = T (O(q)); if π ≥ ρ then D(p) ≥ D(q). Additional
properties can then be required for selecting a particular dispersion index.

4 Related Work

The above results are in some sense not completely new. This section surveys
three areas where closely related reasults or ideas can be found. First, we give
a precise account of old mathematical results around a notion of majorisation,
which is a generalization of peakedness to any vector of positive real values.
Then, we note the presence of similar concerns in statistics, that originally
inspired our work. Finally, we point out the application of majorisation in the
social sciences.
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4.1 Mathematics

The well-known book by Hardy, Littlewood, and Polya [13] 2 contains technical
results that are equivalent to the main results of this paper. In section 2.18
of the book, the authors are interested in comparing vectors of values, the
sum of components of which are equal (for instance probability assignments).
Suppose a and b are two vectors of values arranged in decreasing order (a1 ≥
a2 ≥ · · · ≥ an), and whose sums of components are equal. They say that
a is majorised by b if and only if

∑j
i=1 ai ≤ ∑j

i=1 bi, ∀j = 1 . . . n, which is
equivalent to

∑n
i=j ai ≥ ∑n

i=j bi due to the equality
∑n

i=1 ai =
∑n

i=1 bi. Thus,
the majorisation of a by b exactly coincides with the fact that b is more peaked
than a.

The question motivating the majorisation relation is that of comparing ex-
pressions called symmetric means, which consist of the average of n! terms
of the form

∏n
j=i u

αi
i (ui > 0, αi ≥ 0); the latter are obtained by the possible

permutations of the coefficients ui. As such a symmetric mean is stable under
permutations of the α′

is, comparing symmetric means, denoted [α], having dif-
ferent α exponents comes down to comparing the arranged vectors a. Hardy
et al. prove that [α] ≤ [β] as soon as a is majorised by b, the equality holding
only when [α] = [β] or the coefficients ui are equal. Interestingly, the result is
proved using an elementary transfer notion of the form used above in section
3.2.

The authors then go on proving another result providing a necessary and
sufficient condition for a to be majorised by b. Namely, they notice that this is
equivalent to any component of a being a certain form of weighted average of
the components of b. Namely, there exists a non-negative n×n weight matrix
M such that the sum of elements in each row and each column is 1 (a so-
called bistochastic matrix), and a is majorised by b if and only if a = Mb. A
function Δ(p) mapping probability distributions to reals is said to be Schur-
concave if Δ(Mb) ≥ Δ(b) for all bistochastic matrices M ; see [22] for details
and references.

In section 3.17 of the book, Hardy et al. prove a strong form of theorem
7, namely that

∑n
j=1 φ(aj) ≤ ∑n

j=1 φ(bj) holds for all continuous and convex
functions φ if and only if a is majorised by b. To prove the result they show that
the majorization relation can be induced by a suitable choice of the function
φ, and the converse becomes obvious using the equivalent form a = Mb since
for convex functions the image of a weighted average of a set of values is less
than the weighted average of the images of the values (Schur concavity).

Moreover, in the case when φ has positive second derivative everywhere, then

2 A more modern text on majorisation is the one of Marshall, and Olkin [19].
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∑n
j=1 φ(aj) =

∑n
j=1 φ(bj) only when the sets of coefficients in a and b are the

same.

Our proof in the previous section is self-contained as it relates peakedness and
dispersion indices in a direct way. The result of Hardy et al. indicates that the
peakedness relation is the intersection of all total order relations induced by
all dispersion indices of the form Δφ for a convex φ function.

4.2 Statistics

The term “peakedness” was coined by Birnbaum. In a paper in 1948 [1], he
dealt with what he called the quality of a probability distribution, referring to
its peakedness. Considering that the fourth moment of a distribution is not
an appropriate measure of peakedness, he proposed a definition of the relative
peakedness of distributions as follows:

Definition 12 Let Y1 and Y2 be real random variables, associated with respec-
tive probability spaces (Ω1,A1 Pr1), (Ω2,A2 Pr2), and y1 and y2 real constants.
Y1 is said to be more peaked about y1 than Y2 about y2 if and only if

Pr1(| Y − y1 |≥ t) ≤ Pr2(| Z − z1 |≥ t)

holds for all t ≥ 0.

It is clear that the function

πy(y1 − t) = πy(y1 + t) = Pr(| x − y1 |≥ t) = 1 − Pr([y1 − t, y1 + t])

is a possibility distribution, and easy to show that for any choice of y1, its
possibility measure dominates Pr(·); see Dubois et al. [10]. In this paper,
we adapted this definition in two ways: First, the results on the probability-
possibility transforms clearly indicate that for unimodal densities, choosing y1

as the mode of the distribution is reasonable. Moreover, Birnbaum [1] consid-
ers intervals whose common midpoint is y1, yielding a symmetric possibility
distribution even if the density is not symmetric by itself. Instead of intervals
of the form [y1 − t, y1 + t], we used intervals of the form {x | p(x) ≥ θ}, since
they lead to a possibility distribution of the same shape as the probability
density (and peakedness refers to the shape of this density anyway). The rea-
son for this choice is that the width of intervals with a fixed confidence level
is thus minimized. This change of definition enables peakedness to be defined
for any referential set, not just the reals. Indeed, the set {x | p(x) ≥ θ} makes
sense in general, if measurability is ensured, while [y1 − t, y1 + t] assumes the
real line as an underlying domain. Here, we nevertheless restricted ourselves to
the case of a finite referential set, because entropy indices are usually applied
to such domains.
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Now, for π = T (a) it is clear that πi = 1 − Pr({x | Pr({x}) ≥ θ}) if ai−1 ≥
θ > ai, which recovers our variant of the original peakedness relation due to
Birnbaum.

4.3 Social Sciences

Even though the proposed notion of relative informativeness, based on possi-
bilistic specificity and Birnbaum peakedness, seems to be relatively unknown
in the uncertainty literature, there is a subfield of the social sciences where
the results obtained by Hardy et al. have apparently been exploited for some
twenty years or so, in the study of social welfare orderings, and in particular,
the modeling of social inequalities. 3

We refer to the book by Moulin [23]. In this framework, W is a set of agents,
whose welfare under some life conditions is measured by a utility function over
W . The problem is to compare the quality of utility vectors (u1 . . . un) from the
standpoint of social welfare. Under an egalitarian program of redistribution
from the rich to the poor, the so-called Pigou-Dalton principle of transfer states
that transferring some utility from one agent to an other one so as to reduce
inequalities of utility values improves the social welfare of the population.

Formally, the transformation of a vector a into a vector ac as in subsection
3.2 is known as a Pigou-Dalton transfer. The sequence of transformations
we propose here is also used in this literature. Moreover, the role of entropy
is played by so-called inequality indices. The counterpart to the possibility
transform of a probability vector is called the Lorentz curve of the utility
vector, and the counterpart of the peakedness ordering is called the Lorentz
dominance relation.

One difference is that utility vectors do not sum to 1. But Lorentz dominance
is precisely making sense for the comparison of utility vectors with equal sum.
In this literature, dispersion indices are called inequality indices, and those of
the form Δφ are called Atkinson indices.

Note that it would not be the first time that possibility-probability transfor-
mations find counterparts in the social sciences. For instance, a transformation
from a belief function to a probability measure (obtained by generalizing the
Laplace indifference principle) introduced in [4] and called pignistic transfor-
mation by Smets [28] is known in the social sciences as the Shapley value of
cooperative games (see again Moulin [23]).

3 The authors are grateful to Jérôme Lang for pointing out this connection.
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5 An Application in Machine Learning

The entropy measure and related dispersion criteria are used in many research
areas for diverse purposes. Since our results in previous sections have shown
that the peakedness relation for probability distributions and, hence, the as-
sociated specificity ordering for possibility distributions is in agreement with
entropy, the former could in principle be used as an alternative to the latter,
at least if the potential incomparability between distributions is tolerated. In
fact, recall that the entropy measure induces a total preorder on the set of
probability distributions over a set X , whereas peakedness only provides a
partial order. On the other hand, while the latter seems to be a natural order-
ing in many applications, its refinement by means of the entropy measure is
often done just because entropy is better known than other dispersion indices.
To make this point concrete, the current section gives an example of the ap-
plicability of the peakedness relation as an alternative to the entropy measure
in the field of machine learning.

5.1 Information Measures in Decision Tree Induction

A standard problem in supervised machine learning is to induce a classification
function X → Y from a set of training examples (xi, yi) ∈ X × Y , where
Y = {y1 . . . yk} is a finite set of elements called class labels. Instances xi

are typically characterized in terms of a feature vector of fixed length, i.e.,
the input space X is the Cartesian product of the domains of a fixed set of
attributes (features); subsequently, we make the simplifying assumption that
all these domains are finite.

The key idea of decision tree induction ([25]), by now one of the most popular
machine learning methods, is to partition a set of training examples in a
recursive manner, thereby producing a partitioning of the input space into
decision regions that can be represented in terms of a tree structure. In the
simplest case, partitioning is accomplished through (univariate) tests of the
form [F (x) = fj], j = 1 . . .m, where F is a feature with domain {f1 . . . fm}
and F (x) denotes the attribute value of the instance x. Each inner node of a
decision tree is associated with a test of that kind and, hence, splits a subset
of examples according to the value of the attribute F .

The generalization performance of a classification function in the form of a
decision tree strongly depends on the selection of appropriate splitting at-
tributes. Roughly speaking, all common learning algorithms seek to induce a
“simple” tree, since the generalization performance of simple models is sup-
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posedly superior to that of complicated models. 4 To make a selection at an
inner node of a tree, each candidate attribute F is typically evaluated in terms
of the information gain

E(Y ) − E(Y |F ), (10)

where

E(Y ) = −
k∑

i=1

p(yi) · log p(yi)

E(Y |F ) = −
m∑

j=1

p(fj)
k∑

i=1

p(yi | fj) · log p(yi | fj)

Here, {f1 . . . fm} is the domain of attribute F , and E(Y ) is the Shannon en-
tropy of the class distribution (p(y1) . . . p(yk)) in the current example set (i.e.,
p(yi) denotes the relative frequency of class label yi among current examples).
Moreover, E(Y |F ) is the conditional entropy of Y given F , namely a weighted
average of the entropies of the class distributions in the subsets of examples
that are produced by splitting according to the values of F . In probability
theory, (10) is also known as the mutual information, i.e., the relative entropy
between the joint distribution (of Y and F ) and the product of the marginals.
Despite this apparent theoretical justification, it is worth mentioning that se-
lecting splitting attributes with maximal information gain is merely a heuristic
approach which does not guarantee to produce a tree of minimal size. 5

In the best case, an attribute splits a set of examples into “pure” subsets, i.e.,
subsets in which all examples do have the same class label; since a pure set
of examples does not necessitate further splits, it defines a leaf of the decision
tree that can reliably be labeled by the corresponding class. 6 As opposed to
this, the worst situation is an example set with a uniform distribution over Y ,
since this distribution does not suggest any particular classification. These two
extreme situations are correctly captured by the entropy (information gain)
measure. One might argue, however, that the interpolation between them,
even if being based on the theoretically sound concept of mutual information,
remains arbitrary to some extent. In fact, from a classification point of view,
it is not obvious why a class distribution like p = (0.5, 0.5, 0, 0) should be
preferred to q = (0.7, 0.1, 0.1, 0.1). More specifically, there is no obvious reason
to expect the former to become “pure” (by further splitting) before the latter.
And indeed, experimental studies [21] have shown that using entropy in (10)
is neither superior nor inferior to using alternative information measures such
as, e.g., the Gini index.

4 This is the principle of Occam’s razor.
5 Besides, information gain in its basic form suffers from other problems such as,
e.g., a systematic preference for attributes with many values.
6 To prevent overfitting the data, splitting is usually stopped earlier.

19



In contrast, the peakedness relation can well be motivated from a classification
point of view. Roughly speaking, if a distribution p = (p1 . . . pk) over the class
labels Y is more peaked than a distribution q, then classifying on the basis
of p is easier or better than classifying on the basis of q. For example, since
p1 ≥ q1 (suppose that the distributions have already been reordered such
that p1 ≥ p2 ≥ . . . ≥ pk), the probability to guess the class label of a query
instance x0 ∈ X correctly is higher for p than for q. More generally, suppose
that a prediction in terms of a credible set 7 of labels C ⊆ Y is desired.
Such a prediction should reasonably consist of the k′ ≤ k classes with highest
probability, and since

k′∑
i=1

pi ≥
k′∑

i=1

qi

for all k′ = 1 . . . k, the credible sets derived from p have higher confidence than
those derived from q, regardless of the size k′.

For the same reason, better performance is achieved in an alternative predic-
tion scenario where, instead of estimating the class label of the query instance
only once, this label must be guessed repeatedly until the true label is found
[15]: the expected number of futile trials is then smaller for p than for q.

5.2 Lazy Decision Tree Learning

A lazy variant of decision tree learning has been introduced in [12]. This
variant generates a separate classification tree for each query instance x0. More
specifically, it only generates one branch of the tree, namely the one which is
needed to classify x0. The test predicates along this branch are particularly
tailored to the query: The splitting criterion (10) obviously seeks to maximize
the information gain on average: E(Y |F ) is a weighted average of the form

m∑
j=1

p(fj)E(Y | fj), (11)

where the weights p(fj) are the (estimated) probabilities to encounter an in-
stance x with F (x) = fj. This strategy, however, is not reasonable if the
instance to be classified is already known in advance. In other words, given
that the attribute value F (x0) of the query is known, the entropy of the class
distribution in those subsets of examples with a different value fj 	= F (x0) is
actually irrelevant. Correspondingly, instead of averaging the entropy over all
these subsets, the lazy variant tries to maximize the information gain when

7 This term is used in Bayesian statistics.
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going from the current set of examples to the subset of examples x� with
attribute value F (x�) = F (x0):

E(Y ) − E(Y |F (x0)) =
k∑

i=1

pF (yi) · log pF (yi) −
k∑

i=1

p(yi) · log p(yi), (12)

where pF (yi) is the probability (relative frequency) of the class yi in the subset
of examples with attribute value F (x0).

8

The lazy variant of decision tree induction, as lazy learning methods in gen-
eral, is of course more costly from a computational point of view, since a
new model must be generated for each query instance. On the other hand, it
often outperforms standard decision tree learning in terms of predictive per-
formance. For details of the method as well as experimental results we refer
to [12].

5.3 Ensembles of Decision Trees

A so-called decision forest is a special type of ensemble learning technique.
Here, the key idea is to generate a whole set of models instead of only a single
one. Viewing each of these models as a member of a committee, predictions
are then made by means of majority voting: Given a new query, each model
makes a vote in favor of a particular class, and the class with the maximal
number of votes is predicted. 9 Under certain conditions, ensemble methods
can reduce both the bias and the variance of predictions. Roughly speaking,
if each individual model is sufficiently accurate and, at the same time, the
ensemble is diverse enough, it is likely that incorrect predictions will “average
out”.

To generate a diverse ensemble of decision trees (from the same training data),
different methods are conceivable. The key idea of random forests [2] is to
modify deterministic decision tree induction as follows: At each inner node of
the tree, the attribute with maximal information gain is selected, not among all
potentially available attributes, but only among a randomly chosen candidate
subset of fixed size K.

Interestingly enough, our specificity ordering suggests an alternative way to
generate random forests: Instead of selecting a random subset of attributes

8 For technical reasons, the examples in the parent node are first re-weighted such
that all classes are equi-probable; see [12] for details.
9 Unsurprisingly, a large number of alternatives to and refinements of this simple
aggregation procedure do exist.
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first and choosing the best among these attributes afterwards, one could pro-
ceed the other way round: First the most promising candidates are selected,
namely those attributes that are optimal with respect to the specificity order-
ing, and then one among these candidates is chosen at random. As a potential
advantage of this latter approach note that it does not assume the specifica-
tion of the parameter K. Roughly speaking, instead of determining the size of
the candidate set in a more or less arbitrary way, it is dynamically adapted in
accordance with the ambiguity of the specificity ordering.

For such alternative random forests (ARF) we have implemented both a stan-
dard and a lazy variant. In the lazy version, given a query instance x0 and a
subset of training examples, the probability distribution pF (·) in (12) is de-
rived for each potential feature F . An attribute F becomes a candidate if
its associated distribution is not dominated by any other attribute F ′, i.e.,
if there is no F ′ such that pF ′(·) is (strictly) more peaked than pF . Finally,
one among these candidate attributes is chosen at random, and the example
set is split according to this attribute (viz. reduced to those examples having
the same value as the query). Recursive partitioning thus produces a branch
whose leaf node classifies the query x0; the corresponding prediction is given
by the majority of class labels in the leaf. 10 By repeating this process a cer-
tain number of times, an ensemble of decision branches is produced, and the
overall classification is made by majority voting.

While the attribute selection in the lazy version only considers the peakedness
of the distribution in one subset of examples, namely the one with the same
attribute value as the query, the regular version (to induce standard trees) has
to use a counterpart to the weighted average (11). A relatively straightforward
solution is to associate with an attribute F the following distribution:

m∑
j=1

p(fj) · pj,

where {f1 . . . fm} is the domain of F and pj = (pj
1 . . . pj

k) is the distribution
of the class labels in the subset of examples with attribute value fj ; more
precisely, pj is the distribution after reordering, i.e., pj

1 ≥ pj
2 ≥ . . . ≥ pj

k.

10 The recursive partitioning procedure stops if either all examples belong to the
same class or if all attributes have already been used. As opposed to standard
decision tree learning, the lazy variant does not need pruning strategies or premature
stopping conditions in order to prevent overfitting.
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5.4 Experimental Results

The main purpose of the experimental studies was to compare the random
forest (RF) method with the alternative (ARF) outlined above, both in the
case of regular (“eager”) and lazy learning. Further, we compared the en-
semble methods with the corresponding base learners, i.e., lazy and regular
decision tree learning (LazyDT and DT). All methods have been implemented
under the WEKA framework [30]. Since RF is already available, we only im-
plemented the lazy variant LazyRF (the main difference again concerns the
splitting measure, which in this case is (12)). As a decision tree learner we
used the WEKA implementation of C4.5 [25]. ARF, LazyARF, and LazyDT
were implemented from scratch.

Experimental studies were conducted using multiple benchmark datasets from
the UCI repository. All numerical attributes have been discretized in advance
using Fayyad & Irani’s method [11]. For the ensemble methods we always gen-
erated 50 models. Table 1 shows the classification rates for the lazy methods,
estimated by 10-fold cross validation (repeated 10 times), and Table 2 the
corresponding results for the regular (non-lazy) approaches.

Interpretation of the results should be done with caution, since most differ-
ences in classification performance (two methods compared on a single dataset)
are statistically not significant (at the 0.05 level of a simple t-test). Still, a
closer examination of the results and a look at the simple win/loss statistics
in Table 3 gives a relatively clear picture: The two ensemble methods are on
a par and both outperform the corresponding base learner. With regard to
the use of the specificity ordering in the context of decision tree learning, we
consider this as a preliminary though very promising finding that motivates a
closer examination and elaboration of this idea.

6 Conclusions and Perspectives

The main contribution of this paper is a reexamination and systematic exposi-
tion of a notion of relative information content that can decide if a probability
distribution is more or less uncertain (or spread out) than another one (or
whether the two distributions are not directly comparable). This ordering
seems to be well-known in some scientific communities while being totally un-
known in other ones. The surprising result is that the aforementioned compari-
son between probability distributions comes down to comparing two possibility
distributions in the sense of their relative specificity, that is, in terms of fuzzy
set inclusion! This test seems to be natural in the sense that it exactly captures
the notion of relative peakedness of distributions, thus meeting our intuition.
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dataset LazyDT LazyARF LazyRF

autos (7,205,25) 76.28( 9.61) 81.62( 7.97) 79.21( 8.53)

wisconsin-breast-cancer (100) 96.11( 2.26) 96.04( 2.29) 96.35( 2.32)

bridges-version1 (6,107,12) 52.51(11.69) 54.77(13.38) 54.55(11.63)

horse-colic (2,368,22) 78.89( 5.79) 81.85( 6.00) 80.84( 5.87)

dermatology (6,366,34) 89.84( 4.55) 94.02( 3.80) 92.71( 3.76)

pima-diabetes (2,768,8) 73.44( 4.49) 74.09( 4.73) 73.53( 4.76)

ecoli (8,336,7) 79.85( 5.29) 79.68( 5.07) 80.33( 5.05)

Glass (7,214,9) 70.73(10.47) 72.13(10.07) 71.80( 9.97)

haberman (2,306,3) 73.59( 4.91) 73.00( 4.90) 73.10( 3.07)

cleveland-heart-diseas (5,303,13) 76.24( 6.93) 79.71( 6.71) 79.08( 6.41)

hungarian-heart-diseas (5,294,13) 79.63( 6.83) 80.14( 6.87) 80.72( 6.58)

hepatitis (2,155,19) 83.46( 7.49) 83.62( 8.49) 84.12( 8.19)

iris (3,150,4) 94.00( 5.88) 94.00( 6.25) 94.00( 5.72)

labor (2,57,16) 85.63(13.66) 83.83(15.79) 85.10(14.41)

liver-disorders (2,345,6) 56.85( 4.20) 57.03( 4.00) 57.34( 4.64)

lymphography (4,148,18) 78.41( 9.01) 82.88( 8.31) 81.74( 8.65)

tic-tac-toe (2,958,9) 84.01( 3.66) 92.03( 2.29) 92.15( 2.69)

vote (2,435,16) 94.22( 3.49) 94.96( 3.04) 94.71( 3.27)
Table 1
Results of the experimental studies for the lazy learners: Datasets (in brackets: num-
ber of classes, examples, attributes) and classification rates (in brackets: standard
deviation).

The fact that Shannon entropy as well as the Gini index (and many other
ones, potentially) refine the peakedness relation corroborates this intuition.
It sheds light on the meaning of these indices, that were sometimes proposed
as natural ones in a rather dogmatic way, even if axioms or properties that
justify the entropy index were proposed in order to make its use for uncertain
reasoning more transparent. The peakedness ordering offers a minimal robust
foundation for probabilistic information indices. Finding an extension of these
results to continuous probability distributions, using differential entropy for
instance, is an obvious next task.

Our discussion also shows that there is a range of arbitrariness in the choice of
these indices, namely in the case of two distributions that cannot be compared
by the peakedness relation but are ranked in opposite orders by, say, the
entropy and the Gini index. This point needs further study, and mathematical
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dataset DT ARF RF

autos (7,205,25) 81.13( 9.20) 83.50( 8.08) 82.58( 8.07)

wisconsin-breast-cancer (100) 94.82( 2.70) 95.61( 2.64) 95.72( 2.38)

bridges-version1 (6,107,12) 41.95( 4.62) 50.80(12.36) 48.02(10.83)

horse-colic (2,368,22) 78.32( 6.36) 78.34( 6.38) 81.49( 5.60)

dermatology (6,366,34) 93.46( 3.58) 96.53( 3.06) 95.40( 2.98)

pima-diabetes (2,768,8) 73.53( 4.61) 74.01( 4.65) 73.57( 4.62)

ecoli (8,336,7) 79.86( 5.03) 80.30( 4.86) 80.12( 5.28)

Glass (7,214,9) 71.29(10.92) 73.25(10.10) 72.50(10.37)

haberman (2,306,3) 73.59( 4.91) 73.50( 4.82) 73.36( 3.43)

cleveland-heart-diseas (5,303,13) 76.33( 7.16) 80.40( 5.63) 78.55( 6.18)

hungarian-heart-diseas (5,294,13) 78.94( 6.93) 81.93( 7.40) 80.28( 6.89)

hepatitis (2,155,19) 80.17( 8.83) 82.39( 8.31) 81.86( 9.38)

iris (3,150,4) 93.93( 5.77) 93.47( 5.84) 93.80( 5.78)

labor (2,57,16) 83.97(14.61) 73.90(13.89) 84.67(14.28)

liver-disorders (2,345,6) 56.85( 4.20) 57.37( 3.83) 57.54( 3.92)

lymphography (4,148,18) 72.71( 9.61) 81.87( 8.93) 77.19( 9.03)

tic-tac-toe (2,958,9) 85.47( 3.74) 90.63( 2.89) 93.74( 2.18)

vote (2,435,16) 95.05( 3.23) 95.47( 2.84) 95.74( 2.91)
Table 2
Results of the experimental studies for the regular (non-lazy) learners: Datasets
(in brackets: number of classes, examples, attributes) and classification rates (in
brackets: standard deviation).

insight from social sciences, where axiomatization results exist, might be useful
in this regard. We note, however, that the situation is the same with the
specificity relation in possibility theory where several non-specificity indices
have been proposed (Higashi and Klir [14], Dubois and Prade [5], Yager [29],
Ramer [26]) that disagree with each other. The same difficulty can be observed
in the case of belief functions (Dubois and Prade [6]).

The notion of peakedness is easy to understand, but, compared to entropy and
other numerical indices, quite weak and its efficiency in probabilistic reasoning
and decision making is still unclear. In his book [24], Jeff Paris advocates the
use of conditional probability statements as a natural means for expressing
knowledge and the maximal entropy principle as a natural tool for selecting
a reasonable default probabilistic model of this knowledge. The above results
suggest that the maximal entropy principle can be safely replaced by a mini-
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LazyDT LazyARF LazyRF

LazyDT 3/1/14∗ 2/1/15∗

LazyARF 14/1/3∗ 9/1/8

LazyRF 15/1/2∗ 8/1/9

DT ARF RF

DT 3/0/15∗ 0/2/16∗

ARF 15/0/3∗ 11/0/7

RF 16/0/2∗ 7/0/11
Table 3
Win/tie/loss statistics for the lazy learners (left) and the standard methods (right).
A * indicates statistical significance at the 0.02 level of a Fisher sign test.

mal peakedness principle in problems with incompletely specified probability
distributions. Of course, the minimally peaked distribution in agreement with
the constraints may fail to be unique, and the issue of choosing between them
is an intriguing one. Anyway, the peakedness relation can be used in all rea-
soning problems where the information content of a distribution is relevant,
for example in machine learning techniques à la decision tree induction, as
suggested in the previous section. These issues constitute interesting topics of
future research.

Acknowledgements: The authors are grateful to Jürgen Beringer and Jérôme
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