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Abstract

Computational methods for discov-
ering the preferences of individuals
are useful in many applications. In
this paper, we propose a method
for learning valued preference struc-
tures, using a natural extension of
so-called pairwise classification. A
valued preference structure can then
be used in order to induce a ranking,
that is a linear ordering of a given
set of alternatives. This step is real-
ized by means of a so-called ranking
procedure. In the second part of the
paper, we compare the performance
of alternative ranking procedures in
an experimental way.

Keywords: Machine learning, val-
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1 Introduction

The increasing trend toward personalization
of products and services in e-commerce and
various other fields requires computational
methods for discovering the preferences of in-
dividuals. And indeed, methods for learning
and predicting preferences in an automatic
way are among the very recent research top-
ics in disciplines such as machine learning and
recommender systems.

The term preference elicitation usually refers
to the problem of estimating the preferences
of a single individual. In this paper, we take a
slightly different view on preference learning.

Our goal is to predict the preferences of an
individual on the basis of certain properties
of that individual and known preferences of
other individuals, i.e. to establish a relation-
ship between features describing individuals
and preference models. To illustrate, consider
a salesman who knows from experience that
“Middle-aged, working women without chil-
dren usually prefer product A to product B to
product C”. The salesman has learned from
experience to predict preferences of his clients,
and this is what we want a machine learning
or recommender system to do.

The above can be seen as an extension of
supervised machine learning, where examples
are labeled with preference relations over pos-
sible categorizations. For machine learning,
this type of problem is particularly challeng-
ing as it goes beyond the prediction of sin-
gle values (such as real numbers in regression
analysis and class labels in pattern recogni-
tion). Instead, it involves the prediction of
preference models, such as relational struc-
tures or value functions.

The problem of preference learning, as
roughly outlined above, is formally introduced
in Section 2. In Section 3, we propose a
method for learning a special type of prefer-
ence model, namely valued (fuzzy) preference
structures. The problem of predicting a rank-
ing is then addressed in Section 4, where sev-
eral ranking procedures are introduced. Sec-
tion 5 presents results of experimental studies
investigating the performance of these rank-
ing methods.



2 Preference Learning

Consider a set X of individuals/instances
characterized in terms of an attribute-value
representation: X = X1 × X2 × . . . × Xl,
where Xı is the domain of the ı-th attribute.
Thus, an instance is represented as a vector
x = (x1 . . . xl) ∈ X . Let L = {λ1 . . . λm} be
a set of alternatives/labels. We assume that
each individual has preferences concerning the
alternatives λ ∈ L. Formally, this can be ex-
pressed in terms of a preference function

X → P (1)

that maps individuals to preference models;
P denotes the class of potential models. In
this paper, we are especially interested in two
types of models: valued preference relations
and total orders aka rankings. Both mod-
els are closely related, as will be discussed
in Section 4 below. Roughly, one can imag-
ine that the “true” preferences of an individ-
ual are represented by a valued relation. A
ranking, then, can be seen as “revealed” pref-
erences: If it comes to acting in situations
where a definite choice between alternatives
must be made, the individual is forced to map
his fuzzy preferences to non-fuzzy ones. Doing
this in a consistent (rational) way, he should
finally be able to come up with a ranking of all
alternatives. For convenience, we shall subse-
quently assume that this ranking is not only
a weak but even a total order (i.e. no ties are
allowed in the ordering).

The ranking �x of individual x can be ex-
pressed in terms of a permutation πx of
{1 . . . m} such that

λπx(1) �x λπx(2) �x . . . �x λπx(m). (2)

Here, λı �x λ means that x (strictly) prefers
λı to λ.

The problem of preference learning now con-
sists of learning (approximating) the mapping
(1) on the basis of empirical data. Again, one
can think of different types of observations.
Here, we assume that a single piece of infor-
mation corresponds to comparative preference
information of the form λı �x λ, i.e. “indi-
vidual x prefers λı to λ”. This type of infor-
mation is often easier to obtain than absolute

ratings of single alternatives in terms of util-
ity degrees. Note that knowledge about the
complete ranking (2) can be expanded into
m(m− 1)/2 binary preferences λπx(ı) � λπx()

for 1 ≤ ı <  ≤ m.

3 Pairwise Preference Learning

The idea of pairwise learning is well-known
in the context of classification [2], where it
allows one to transform an m-class classifica-
tion problem, i.e., a problem involving m > 2
classes L = {λ1 . . . λm}, into a number of bi-
nary problems. To this end, a separate model
(base learner) Mı is trained for each pair of
labels (λı, λ) ∈ L, 1 ≤ ı <  ≤ m. Thus, a
total number of m(m−1)/2 models is needed.
Mı is intended to separate the classes Cı (ob-
jects with label λı) and C.

At classification time, a query is submitted
to all learners, and each prediction is inter-
preted as a vote for a label: If classifier Mı

predicts λı, this is counted as a vote for λı.
Conversely, the prediction λ would be con-
sidered as a vote for λ. The label with the
highest number of votes is then proposed as a
prediction.

The above procedure can be extended to the
case of preference learning or, more precisely,
the learning of rankings in a natural way [3].
A preference information of the form λı �x λ

is turned into a training example (x, y) for
the learner Mab, where a = min(ı, ) and b =
max(ı, ). Moreover, y = 1 if ı <  and = 0
otherwise. Thus, Mab is intended to learn the
mapping

x �→
{

1 if λa �x λb

0 if λb �x λa
. (3)

In other words, given an instance x as an in-
put, Mab is assumed to output 1 if λa �x λb

and 0 if λb �x λa.

The mapping (3) can be realized by any bi-
nary classifier. Alternatively, one might of
course also employ a classifier that maps into
[0, 1] instead of {0, 1}. The output of such a
“soft” binary classifier can usually be inter-
preted as a probability or, more generally, a
kind of confidence in the classification. Thus,



the closer the output of Mab to 1, the stronger
the preference λa �x λb is supported.

A soft classifier naturally leads to a valued
(fuzzy) preference relation Rx associated with
an instance x:

Rx(λı, λ) =
{ Mı(x) if ı < 

1 −Mı(x) if ı > 

for all λı �= λ ∈ L. Thus, we have obtained a
preference learner, composed of an ensemble
of (soft) binary classifiers, which can be con-
structed on the basis of training data in the
form of individuals with associated (partial)
preferences. This preference learner assigns a
valued preference relation to any (query) in-
stance x ∈ X .

4 Ranking Procedures

Let us now consider the problem of predict-
ing the revealed preferences of an instance x,
characterized in terms of a ranking πx. One
possibility is to induce a preference relation
Rx as outlined above and to derive a ranking
from that relation. Unfortunately, a relation
Rx does not always suggest a unique ranking
in an unequivocal way. In fact, the problem
of inducing a ranking from a (valued) prefer-
ence relation has received a lot of attention
in several research fields, e.g., in fuzzy prefer-
ence modeling and (multi-attribute) decision
making [1].

4.1 Simple Voting

The most common approach to ranking on the
basis of a preference relation R makes use of
a so-called scoring function S. This function
assigns a score S(λı) = S(λı |R) to any al-
ternative λı, and a ranking is then derived on
the basis of these scores:

(λı � λ) ⇔ (S(λı) ≥ S(λ)).

The simplest scoring function is defined by the
sum of (weighted) votes

S(λı) =
∑

λ �=λı

R(λı, λ). (4)

The corresponding voting procedure is com-
monly used in pairwise classification and
ranking [3].

4.2 Ranking Through Iterated Choice

An alternative approach to ranking makes use
of a so-called choice function, which is a func-
tion that selects one or several maximally pre-
ferred elements from a set of candidates. Ob-
viously, a ranking can be obtained by apply-
ing such a function in a repeated way: First,
the top-label is chosen from the complete set,
then the second best label is selected from the
remaining alternatives, and so on.

In our context, a natural choice function is
based on the probability that a particular la-
bel is maximally preferred among all candi-
dates. Thus, let Pr(Eı) denote the event that
λı is maximally preferred. In the classifica-
tion setting, Pr(Eı) is nothing else than the
probability that λı is the correct class.

Note that

(m − 1)Pr(Eı) =
∑
 �=ı

Pr(Eı) (5)

=
∑
 �=ı

Pr(Eı |Eı)Pr(Eı),

where Eı denotes the event that either λı or
λ is selected and m is the number of labels.
Since the (pairwise) estimates R(λı, λ) can
be considered as probabilities Pr(Eı |Eı), we
have

Pr(Eı) =
1

m − 1

∑
 �=ı

R(λı, λ)Pr(Eı).

Replacing Eı in the last equation by Pr(Eı)+
Pr(E) leads to a system of linear equations
for the probabilities Pr(Eı). In conjunction
with the constraint

∑m
ı=1 Pr(Eı) = 1, this

system has a unique solution provided that
R(λı, λ) > 0 for all 1 ≤ ı,  ≤ m [6].

The above results suggest the following rank-
ing procedure: First, the label λı with max-
imal Pr(λı) is chosen as the top-label. This
label is then removed, i.e., the corresponding
row and column of the relation R is deleted.
The same procedure is then applied to the re-
duced relation in order to find the second best
label, and so on.



4.3 Slater-Optimal Rankings

Another approach is to look for a ranking that
is maximally consistent with a given prefer-
ence relation R. Since the distinguishing fea-
ture of a ranking is transitivity, this mainly
comes down to finding the smallest possible
modification of R that makes it transitive.
This approach appears especially appealing
in our context of learning: Since the values
R(λı, λ) are predicted by non-perfect learn-
ers Mı, they are not necessarily correct.

In the binary case where R(λı, λ) ∈ {0, 1},
modifying R comes down to inverting edges
in an associated directed graph (each label λı

corresponds to a node nı, and a directed edge
nı → n indicates that λı is preferred to λ).
The problem of making a complete directed
graph acyclic with a minimal number of such
modifications is known as the feedback arc set
problem in graph theory, and the number it-
self is called the Slater order of the graph
[5]. Thus, the problem is to find a ranking
(permutation) π that minimizes the number
of feedback arcs, i.e., arcs from λ to λı for
π(ı) < π().

In our context, inverting an edge can be inter-
preted as outvoting the learner Mı. A min-
imal modification is then also a most prob-
able one, at least under the assumption that
learners are independent and make correct de-
cisions with probability > 1/2. Obviously,
the feedback arc set problem can be extended
to the case of valued relations in a relatively
straightforward way: Instead of simply count-
ing the feedback arcs, the goal is to find a
ranking (permutation) π that minimizes

∑
ı<

R(λπ(), λπ(ı)). (6)

We shall say that such a ranking is Slater-
optimal. It deserves mentioning that the
problem of finding Slater-optimal rankings is
known to be NP complete [4]. This is hardly
relevant for small enough label sets L but of
course becomes a disadvantage in the case
where L comprises many labels.

4.4 Example

In order to illustrate the difference between
the above ranking methods, we consider a
simple example with m = 4 labels. Suppose
that the true ranking is given by λ1 � λ2 �
λ3 � λ4 and let the relation R be given by

R =




− .9 .8 .1
.1 − .9 .9
.2 .1 − .9
.9 .1 .1 −


 .

Obviously, only the learner M14 has made an
error, since it strongly prefers λ4 to λ1.

The simple voting function (4) yields the
scores 1.8, 1.9, 1.2, 1.1 and, hence, the cor-
responding ranking λ2 � λ1 � λ3 � λ4.

The Slater-approach recognizes and repairs
the mis-classification by M14. Indeed, this
mis-classification is the simplest explanation
for the fact that the binary graph associ-
ated with R (containing an edge nı → n if
R(λı, λ) > .5) is not transitive. More gener-
ally, the correct ranking λ1 � λ2 � λ3 � λ4

is the minimizer of (6) and is hence suggested
by this method.

The iterated choice method introduced in Sec-
tion 4.2 leads to the following equations for
the probabilities Pr(Eı):

1.2Pr(E1) = .9Pr(E2) + .8Pr(E3) + .1Pr(E4)
1.1Pr(E2) = .1Pr(E1) + .9Pr(E3) + .9Pr(E4)
1.8Pr(E3) = .2Pr(E1) + .1Pr(E2) + .9Pr(E4)
1.9Pr(E4) = .9Pr(E1) + .1Pr(E2) + .1Pr(E3)

One obtains

Pr(E1) ≈ .35, Pr(E2) ≈ .31,
Pr(E3) ≈ .15, Pr(E4) ≈ .19

(7)

and, hence, λ1 as the top-label. The first col-
umn and first row of the relation R are then
deleted, and the reduced set of three linear
equations is solved. The solution suggests λ2

as the maximally preferred label, hence λ2 is
placed second. In the third step, λ3 is se-
lected, which means that the last rank is as-
signed to the remaining alternative λ4.

Therefore, the ranking predicted by this
method is again the correct ranking λ1 �



λ2 � λ3 � λ4. Note that this result is differ-
ent from the ranking λ1 � λ2 � λ4 � λ3 that
would have been obtained by simply using the
probabilities (7) of the standard classification
setting for ordering the labels.

5 Comparison of Ranking
Procedures

In this section, we present some empirical re-
sults for pairwise learning of valued preference
relations and rankings. Our special interest
concerns the comparison of the ranking pro-
cedures discussed above, as well as the com-
parison between ranking on the basis of valued
and binary preference relations.

5.1 Base Learners and Data Model

Our experiments are based on synthetic data
that comes from an ensemble of “idealized”
base learners. This way, it becomes possi-
ble to conduct experiments in a controlled
way. More specifically, we consider the learn-
ers Mab as independent and identically dis-
tributed random variables. That is, each
learner yields outputs according to fixed prob-
ability distributions f0 and f1: For each 0 ≤
x ≤ 1, f0(x) is the probability (density) that
Mab = x given that the correct output is 0,
which means that λb �x λa. Likewise, f1(x) is
the probability (density) that Mab = x given
that λa �x λb. It is of course reasonable to
assume f0(x) = f1(1 − x). Without loss of
generality, we can also assume that the cor-
rect output is always 1, i.e., that the true
ranking is λ1 �x λ2 �x . . . �x λm. Con-
sequently, we only need one probability dis-
tribution f = f1, where f(x) corresponds to
the probability (density) that the distance be-
tween the given and the correct output is 1−x.

For our experiments, we specified f by trun-
cating the normal distribution with mode µ
and standard deviation σ (see Fig. 1). These
two parameters can be used in order to con-
trol the performance of a learner. The condi-
tion µ > 0.5 is necessary to guarantee that a
learner is better than random guessing. Note
that under this condition the expected out-
come is smaller than µ. Moreover, the larger

0 0.2 0.4 0.6 0.8 1
0

1
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Figure 1: Example of a probability distribu-
tion f characterizing the performance of a
base learner (µ = 0.7, σ = 0.1).

the standard deviation σ, the smaller the ex-
pected outcome will be. In other words, the
performance of a learner, measured in terms
of the expected distance to the correct output,
increases with µ and decreases with σ.

In order to allow for a reasonable comparison
between valued and binary learners, we sim-
ply derive the latter from the former:

Mbin
ab (x) =

{
1 if Mab(x) ≥ .5
0 if Mab(x) < .5

.

This corresponds to the usual way of deriving
a definite classification from a soft classifier.

Note that, for a learner Mab modeled by
a random variable X, the expected distance
from the correct output is given by 1−E(X),
where E(X) is the expected value of X. For
the corresponding binary learner Mbin

ab , the
expected distance is given by Pr(X < .5) =∫ .5
0 f(x) dx. Therefore, the former performs

better than the latter only if

E(X) ≥ Pr(X ≥ .5).

Strictly speaking, this comparison only ap-
plies to a classification setting with a single
learner, not to the ranking setting including
a complete ensemble of learners. Moreover,
it assumes a particular performance measure,
namely the distance from the correct out-
put. Note, however, that this measure is quite
reasonable, especially in connection with the
scoring approach (4) where individual outputs
Mab are aggregated by summation. In any
case, the above result suggests that using a



valued preference relation instead of its “bi-
narization” will not necessarily give better re-
sults. At first sight, this might be surpris-
ing, since replacing Mab by Mbin

ab resp. R by
Rbin obviously involves a loss of information.
Note, however, that binarization can be con-
sidered as a reinforcement of the learners’ es-
timations, which might be reasonable if these
estimations are reliable enough.

5.2 Ranking Procedures

In our experimental studies, we have com-
pared the ranking procedures introduced in
Section 4:

VOTE: The simple ranking procedure based
on the scoring function (4);
CHOICE: The ranking procedure based on
the choice function discussed in Section 4.2;
SLATER: The selection of a Slater-optimal
ranking (6).

5.3 Distance Between Rankings

In order to quantify the accuracy of a pre-
dicted ranking it is necessary to measure its
distance from the true ranking. For our ex-
periments, we employed the normalized Eu-
clidean distance(

1
cm

m∑
ı=1

(π(ı) − π∗(ı))2
)1/2

, (8)

where π and π∗ denote, respectively, the
permutations associated with the predicted
and the true ranking. The normalizing con-
stant cm is given by (m − 1)2 + (m − 3)2 +
. . . = m(m2 − 1)/3 and corresponds to the
(squared) distance between two completely
opposite rankings. Thus, (8) yields values in
the unit interval, in particular 0 for identical
rankings and 1 for opposite rankings.

5.4 Experiments

Our probabilistic setting is parameterized by
the number of labels, m, and the parameters µ
and σ characterizing a learner’s performance.

For a particular experimental setup, i.e., a
fixed set of parameters, the distance between
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Figure 2: Expected distance between pre-
dicted and true ranking as a function of the
parameter µ: VOTE (dashed, blue line) and
VOTE-B (solid, red line).

the true ranking and the ranking predicted
by a particular method is a random variable
with a well-defined expectation value. The
latter corresponds to the expected distance be-
tween the true ranking and the predicted one
and defines a reasonable quality measure for
a ranking method. We have approximated
these expected distances by corresponding av-
erages over 100,000 random experiments.

A single experiment basically consists of the
following steps: (1) For each of the m(m−1)/2
learners Mab, the output is generated accord-
ing to the probability distribution f which is
specified by µ and σ. (2) For all ranking meth-
ods under consideration, the predicted rank-
ing is derived from the resulting relation R.
(3) The distance between the predicted and
the correct ranking is computed.

In our first experimental study, we compared
ranking on the basis of a valued preference re-
lation with ranking on the basis of a binary re-
lation. More precisely, we compared the per-
formance of VOTE and VOTE-B, where the
latter stands for the VOTE method applied
to the binary relation Rbin instead of R. In
VOTE-B there is obviously a non-negligible
probability that labels have the same score.
Such ties were simply broken by coin flipping,
that is, labels having the same score were put
in a random order.

The results that have been derived for µ ∈



µ σ VOTE VOTE-B
.6 .1 .2556 .2790
.7 .1 .0897 .0498
.8 .1 .0224 .0031
.9 .1 .0023 .0001
.6 .3 .5411 .5652
.7 .3 .4119 .4510
.8 .3 .3055 .3468
.9 .3 .2253 .2578
.6 .5 .6214 .6316
.7 .5 .5650 .5837
.8 .5 .5196 .5353
.9 .5 .4568 .4895
.6 .7 .6501 .6531
.7 .7 .6199 .6296
.8 .7 .5889 .6023
.9 .7 .5592 .5778
.6 .9 .6596 .6625
.7 .9 .6431 .6483
.8 .9 .6239 .6321
.9 .9 .6048 .6159

Table 1: Performance of VOTE and VOTE-B
for various parameter settings.

{.6, .7, .8, .9}, σ ∈ {.1, .3, .5, .7, .9} and m = 5
are shown in Table 1. Apart from the case
(µ, σ) = (.9, .1), all differences between the
mean distance for VOTE and VOTE-B are
statistically significant (at the 5% or even 1%
level for a standard t-test). In these latter
cases, the result of the superior method is set
off in bold face.

As can be seen, VOTE-B gives indeed bet-
ter results for a certain range of (µ, σ) val-
ues, namely σ = 0.1 and µ ∈ {.7, .8, .9} (cf.
Fig. 2). Roughly, the results show that the
stronger the learner (i.e. the larger µ and the
smaller σ), the better VOTE-B performs in
comparison with VOTE.

First experiments with larger label sets in-
dicate that the superiority of one method
over another one is not reversed when chang-
ing the parameter m (hence only depends
on (µ, σ)). However, the absolute value of
a performance measure as well as the dis-
tance between two measures may thoroughly
change (despite normalization), even in a non-

10 20 30 40
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µ=0.9, σ=0.3 

µ=0.8, σ=0.1 

Figure 3: Expected distance for (µ, σ) =
(.8, .1) and (.9, .3) as a function of m: VOTE
(dashed, blue line) and VOTE-B (solid, red).
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Figure 4: Comparison between VOTE (solid
line), CHOICE (dotted), and SLATER
(dashed) for m = 5, σ = 0.1 (lower curves)
and σ = 0.5 (upper curves).

monotone way. For example, Fig. 3 shows the
expected distance for VOTE and VOTE-B as
a function of m. As can be seen, the depen-
dence on m is quite different for different pa-
rameters (µ, σ). A thorough investigation of
the influence of the number of labels is beyond
the scope of this paper.

In our second experimental study, we com-
pared the performance of VOTE with the
performance of CHOICE and SLATER. The
complete results for m = 5 are shown in Ta-
ble 2 (qualitatively similar results have been
obtained for larger values of m). Again, the
best performing method is set off in bold if
the distance to the second best is statistically
significant at the 5% level. As can be seen,
the simple VOTE procedure is indeed out-
performed by CHOICE and SLATER in the



µ σ VOTE SLATER CHOICE
.6 .1 .2558 .2047 .2404
.7 .1 .0898 .0226 .0452
.8 .1 .0220 .0012 .0039
.9 .1 .0023 .0001 .0002
.6 .3 .5414 .5501 .5513
.7 .3 .4115 .4125 .4181
.8 .3 .3071 .2872 .3011
.9 .3 .2248 .1857 .2037
.6 .5 .6218 .6267 .6265
.7 .5 .5666 .5737 .5736
.8 .5 .5093 .5162 .5176
.9 .5 .4565 .4614 .4646
.6 .7 .6479 .6508 .6505
.7 .7 .6198 .6236 .6240
.8 .7 .5906 .5962 .5961
.9 .7 .5585 .5650 .5656
.6 .9 .6596 .6614 .6609
.7 .9 .6431 .6452 .6450
.8 .9 .6245 .6291 .6282
.9 .9 .6056 .6104 .6107

Table 2: Performance of VOTE, CHOICE,
and SLATER for various parameter settings.

case of rather strong base learners (cf. Fig. 4).
Again, however, this result does not extend
to other parameter settings. In fact, in most
cases VOTE is the best method, even though
the differences are marginal.

These findings suggest that the computation-
ally more complex methods SLATER and
CHOICE can indeed improve the predictive
performance, but only in the case of strong
base learners. In order to explain this phe-
nomenon, recall that both methods somehow
try to “correct” or “repair” the pairwise pref-
erences estimated by the base learners. Thus,
one might suppose that this repairing works
well in the case where only a few of such
preferences are erroneous, while it fails or at
least becomes ineffective in the case where too
many of them are distorted.

6 Concluding Remarks

We have proposed a method for learning val-
ued preference structures and related rank-
ings, using a quite natural extension of pair-

wise classification. Some procedures for in-
ducing a ranking from such preference rela-
tions have then been investigated empirically.
Our results suggest the following main con-
clusion: The commonly used voting method
that simply counts the (weighted) base learn-
ers’ votes in favor of each alternative gives
a good account in comparison with more so-
phisticated (and computationally more com-
plex) ranking methods. Still, such methods
may improve the predictive performance in
the case of sufficiently strong base learners.
Likewise, the weighted voting procedure can
be improved by means of binary voting, i.e.,
by using binary instead of soft base learners.
Again, however, this requires these learners to
be sufficiently strong. Intuitively, both find-
ings might be explained by arguing that a cor-
rection or a reinforcement of the base learners’
votes can be successful only if these votes are
reliable enough. Stated differently, weighted
voting seems to be a rather robust alterna-
tive, which is completely in agreement with
the statistical properties of the simple arith-
metic mean (of several random variables).
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