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Abstract

The processing of data streams in general and the mining of such streams

in particular have recently attracted considerable attention in various research

fields. A key problem in stream mining is to extend existing machine learning

and data mining methods so as to meet the increased requirements imposed

by the data stream scenario, including the ability to analyze incoming data

in an online, incremental manner, to observe tight time and memory con-

straints, and to appropriately respond to changes of the data characteristics

and underlying distributions, amongst others. This paper considers the prob-

lem of classification on data streams and develops an instance-based learning

algorithm for that purpose. The experimental studies presented in the paper

suggest that this algorithm has a number of desirable properties that are not,

at least not as a whole, shared by currently existing alternatives. Notably,

∗Draft of a paper to appear in “Intelligent Data Analysis”.
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our method is very flexible and thus able to adapt to an evolving environment

quickly, a point of utmost importance in the data stream context. At the

same time, the algorithm is relatively robust and thus applicable to streams

with different characteristics.

Keywords: data streams, classification, instance-based learning, concept

drift.

1 Introduction

In recent years, so-called data streams have attracted considerable attention in dif-

ferent fields of computer science, such as database systems, data mining, and dis-

tributed systems. As the notion suggests, a data stream can roughly be thought

of as an ordered sequence of data items, where the input arrives more or less con-

tinuously as time progresses [31, 29, 13]. There are various applications in which

streams of this type are produced, such as network monitoring, telecommunication

systems, customer click streams, stock markets, or any type of multi-sensor system.

A data stream system may constantly produce huge amounts of data. To illus-

trate, imagine a multi-sensor system with 10,000 sensors, each of which sends a

measurement once per second. Regarding aspects of data storage, management and

processing, the continuous arrival of data items in multiple, rapid, time-varying,

and potentially unbounded streams raises new challenges and research problems.

Indeed, it is usually not feasible to simply store the arriving data in a traditional

database management system in order to perform operations on that data later on.

Rather, stream data must generally be processed in an online manner in order to

guarantee that results are up-to-date and that queries can be answered with small

time delay. The development of corresponding stream processing systems is a topic

of active research [8].

Apart from data processing issues, the problem of mining data streams has been

studied in a number of recent publications (see e.g. [1, 25] for up-to-date overviews).
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In this connection, different data mining problems have already been considered,

such as clustering [2], classification [22, 23, 24, 21, 34, 42], and frequent pattern

mining [11]. In this paper, we are concerned with the classification problem. More

specifically, we investigate the potential of the instance-based approach to supervised

learning within the context of data streams and propose an efficient instance-based

learning algorithm.

The remainder of the paper is organized as follows: Section 2 provides some back-

ground information, both on data streams and on instance-based learning. Related

work is subsequently reviewed in section 3. Our approach to instance-based learning

on data streams is introduced in section 4 and empirically evaluated in section 5.

The paper concludes with a brief summary in section 6.

2 Background

2.1 Data Streams and Concept Change

The data stream model assumes that input data are not available for random access

from disk or memory, such as relations in standard relational databases, but rather

arrive in the form of one or more continuous data streams. The stream model differs

from the standard relational model in the following ways [5]:

(i) The elements of a stream arrive incrementally in an “online” manner. That is,

the stream is “active” in the sense that the incoming items trigger operations on the

data rather than being sent on request. (ii) The order in which elements of a stream

arrive is not under the control of the system. (iii) Data streams are potentially

of unbounded size. (iv) Data stream elements that have been processed are either

discarded or archived. They cannot be retrieved easily unless they are stored in

memory, which is typically small relative to the size of the stream (stored/condensed

information about past data is often referred to as a synopsis). (v) Due to limited

(memory) resources and strict time constraints, the computation of exact results
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will often not be possible. Therefore, the processing of stream data does commonly

produce approximate results [10].

For the problem of mining data streams, the aforementioned characteristics have a

number of important implications. First of all, in order to guarantee that results are

always up-to-date, it is necessary to analyze the incoming data in an online manner,

tolerating not more than a constant time delay. Since learning from scratch every

time is generally excluded due to limited time and memory resources, corresponding

learning algorithms must be incremental. That is, an update of the current model

or data mining results, necessitated by newly observed data, must not refer to old

observations.

Apart from being incremental, algorithms for learning on data streams must also

be adaptive, i.e., they must be able to adapt to an evolving environment in which

the data (stream) generating process may change over time. Thus, the handling of

changing concepts is of utmost importance in mining data streams [6]. It has not

only been considered in this context, however. In general, the literature distinguishes

between different types of concept change over time [51]. The first type refers

to a sudden, abrupt change of the underlying concept to be learned and is often

called concept shift. Roughly speaking, in case of a concept shift, any knowledge

about the old concept will typically become obsolete and the new concept has to be

learned from scratch. The second type refers to a gradual evolution of the concept

over time.1 In this scenario, old data might still be relevant, at least to some

extent. Finally, one often speaks about virtual concept drift if only the distribution

of the underlying data generating process changes while the concept itself remains

unchanged [54]. To guarantee optimal predictive performance, an adaptation might

also be necessary in such cases. Note that in practice virtual and real concept drift

can occur simultaneously.

Concept change can be handled in a direct or indirect way. In the indirect approach,

the learning algorithm does not explicitly attempt to detect a concept drift. Instead,

1Admittedly, this distinction between shift and drift is rather vague. Yet, it will be sufficient
for our purposes.
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the use of outdated or irrelevant data is avoided from the outset. This is typically

accomplished by considering only the most recent data while ignoring older obser-

vations, e.g., by sliding a window of fixed size over a data stream or by weighing the

nearest neighbors of new observations, not only according to their distance but also

according to their age. More generally, such strategies belong to the class of instance

selection or instance weighing methods. To handle concept change in a more direct

way, appropriate techniques for discovering the drift or shift are first of all required.

Such techniques are typically based on statistical tests. Roughly speaking, the idea

is to compare a certain statistic that refers to recently observed data with a corre-

sponding statistic for older data, and to decide whether the difference between them

is significant in a statistical sense. (A corresponding technique will be discussed in

section 4 below.)

2.2 Instance-Based Learning

The term instance-based learning (IBL) stands for a family of machine learning

algorithms, including well-known variants such as memory-based learning, exemplar-

based learning and case-based learning [49, 47, 38]. As the term suggests, in instance-

based algorithms special importance is attached to the concept of an instance [4].

An instance or exemplar can be thought of as a single experience, such as a pattern

(along with its classification) in pattern recognition or a problem (along with a

solution) in case-based reasoning.

As opposed to model-based machine learning methods which induce a general model

(theory) from the data and use that model for further reasoning, IBL algorithms

simply store the data itself. They defer the processing of the data until a predic-

tion (or some other type of query) is actually requested, a property which qualifies

them as a lazy learning method [3]. Predictions are then derived by combining the

information provided by the stored examples.

Such a combination is typically accomplished by means of the nearest neighbor (NN)

estimation principle [14]. Consider the following setting: Let X denote the instance
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space, where an instance corresponds to the description x of an object (usually

though not necessarily in attribute–value form). X is endowed with a distance

measure ∆(·), i.e., ∆(x, x′) is the distance between instances x, x′ ∈ X . L is a set of

class labels, and 〈x, λx〉 ∈ X ×L is called a labeled instance, a case, or an example.

In classification, which is the focus of this paper, L is a finite (usually small) set

comprised of m classes {λ1 . . . λm}.

The current experience of the learning system is represented in terms of a set D of

examples 〈xı, λxı
〉, 1 ≤ ı ≤ n = |D|. ¿From a machine learning point of view, D plays

the role of the training set of the learner. More precisely, since not all examples will

necessarily be stored by an instance-based learner, D is only a subset of the training

set. In case-based reasoning, it is also referred to as the case base; besides, in the

context of data streams, D corresponds to the aforementioned synopsis.2

Finally, suppose a novel instance x0 ∈ X (a query) to be given, the class label λx0
of

which is to be estimated. The NN principle prescribes to estimate this label by the

label of the nearest (most similar) sample instance. The k-nearest neighbor (k-NN)

approach is a slight generalization, which takes the k ≥ 1 nearest neighbors of x0

into account. That is, an estimation λest
x0

of λx0
is derived from the set Nk(x0) of

the k nearest neighbors of x0, usually by means of a majority vote:

λest
x0

= arg max
λ∈L

card{x ∈ Nk(x0) |λx = λ}. (1)

2.3 IBL in a Data Stream Context

Recall the aforementioned key requirements for learning and data mining algorithms

on data streams: Above all, such algorithms must be incremental, highly adaptive,

and they must be able to deal with concepts that may change over time. Is lazy,

instance-based learning preferable to eager, model-based learning under these con-

ditions? Unfortunately, this question cannot be answered unequivocally.

2We will use these terms interchangeably throughout the paper.
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Obviously, IBL algorithms are inherently incremental, since adaptation basically

comes down to adding or removing observed cases. Thus, incremental learning and

model adaptation is simple and cheap in the case of IBL. As opposed to this, incre-

mental learning is much more difficult to realize for most model-based approaches.

Even though incremental versions do exist for a number of well-known learning

methods, such as decision tree induction [52], the incremental update of a model is

often quite complex and in many cases assumes the storage of a considerable amount

of additional information.

The training efficiency of lazy learners does not come for free, however. Compared

with model-based approaches, IBL has higher computational costs when it comes to

answering new queries. In fact, the latter requires finding the k nearest neighbors

of the query, and even though this retrieval step can be supported by efficient data

and indexing structures, it remains costly in comparison with deriving a model-based

prediction.

Consequently, IBL might be preferable in a data stream application if the number

of incoming data is large compared with the number of queries to be answered, i.e.,

if model updating is the dominant factor. On the other hand, if queries must be

answered frequently and under tight time constraints, whereas a need for updating

the model due to newly observed examples rarely occurs, a model-based method

might be the better choice. Thus, assuming an architecture as shown in Fig. 1,

including an example stream that permanently produces new cases in the form of

labeled instances and a query stream of unlabeled instances, the question is which

of these streams has a higher rate.3

Regarding the handling of concept drift, a definite answer cannot be given either.

Appropriately reacting to concept drift requires, apart from its discovery, flexible

updating and adaptation strategies. In instance-based learning, model adaptation

basically comes down to editing the case base, that is, adding new and/or deleting

3For our classification problem, it is in principle irrelevant whether examples and queries are
produced, respectively, by a single stream or several parallel ones. Moreover, note that the example
and query stream are not necessarily independent: correctly classified queries might be submitted
as input to the example stream.
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Figure 1: Architecture of the streaming classification scenario.

old examples. Whether or not this can be done more efficiently than adapting an

other type of model, such as a classification tree or a neural network, does of course

strongly depend on the particular model at hand. In any case, maintaining an im-

plicit concept description by storing observations, as it is done by IBL, facilitates

“forgetting” examples that seem to be outdated. In fact, such examples can simply

be removed, while retracting the influence of outdated examples is usually more

difficult in model-based approaches. In a neural network, for example, a new obser-

vation causes an update of the network weights, and this influence on the network

cannot simply be cancelled later on.

3 Related Work

Data mining on streams [20] is a topic of active research, and several adaptations

of standard statistical and data analysis methods to data streams or related models

have been developed recently (e.g. [15, 57]). Likewise, several online data mining

methods have been devised (e.g. [16, 45, 11, 30, 26]), with a particular focus on

unsupervised techniques like clustering [32, 19, 44]. Supervised learning on streams,

including classification, has received less attention so far, even though some ap-

proaches have already been developed.

A very early approach is the FLORA (Floating Rough Approximation) system [55].

The corresponding algorithm learns rule-based binary classifiers on a sliding window

of fixed size. It dynamically maintains three types of rules, namely rules that only
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cover positive examples, rules that only cover negative examples, and rules of mixed

type. The basic system has been improved in various enhancements. FLORA2 is

able to adapt the window size. FLORA3 further improves adaptability by the ability

to reactivate outdated rules. Finally, FLORA4 includes improved strategies for the

handling of noise.

The FRANN (Floating Rough Approximation in Neural Networks) algorithm trains

RBF networks on a sliding window of adaptive size [40]. An update of the model is

initiated on the arrival of a fixed number of N new examples. The basis functions

of the network are then derived from a subset of examples from the current sliding

window; the corresponding selection process is guided by a hill climbing algorithm.

The window size is adapted on the basis of the misclassification rate on the last M

examples.

The LWF (Locally Weighted Forgetting) algorithm of Salganicoff [46] is one of the

best adaptive learning algorithms. It is an instance-based learner that reduces the

weights of the k nearest neighbors x1 . . . xk (in increasing order according to distance)

of a new instance x0 by the factor τ + (1− τ)∆(xi, x0)
2/∆(xk, x0)

2. An instance is

completely removed if its weight falls below a threshold θ. To fix the size of the case

base, the parameter k is adaptively defined by k = dβ|D|e, where |D| is the size

of the current case base. As an obvious alternative to LWF, Salganicoff considers

the TWF (Time Weighted Forgetting) algorithm that weights instances according

to their age: at time point t, the example observed at time t− k is weighted by wk,

where w ∈ (0, 1) is a constant.

The Prediction Error Context Switching algorithm (PECS), also proposed in [46],

does not delete but only deactivates instances. That is, removed instances are still

stored in memory and might be reactivated later on. This strategy can avoid some

disadvantages of LWF but entails storage requirements that disqualify PECS for the

data stream context.

In the above approaches, the strategies for adapting the size of a sliding window,

if any, are mostly of a heuristic nature. In [36], the authors propose to adapt the
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window size in such a way as to minimize the estimated generalization error of the

learner trained on that window. To this end, they divide the data into batches and

successively (that is, for k = 1, 2 . . .) test windows consisting of batches t−k, t−k+

1 . . . t. On each of these windows, they train a classifier (in this case a support vector

machine) and estimate its predictive accuracy (by approximating the leave-one-out

error). The window/model combination that yields the highest accuracy is finally

selected. In [37], this approach is further generalized by allowing for the selection

of arbitrary subsets of batches instead of only uninterrupted sequences. Despite the

appealing idea of this approach to window (training set) adjustment, the successive

testing of different window lengths is computationally expensive and therefore not

immediately applicable in a data stream scenario with tight time constraints.

Recently, some efforts have been made to extend decision tree induction to the

streaming scenario. In their CVFDT (Continuous Very Fast Decision Trees) algo-

rithm, Hulten and Domingos learn and maintain decision trees on a sliding window

of fixed size [21, 34]. To achieve adaptability, they maintain statistics about the

occurrence of attribute combinations and class labels as well as a list of alternative

subtrees at inner nodes of the tree. If the estimated quality of an alternative subtree

becomes significantly better than the quality of the current one, the two subtrees are

exchanged. Due to the need to maintain statistics for attribute combinations, the

algorithm can only handle discrete attributes with relatively small domains. This

disadvantage is overcome by Ultra Fast Forest of Trees (UFFT), an extension of

CVFDT that allows for handling numerical attributes [28] and also makes use of

an improved splitting criterion for inner nodes. Moreover, each node of the UFFT

decision tree maintains an appropriate statistic in order to detect concept drift. If

drift is discovered, the whole subtree is forgotten and a new one is learned from

scratch.

Another approach to adaptive learning is the use of ensemble techniques [53, 50, 39].

Here, the idea is to train multiple classifiers, often decision trees, on different blocks

of data. To achieve adaptivity, the classifiers are weighted according to their (recent)
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performance or, even simpler, only the best classifier is selected to classify new

instances. If concept drift occurs, outdated or poorly performing classifiers are

replaced by new ones.

So-called editing strategies for nearest neighbor classification or, more generally, lazy

learning have been studied for quite a while [43]. Even though these strategies are

of course related to the problem of adaptive learning and handling concept change,

they are not suitable for data stream applications, mainly for the following reasons:

Firstly, they solely focus on the goal to maximize classification accuracy while dis-

regarding other aspects like space complexity. Secondly, they are not flexible and

efficient enough for online classification. In this connection, let us also mention the

well-known IB3 algorithm [4], which is built upon IB1 and includes means to delete

noisy and old instances that do no longer comply with the current concept. Even

though IB3 is thus principally able to handle gradual concept drift, the adaptation

is relatively slow [55, 46].

Finally, we note that there is also a lot of work on time series data mining (e.g. [35]).

However, even though time series data mining is of course related to stream data

mining, one should not overlook some important differences between these fields.

Particularly, time series are still static objects of fixed size that can, at least in

principle, be analyzed offline, whereas the focus in the context of data streams is on

dynamic adaptation and online data mining.

4 Instance-Based Learning on Data Streams

This section introduces our approach to instance-based learning on data streams,

referred to as IBL-DS. As shown in Fig. 1, the learning scenario consists of a data

stream that permanently produces examples, potentially with a very high arrival

rate, and a second stream producing query instances to be classified. The key

problem for our learning system is to maintain an implicit concept description in
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the form of a case base (memory).4

Before presenting details of IBL-DS in sections 4.2–4.4, some general aspects and

requirements of concept adaptation (case base maintenance) in a streaming context

will be discussed in section 4.1.

4.1 Concept Adaptation

The simplest adaptive learners are those using sliding windows of fixed size. Since

the update is very simple, these learners are also very fast. On the other hand, the

assumption that the data which is currently relevant forms a fixed-sized window,

i.e., that it consists of a fixed number of consecutive observations, is quite restrictive.

In fact, by fixing the number of examples in advance, it is impossible to optimally

adapt the size of the case base to the complexity of the concept to be learned,

and to react to changes of this concept appropriately. Moreover, being restricted to

selecting a subset of successive observations in the form of a window, it is impossible

to disregard a portion of observations in the middle (e.g. outliers) while retaining

preceding and succeeding blocks of data.

To avoid both of the aforementioned drawbacks, non-window-based approaches are

needed that do not only adapt the size of the training data but also have the liberty

to select an arbitrary subset of examples from the data seen so far. Needless to

say, such flexibility does not come for free. Apart from higher computational costs,

additional problems such as avoiding an unlimited growth of the training set and,

more generally, trading off accuracy against efficiency, have to be solved.

Instance-based learning seems to be attractive in light of the above requirements,

mainly because of its inherently incremental nature and the simplicity of model

adaptation. In particular, since in IBL an example has only local influence, the

update triggered by a new example can be restricted to a local region around that

4Note that this problem is quite different from the task to maintain a synopsis which can be con-
sidered as a representative sample in a statistical sense, another problem that has recently received
some attention in the data streams field [12]: A case base which is well suited for classification is
not necessarily a representative sample.
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observation.

Regarding the updating (editing) of the case base in IBL, an example should in prin-

ciple be retained if it improves the predictive performance (classification accuracy)

of the classifier; otherwise, it should better be removed.5 Unfortunately, this crite-

rion cannot be used directly, since the (future) usefulness of an example in this sense

is simply not known. Instead, existing approaches fall back on suitable indicators

of usefulness:

• Temporal relevance: According to this indicator, recent observations are con-

sidered as potentially more useful and, hence, are preferred to older examples.

• Spatial relevance: The relevance of an example can also depend on its position

in the instance space. This is the case, for example, if a concept drift only

affects a part of the instance space. Besides, a more or less uniform coverage of

the instance space is usually desirable, especially for local learning methods. In

IBL, examples can be redundant in the sense that they don’t change the nearest

neighbor classification of any query. More generally (and less stringently), one

might consider a set of examples redundant if they are closely neighbored in the

instance space and, hence, have a similar region of influence. In other words,

a new example in a region of the instance space already occupied by many

other examples is considered less relevant than a new example in a sparsely

covered region.

• Consistency: An example should be removed if it seems to be inconsistent

with the current concept, e.g., if its own class label differs from those labels in

its neighborhood.

Many algorithms use only one indicator, either temporal relevance (e.g. window-

based approaches), spatial relevance (e.g. LWF), or consistency (e.g. IB3). A few

methods also use a second indicator, e.g. the approach of Klinkenberg (temporal

5Of course, this maxim disregards other criteria, such as the complexity of the method.
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relevance and consistency), but only the window-based system FLORA4 uses all

three aspects.

4.2 IBL-DS

In this section, we describe the main ideas of IBL-DS, our approach to IBL on data

streams, that not only takes all of the aforementioned three indicators into account

but also meets the efficiency requirements of the data stream setting.

IBL-DS optimizes the composition and size of the case base autonomously. On

arrival of a new example 〈x0, λx0
〉, this example is first added to the case base.

Moreover, it is checked whether other examples might be removed, either since they

have become redundant or since they are outliers (noisy data). To this end, a set

C of examples within a neighborhood of x0 are considered as candidates. This

neighborhood is given by the kcand nearest neighbors of x0, and the candidate set C

consists of the examples within that neighborhood. The most recent examples are

excluded from removal due to the difficulty to distinguish potentially noisy data from

the beginning of a concept change. Even though unexpected observations will be

made in both cases, noise and concept change, these observations should be removed

only in the former but not in the latter case.

If the current class λx0
is the most frequent one of the kcand youngest examples in

a larger test environment of size6 ktest = (kcand)
2 + kcand, those candidates in C

are removed that have a different class label and do not belong to kcand youngest

examples in the larger test environment. Furthermore, to guarantee an upper bound

on the size of the case base, the oldest element of the similarity environment is

deleted, regardless of its class, whenever the upper bound would be exceeded by

adding the new example.

Using this strategy, the algorithm is able to adapt to concept drift but will also have

a high accuracy for non-drifting data streams. Still, these two situations – drifting

6This choice of ktest aims at including in the test environment the similarity environments of
all examples in the similarity environment of x0; of course, it does not guarantee to do so.
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and stable concept – are to some extent conflicting with regard to the size of the

case base: If the concept to be learned is stable, classification accuracy will increase

with the size of the case base. On the other hand, a large case base turns out to be

disadvantageous in situations where concept drift occurs, and even more in the case

of concept shift. In fact, the larger the case base is, the more outdated examples

will have to be removed and, hence, the more sluggish the adaptation process will

be.

For this reason, we try to detect an abrupt change of the concept using a statistical

test as in [27, 28]. If a corresponding change has been detected, a large number of

examples will be removed instantaneously from the case base. The test is performed

as follows: We maintain the prediction error p and standard deviation s =
√

p(1−p)
100

for the last 100 training instances. Let pmin denote the smallest among these errors

and smin the associated standard deviation. A change is detected if the current value

of p is significantly higher than pmin. Here, statistical significance is tested using a

standard (one-sided) z-test, i.e., the condition to be tested is p + s > pmin + zαsmin,

where α is the level of confidence (we use α = 0.999).

Finally, in case a change has been detected, we try to estimate its extent in order

to determine the number of examples that need to be removed. More specifically,

we delete pdif percent of the current examples, where pdif is the difference between

pmin and the classification error for the last 20 instances; the latter serves as an

estimation of the current classification error.7 Examples to be removed are chosen

at random according to a distribution which is spatially uniform but temporally

skewed (see section 4.3.2 for details). The complete updating algorithm is presented

in Fig. 1. Regarding the above-mentioned indicators of usefulness, note that the

aspect of temporal relevance is grabbed in lines 8 and 15–18, the aspect of spatial

relevance in lines 13–14, and the aspect of consistency in lines 2–10 and 15–16.

7Note that, if this error, p, is estimated from the last k instances, the variance of this estimation
is ≈ p(1 − p)/k. Moreover, the estimate is unbiased, provided that the error remained constant
during the last k time steps. The value k = 20 provides a good trade-off between bias and precision.
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Algorithm 1 IBL-DS-Update

Input: case base D, example e = 〈x0, λx0
〉

Output: updated case base D

1: c = class estimate for x0 derived from D
2: compare c and λx0

and update statistics for the last 100 examples (error p and
standard deviation s)

3: if p + s < pmin + smin then

4: pmin = p, smin = s
5: else if p + s > pmin + zαsmin then

6: pdiff = (error of the last 20 training data)−pfirst

7: if pdiff > 0.2 then

8: delete min{|D|pdiff , |D| − ktest} cases in D (spatially uniform, temporally
skewed)

9: reset pmin, smin

10: end if

11: end if

12: repeat

13: S = {e} ∪ kcand nearest neighbors of e in D
14: T = {e} ∪ ktest nearest neighbors of e in D
15: if c is most frequent class among kcand youngest instances of T then

16: D = D\{x ∈ S|x do not belong to c and to kcand youngest instances of T}
17: else if |D| = maxSize then

18: D = D \ {oldest instance in S}
19: end if

20: until no further change of D
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4.3 Technical Details

IBL-DS is implemented under the data mining library WEKA [56]. This library

contains various algorithms for supervised and unsupervised learning and additional

tools for data pre- and post-processing. To realize learning in an adaptive way,

the UpdateableClassifier interface of WEKA is used, which extends the Classifier

Interface by the updateClassifier(Instance inst) method. The data is stored in the M-

tree data structure of XXL, a query processing library developed and maintained at

the Informatics Institute of Marburg University [7]. Below, we describe the distance

function employed by IBL-DS and the M-Tree [9] which allows for processing streams

with both continuous and categorical attributes and, moreover, to perform nearest

neighbor queries in an efficient way even for very large case memories.

4.3.1 Distance function

As a distance function we use an incremental variant of SVDM which is a simplified

version of the VDM distance measure [49] and was successfully used in the classifi-

cation algorithm RISE [17, 18]. Let an instance x be specified in terms of ` features

F1 . . . F`, i.e., as a vector x = (f1 . . . f`) ∈ D1 × . . .×D`.

Numerical features Fi with domain Di = R are first normalized by the mapping

fi 7→ fi/(max − min), where max and min denote, respectively, the largest and

smallest value for Fi observed so far; these values are permanently updated.8 Then,

δi(fi, f
′
i) is defined by the Euclidean distance between the normalized values of fi

and f ′
i .

For a discrete attribute Fj, the distance between two values fj and f ′
j is defined by

the following measure:

δi(fj, f
′

j) =
m

∑

k=1

∥

∥P (λk |Fj = fj)− P (λk |Fj = f ′

j)
∥

∥ ,

8To make the transformation more robust toward outliers, it makes sense to replace max and
min by appropriate percentiles of the empirical distribution.
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where m is the number of classes and P (λ |F = f) is the probability of the class λ

given the value f for attribute F . Finally, the distance between two instances x and

x′ is given by the mean squared distance

∆(x, x′) =
1

`

∑̀

i=1

δi(fi, f
′

i)
2

4.3.2 Index structure M-Tree

To delete instances in a spatially uniform but temporally skewed way, we exploit

the properties of the M-Tree index structure [9]. In this tree, the leaves store in-

stances that belong to a small sphere within the instance space. The inner nodes

combine subnodes to bigger spheres and the root node represents the sphere that

corresponds to the whole data set. Each node n consists of a center instance cn

and an associated radius rn. Moreover, each node maintains a list of successors

(subnodes) ln. The number of instances or subnodes of a node is restricted to an

interval [minCapacity,maxCapacity]. Our experience has shown that the interval

[6, 15] yields good performances. The stored examples correspond to the instance

nodes of the tree (located directly under the leaf nodes), the radius of which is 0.

To delete data with preference to older instances, the number of items to be re-

moved in a node is uniformly spread among the subnodes. In a leaf, only the oldest

instances are removed. This way, we ensure that the spatial distribution of the

deleted instances is uniform in the instance space. Regarding the temporal dis-

tribution, however, old instances are more likely to be removed than more recent

examples.

4.4 Classification of Queries

In order to classify a new query instance x0, we employ a simple majority voting

procedure among the k nearest neighbors. As in standard IBL, the computationally

most expensive step consists of finding the query’s neighbors. In our implementation,
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this step is again supported by the aforementioned M-tree.

More specifically, the nearest neighbors are computed in an iterative way using a

(min-)heap H of nodes. This heap is initialized with the root of the M-tree. The heap

value of a node n, which is to be minimized, is given by the distance between n and

the query instance x0, which in turn is defined as max{0, ‖x0− cn‖− rn}. The next

nearest neighbor is then obtained by calling the procedure shown in Algorithm 2.

Algorithm 2 getNextNeighbor(heap H)

1: while H is not empty do

2: n = POP(H)
3: if n is an instance node then

4: return next neighbor cn

5: else

6: H.insertAll(ln)
7: end if

8: end while

9: return: no further data

5 Empirical Evaluation

A convincing experimental validation of online learning algorithms is an intricate

problem for several reasons. Firstly, the evaluation of algorithms in a streaming

context is obviously more difficult than the evaluation for static data sets, mainly

because simple, one-dimensional performance measures such as classification accu-

racy will now vary over time and, hence, turn into functions (of time) which are

not immediately comparable. Besides, additional criteria become relevant, such as

the handling of concept drift, many of which are rather vague and hard to quantify.

Secondly, real-world and benchmark streaming data is currently not available in a

form that is suitable for conducting systematic experiments.

Due to these reasons, we mainly used synthetic data for our experiments. As an

important advantage of synthetic data let us note that it allows for conducting ex-

periments in a controlled way and, hence, to answer specific questions concerning

the performance of a method and its behavior under particular conditions. Corre-
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sponding experiments are presented in the following subsections. Besides, a further

experimental study using real-world data is presented in section 5.7.

We compared IBL-DS with the following instance-based approaches: The simple

sliding window approach with fixed window-sizes of 200, 400, 800, respectively

(Win200, Win400, Win800); Local Weighed Forgetting with β = 0.04 and β = 0.02

(LWF04, LWF02); Time Weighed Forgetting with w = 0.996 and w = 0.998

(TWF996, TWF998). Note that, as opposed to IBL-DS, the parameters have a

direct influence on the size of the case base for the above algorithms. The choice of

these parameters has been optimized for the streams used in the experiments, where

our first goal is to show that IBL-DS is competitive even under conditions which

are optimal for the alternative algorithms. By changing the characteristics of the

streams we will then show that IBL-DS is more stable in the sense of still producing

good results for the same parameter configuration, whereas the performance of the

other algorithms strongly deteriorates if the parameters are set in a suboptimal way.

As an aside, we note that a comparison with the well-known CVFDT approach and

the FLORA-system is not reasonable. Apart from the fact that we focus on instance-

based learning, these algorithms are not suitable for the settings considered in our

experiments. CVFDT has been developed for extremely large data sets (“massive

data”) and, due to the use of Hoeffding trees, cannot handle data streams with a high

drift rate. FLORA assumes discrete attributes and produces reasonable results only

for the STAGGER stream (the only data that was used for evaluating the original

FLORA-system). Even after discretizing the numerical attributes, FLORA’s results

were significantly inferior to those of the remaining algorithms.

For IBL-DS we used the parameters kcand = 5 and a maximal size of 5,000 examples

for the case memory. For nearest neighbor classification, the neighborhood size was

set to k = 5 for all algorithms. Note that the primary purpose of our studies is

to compare the algorithms under equal conditions. This is why we used a fixed

neighborhood size instead of optimizing this parameter, and k = 5 seems to be a

reasonable choice. (For smaller values of k, there is a high sensibility toward noisy
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data, whereas higher values decrease flexibility and necessitate a larger case base.)

In order to show the flexibility of IBL-DS, we employed synthetic data with quite

different characteristics (see section 5.2).

5.1 Performance Measures

The learning scenario we considered is a straightforward extension of supervised

learning to the data stream setting: At each point of time a new instance x0 arrives

(from the query stream) and its class label λx0
is predicted. After the prediction has

been made, the correct label is provided by a teacher, the prediction is evaluated,

and the case base is updated (i.e., the new example is submitted to the example

stream). We note that, even though this scenario is suitable for our purpose, it is

probably not very realistic. In fact, in applications it will usually be difficult to

realize a “fully supervised” process as outlined above. Instead, the correct label

might be provided only for a subset of instances, perhaps on request and with a

certain time delay.

All data streams were tested with 20,000 elements, using an initial training set of

100 examples and adding 5% random noise.9 Each test were repeated 200 times.

We derived two types of classification rate:10 (i) The streaming classification rate

measures the accuracy on the last 100 instances of the stream. Thus, it is a kind

of real accuracy that refers to a certain section of the stream. (ii) The absolute

classification rate aims at estimating the accuracy at a particular moment of time.

To this end, 1,000 extra test instances are generated at random according to a

uniform distribution, and the classification accuracy for this test set is derived by

using the current case base; this is done for every 10 time points.

In addition, the following measures are monitored, again in steps of 10 time points:

(i) The size of the case base. (ii) A concept drift rate as an indicator of the extent of

9That is, with a probability of .05, the correct label of an example is randomly exchanged with
one of the other labels.

10These two accuracy measures will not differ very much unless the stream undergoes a concept
drift.
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concept drift. To this end, the labels of 10,000 uniformly distributed examples are

compared with the labels 10 time points before, and the rate of change is computed

by the fraction of examples that have changed their label. (This corresponds to the

measure used in [33].)

5.2 Data Sets

We used 8 different data streams: Gauss, Sine2, Distrib, Random, Stagger,

Mixed, Hyperplane, Means. The Stagger stream was presented in [48]. The

streams Gauss, Sine2, Stagger and Mixed were used in [40, 27]. The Hyper-

plane data stream was used in multiple experiments for data streams [21, 53].

Table 1 gives a summary of some properties of these data streams.

Gauss: This is a binary classification problem in R × R with two normally dis-

tributed classes, one with standard deviation 1 around (0, 0) and the second with

standard deviation 4 around (2, 0). Abrupt concept shift is simulated by reversing

the class membership every 2,000 instances.

Sine2: Instances are uniformly distributed in the unit square [0, 1] × [0, 1]. Two

classes are separated by the decision boundary y = 0.5 + 0.3 · sin(3πx). Again, the

classification is reversed every 2,000 instances.

Distrib: Instances are uniformly distributed in the unit square [0, 1] × [0, 1]. An

instance (x, y) belongs to class 1 if (x, y) ∈ [0, 0.5]×[0, 0.5] or (x, y) ∈]0.5, 1]×]0.5, 1],

otherwise to class 0. Even though the concept remains fixed, the underlying distri-

bution does change: the data is only generated in one quarter of the instance space,

changing the quarter clockwise every 2,000 instances.

Random: Instances are uniformly distributed in the unit square [0, 1] × [0, 1]. An

instance (x, y) belongs to class 1 with probability p, independently of x and y.

Within an interval of 2,000 examples, the probability p increases linearly from 0 to

1, then decreases linearly from 1 to 0 during the next interval of the same length,

and so on.
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Stagger: Instances are described by three symbolic attributes: size (small, medium,

large), color (red, green), and shape (circular, non-circular). In the first con-

text, instances satisfying (size = small) ∧ (color = red) are classified as posi-

tive, all others as negative. In the second context, the concept description is

(color = green) ∨ (shape = circular). In the third context, the description is

(size = medium) ∨ large). The concept switches every 2,000 examples.

Mixed: The data are described by two boolean attributes v, w and two numerical

attributes x, y with domain [0, 1]. The concept to be learned is a threshold concept:

an example belongs to the concept if is satisfies at least two of the following three

conditions: v = true, w = true, y < 0.5 + 0.3 · sin(3πx). The classification is

reversed every 2,000 instances.

Hyperplane: The instance space [0, 1]d is separated into two classes by a moving

hyperplane which is defined by the equation
∑d

i=1 wi · xi = w0. On arrival of a new

instance, the weights wi, i = 0, 1 . . . d, are changed as follows: wi ← wi+(1/4)−3·d·fi,

where fi ∈ {−1, 1} is randomly reselected every 2,000 instances. To ensure that both

classes have equal size, the constant w0 is always recomputed by w0 = 0.5
∑d

i=1 wi.

The wi are initialized at random according to a uniform distribution on [0, 1]. We

have conducted experiments for the dimensions d = 2 and d = 5.

Means: The n classes are defined by n center points in [0, 1]d. An instance belongs

to the class of the nearest center. Each center moves with a fixed drift for each

dimension. If it leaves the unit interval in one dimension, the drift for this dimension

is inverted. We have made experiments with n = 5 and d ∈ {2, 5}. For each

dimension, the drift is initialized by a random value in [−(1/8)3, (1/8)3].

5.3 Classification Rate
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attributes classes drift/shift

Gauss 2 num 2 shift
Sine2 2 num 2 shift
Distrib 2 num 2 virtual shift
Random 2 num 2 drift (distr.)
Stagger 3 discr 2 shift
Mixed 2 num + 2 discr 2 shift
Hyper 2/5 num 2 drift
Means 2/5/15 num 5 drift

Table 1: Properties of data streams.

IBL-DS LWF02 LWF04 Win200 Win400 Win800 TWF996 TWF998

Gauss
.840 .806 .838 .780 .755 .700 .758 .708

(.0017) (.0017) (.0016) (.0018) (.0017) (.0016) (.0017) (.0016)

Sine2
.926 .868 .901 .869 .842 .772 .843 .780

(.0017) (.0014) (.0012) (.0018) (.0018) (.0017) (.0017) (.0017)

Distrib
.906 .894 .877 .506 .511 .521 .512 .521

(.0079) (.0050) (.0059) (.0044) (.0059) (.0072) (.0056) (.0070)

Random
.708 .706 .718 .663 .655 .625 .658 .629

(.0019) (.0017) (.0013) (.0016) (.0016) (.0018) (.0016) (.0018)

Mixed
.922 .863 .895 .872 .845 .775 .846 .783

(.0019) (.0016) (.0033) (.0017) (.0016) (.0016) (.0016) (.0016)

Stagger
.971 .509 .509 .910 .888 .864 .897 .876

(.0027) (.0010) (.0011) (.0039) (.0064) (.0085) (.0048) (.0077)

Hyper2
.957 .974 .970 .924 .927 .924 .930 .927

(.0056) (.0092) (.0049) (.0042) (.0079) (.0149) (.0077) (.0145)

Hyper5
.865 .883 .892 .828 .835 .825 .836 .829

(.0048) (.0208) (.0110) (.0057) (.0112) (.0216) (.0111) (.0214)

Means2
.934 .946 .931 .894 .909 .910 .910 .912

(.0044) (.0043) (.0047) (.0042) (.0041) (.0062) (.0041) (.0060)

Means5
.794 .830 .799 .703 .737 .764 .738 .766

(.0077) (.0060) (.0071) (.0070) (.0063) (.0059) (.0064) (.0059)

Table 2: Absolute classification rates.
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IBL-DS LWF02 LWF04 Win200 Win400 Win800 TWF996 TWF998

Gauss
.804 .774 .803 .751 .728 .679 .731 .686

(.0033) (.0031) (.0029) (.0038) (.0036) (.0036) (.0034) (.0034)

Sine2
.884 .833 .862 .833 .809 .747 .810 .753

(.0025) (.0022) (.0022) (.0031) (.0029) (.0028) (.0029) (.0028)

Distrib
.931 .943 .945 .902 .901 .899 .903 .902

(.0023) (.0017) (.0017) (.0031) (.0030) (.0033) (.0031) (.0033)

Random
.709 .706 .718 .663 .654 .625 .658 .629

(.0038) (.0033) (.0035) (.0040) (.0036) (.0036) (.0036) (.0035)

Mixed
.878 .826 .855 .834 .809 .746 .810 .753

(.0030) (.0023) (.0039) (.0030) (.0030) (.0028) (.0029) (.0028)

Stagger
.925 .507 .507 .870 .850 .829 .858 .840

(.0031) (.0032) (.0033) (.0042) (.0064) (.0079) (.0050) (.0073)

Hyper2
.912 .927 .924 .882 .885 .882 .887 .885

(.0057) (.0086) (.0051) (.0049) (.0078) (.0138) (.0076) (.0135)

Hyper5
.828 .845 .853 .795 .801 .792 .803 .796

(.0049) (.0189) (.0102) (.0059) (.0103) (.0196) (.0101) (.0194)

Means2
.900 .911 .896 .862 .876 .877 .877 .879

(.0050) (.0046) (.0051) (.0048) (.0049) (.0069) (.0050) (.0067)

Means5
.766 .800 .771 .679 .712 .738 .712 .739

(.0080) (.0062) (.0074) (.0075) (.0069) (.0065) (.0069) (.0065)

Table 3: Streaming classification rates.

The absolute and streaming classification rates are shown, respectively, in tables 2

and 3. For the data streams Gauss, Sine2, Stagger and Mixed, our method

IBL-DS shows the best performance regardless of the type of measure; for Distrib

it performs best in terms of the absolute classification rate. Even if IBL-DS is not

the best method for the remaining streams (Random, Hyper, and MEAN), its

results are always competitive and close to optimal.

Apparently, IBL-DS performs comparatively well especially for the data streams

with concept shift. Thus, our strategy for handling such situations, including a

flexible size of the case base, seems to work well in practice. In fact, some other

methods do obviously have difficulties with abrupt changes of the concept, as sug-

gested by their relatively poor classification rates. Note that concept shift does also

occur in Stagger. Here, however, only 12 different instances exist, so a small case

base is always sufficient. In fact, it is not useful to store all examples that support

the current concept; this only makes the model less flexible with regard to the next

concept shift but does not lead to a higher accuracy.
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Figure 2: Absolute classification rate for the first 10,000 instances of the Distrib

data stream.

For the Distrib data, the extreme differences between absolute and streaming clas-

sification rate call for explanation. To understand these differences, recall the spe-

cial distribution of the training data: After a shift of this distribution, it takes 6,000

time steps (instances) until the next instance for the previous quarter will arrive.

All window-based approaches will soon forget all the data of this quarter. Only the

LWF algorithm stores all the data the whole time. IBL-DS will have the highest

accuracies after training instances have been seen in all quarters (viz. after 6,000 in-

stances). Before, LWF performs slightly better, since this algorithm does not delete

as many of the 100 examples used for initialization (see figure 2).

The simple window-based algorithm shows a very good performance for the Hyper-

plane and the Means data. Again, there is a simple explanation for this result:

These two data streams have a small concept drift rate which does hardly change

over time. Therefore, the optimal size of the case base will remain more or less

constant as well. Since training data is furthermore uniformly distributed, using a

window of fixed size is indeed a suitable strategy. Again, however, note that the

classification rate of IBL-DS is not much worse.

For comparison, table 4 shows the classification performance for a drift rate which is

40 times as high as the original one (technically, this was achieved by using only every

40-th example for training). Apart from Distrib, where no real concept drift exists,

26



IBL-DS LWF02 LWF04 Win200 Win400 Win800 TWF996 TWF998

Gauss .609 .515 .555 .502 .502 .502 .504 .504
Sine2 .521 .493 .488 .502 .502 .502 .503 .502
Distrib .938 .965 .950 .909 .921 .929 .922 .932
Random .568 .501 .504 .500 .500 .500 .501 .501
Stagger .697 .477 .477 .567 .530 .568 .532 .604
Mixed .539 .508 .513 .502 .502 .502 .504 .504
Hyper2 .848 .774 .812 .757 .716 .681 .720 .689
Hyper5 .692 .639 .668 .630 .599 .581 .603 .587
Means2 .777 .553 .683 .660 .507 .368 .518 .395
Means5 .628 .478 .600 .609 .505 .371 .514 .396

Table 4: Absolute classification rates for faster concept drift.

IBL-DS LWF02 LWF04 Win200 Win400 Win800 TWF996 TWF998

absolute
rate

.784 .835 .823 .722 .738 .753 .740 .755
(.0092) (.0068) (.0074) (.0138) (.0127) (.0117) (.0126) (.0116)

absolute rate .687 .615 .674 .694 .651 .582 .656 .597
for faster drift (.0096) (.0157) (.0147) (.0056) (.0126) (.0186) (.0127) (.0182)

Table 5: Absolute classification rates for 15-dimensional Means data with two
classes.

and Stagger, with only 12 different instances and a high overlap of the different

concepts to be learned, IBL-DS clearly outperforms the other algorithms on all data

streams. The main reason for the poor performance of the other algorithms is the

fact that the corresponding parameters, and therefore the size of the case bases, are

not optimized for the high drift rate.

Since the above experiments were restricted to data streams of relatively low dimen-

sion, we conduced another experiment in which we used a 15-dimensional version

of the Means data (with two classes). The results of this experiment are shown

in table 5. As can be seen, with respect to the absolute classification rate, IBL-DS

outperforms the Win and TWF approaches but is not as accurate as LWF. This

changes, however, in the case of a (40 times) faster drift rate. Again, this is due to

the flexibility of IBL-DS, which allows it to adapt to the drift rate in a very effective

way.
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5.4 Size of the Case Base

As already mentioned above, the strategies of IBL-DS for handling concept shift

seem to work very well. To illustrate, consider figure 3 that shows the development

of IBL-DS’s absolute classification rate and the size of the case base between the

10,000th and 20,000th training example for the Sine2 data. In the second subfigure,

the concept shift around the 12,000th training instance is shown. After each concept

switch, the size of the case base decreases quickly, and a good classification rate is

recovered after hardly more than 60 instances.

The case of gradual concept drift can be more intricate, however, as illustrated

in figure 4 for the Means2 data: After a while, IBL-DS detects a small drift and

deletes some data. According to our strategy, this data will be distributed uniformly

across the complete input space, even though the concept drift may concern only

a small part of this space. Consequently, many examples are then removed that

are actually not involved in the drift. Nevertheless, a good performance of IBL-DS

can still be guaranteed thanks to its second updating strategy. In fact, even though

the adaptation induced by this strategy is much slower, each outdated example will

sooner or later be deleted.

The only stream for which IBL-DS’s case base reaches the maximum size of 5,000 is

the Distrib data. Recall that the shift in this stream does not concern the concept

itself but rather the distribution in the input space. Consequently, all examples

except the noisy ones could in principle be memorized. In fact, the simple strategy

of removing the oldest examples would not perform very well, because it involves

the danger of completely loosing the examples of one quarter. In this case, our

strategy of removing examples at random pays off, since it ensures that the deletion

process does not focus on a small subregion of the data space only. As can be seen,

both strategies for removing examples have their strengths and advantages, and in

practice a combination of the two is likely to perform better than each of them alone,

at least on average.
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Figure 3: Absolute classification rate and size of case base for the Sine2 data.
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Figure 4: Absolute classification rate and size of case base for the Means2 data.

5.5 Time for Updating and Classification

In this section, we compare the running times for updating and classification. Ta-

bles 6 and 7 show, respectively, the average times needed for 1,000 updates of the

case base and 1,000 classifications of new query instances. As expected, the more

complex updating strategy used by IBL-DS comes along with slightly higher running

times. Yet, being able to conduct 1,000 updates in less than 5 seconds, IBL-DS can

still handle streams with very high arrival rates.

5.6 Parametrization and Robustness

Most learning methods can be parameterized in one way or the other, i.e., their

behavior can be influenced by means of some user-defined parameters. On the one
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IBL-DS LWF02 Win800 TWF998

Gauss .56 .17 .033 .035
Sine2 .36 .12 .023 .024
Distrib .49 .12 .027 .028
Random .33 .12 .023 .024
Stagger .63 .52 .050 .075
Mixed .70 .30 .032 .066
Hyper2 .50 .12 .023 .025
Hyper5 4.3 .78 .048 .055
Means2 .47 .12 .023 .025
Means5 3.2 .76 .048 .054

Table 6: Running times (in seconds) for 1,000 updates.

IBL-DS LWF02 Win800 TWF998

Gauss .17 .13 .13 .14
Sine2 .090 .087 .063 .067
Distrib .13 .087 .079 .081
Random .078 .088 .067 .066
Stagger .16 .19 .078 .080
Mixed .19 .23 .072 .24
Hyper2 .13 .087 .063 .067
Hyper5 1.3 .61 .37 .40
Means2 .12 .089 .066 .067
Means5 .92 .59 .37 .40

Table 7: Running times (in seconds) for 1,000 classifications.
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hand, this offers the opportunity to adapt the method to a particular application

in an optimal way, by “tuning” the parameters appropriately. On the other hand,

having too many degrees of freedom might also be considered as a disadvantage,

at least if a suboptimal specification of the parameters will badly deteriorate the

algorithm’s performance. In this regard, the robustness of the learning method

toward parameter settings is a desirable property. Roughly speaking, this means

that a slight variation of the parameter setting does not change the performance

of the method drastically. Usually, this also implies that, even though a method

might be optimized by appropriately tuning its parameters, it still performs well

when being applied in a “default setting”. The objective of this section is to show

that IBL-DS is robust in this sense.

During the above experiments, all parameters of IBL-DS have been held fixed, i.e.,

a default setting has been used. In order to provide evidence for the robustness of

IBL-DS toward small variations of the parameters, we have rerun the experiments

with modified values for the following parameters: the size of the test environment

(ktest); the number of young instances (kcand); the threshold for detection of concept

shift, referring to a change of the classification rate (∆p); the significance level of

the t-test (α); the length of the history used to estimate the current classification

rate (h); the number of examples used to estimate the new classification rate after

recognition of a concept shift (u). The default values used for these parameters are

summarized in table 8.

In each experiment, exactly one parameter has been modified while the default

values have been used for the remaining ones. The absolute classification rates thus

obtained are shown in tables 9 and 10, together with the result for the default

setting. As can be seen, the classification rates are almost the same. Since the

results for the streaming classification rate are very similar, we didn’t present them

here.
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parameter value

ktest 50
kcand 5
∆p 0.2

1− α 0.999
h 100
u 20

Table 8: Default parameters in IBL-DS.

default ktest = 30 ktest = 70 kcand = 3 kcand = 10 α = .01 α = .005

Gauss .840 .839 .836 .764 .837 .840 .840
Sine2 .926 .927 .921 .863 .926 .924 .924
Distrib .906 .904 .902 .882 .910 .905 .906
Random .708 .703 .711 .709 .704 .708 .708
Mixed .922 .926 .912 .800 .920 .919 .919
Stagger .971 .963 .962 .969 .944 .971 .971
Hyper2 .957 .950 .956 .959 .947 .955 .955
Hyper5 .865 .865 .868 .861 .860 .867 .867
Means2 .934 .937 .940 .752 .926 .939 .939
Means5 .794 .793 .794 .609 .794 .795 .795

Table 9: Absolute classification rates for varied parameter configurations.

5.7 Real World Data

So far, only synthetic data sets have been used. Even though synthetic data allows

one to model special effects and, hence, is advantageous from this point of view,

conducting experiments with real-word data is of course also desirable. As already

default ∆p = .1 ∆p = .4 h=50 h=150 u=10 u=30

Gauss .840 .840 .832 .840 .835 .840 .840
Sine2 .926 .924 .917 .925 .919 .925 .923
Distrib .906 .883 .906 .905 .905 .906 .906
Random .708 .710 .702 .709 .711 .708 .709
Mixed .922 .920 .914 .922 .916 .919 .919
Stagger .971 .967 .964 .960 .961 .959 .969
Hyper2 .957 .956 .954 .955 .954 .955 .955
Hyper5 .865 .875 .866 .873 .866 .867 .867
Means2 .934 .940 .939 .940 .939 .940 .939
Means5 .794 .772 .794 .758 .795 .794 .894

Table 10: Absolute classification rates for varied parameter configurations.

32



mentioned above, however, real-world data streams are hard to obtain, at least for

the classification setting considered in this paper. To overcome this problem, at

least to some extent, we generated “pseudo-streams” from real data in two different

ways.

5.7.1 First Experimental Study

In a first experimental study, we used (static) benchmark data sets from the UCI

repository and prepared them as data streams. In fact, note that any data set,

provided it is not too small, can be considered as a stream, simply by imposing

an arbitrary ordering of the data items. More specifically, however, since a data

stream is by definition an open-ended sequence, an ordered data set can at best be

considered as a section of a stream. Besides, concept drift will usually not be present

in streams of that kind. To simulate concept drift we did the following, inspired

by [41]: First, the data set is put into a random order. Then, the most relevant

input feature is identified using the “Correlation-based Feature Subset Selection”

method implemented in WEKA, and the data is sorted according to the value of that

attribute. Finally, the attribute itself is deleted from the data, thereby becoming

a “hidden factor” or, say, a “hidden context”. This way, a kind of concept shift is

obtained in the case of discrete attributes, whereas numerical attributes will produce

gradual concept drift. For example, if the hidden attribute is discrete and changes

its value, it means that the observable data is generated in a new context. In fact,

since the hidden attribute is relevant in the sense of having an influence on the

output, the dependency between the observable inputs and the output will change.

To qualify as a (pseudo-)stream, a data set should first of all not be too small.

Moreover, a useful data set will have a reasonable number of classes and moreover,

should not contain features that are highly correlated with the attribute used to

simulate concept drift. These requirements are satisfied by only a few UCI data

sets. For our studies, we selected the Balance, Car and Nursery data. Table 11

summarizes the main properties of these data sets.
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data set #instances #classes #attributes selected attribute

Balance 625 3 4 right-distance (numeric)
Car 1728 4 6 safety(nominal)
Nursery 11025 5 8 health (nominal)

Table 11: UCI data sets prepared as (pseudo-)streams.

Balance Car Nursery

IBL-DS .805 .889 .900
LWF04 .782 .700 .899
LWF10 .846 .700 .842
Win50 .813 .819 .827
Win100 .815 .862 .856
Win200 .785 .888 .878
TWF99 .795 .889 .877
TWF995 .787 .887 .900
IBL .693 .745 .839

Table 12: Streaming classification rates for UCI data.

IBL-DS was employed in its default parameter setting. For LWF the parameters

β = .04 and β = .1 are used, TWF is run with weight = .99 and weight = .995, and

the fixed sliding window approach (Win) with size = 50, 100, 200. To show that

concept drift does really occur, the standard instance based algorithm (IBL) that

simply stores all instances is additionally applied.

The results are presented in table 12. As can be seen, IBL-DS again performs very

well, even for these different types of data streams, without the need to change its

parameters (apart from the case base size). Moreover, the standard instance-based

algorithm clearly drops off and cannot compete, probably due to the simulated drift

of the concept.

5.7.2 Second Experimental Study

In a second experiment, we generated (pseudo-)streams of data by recording the

stock rates of seven car manufacturers (Volkswagen (VW), BMW, Daimler-Chrysler,

Porsche, Peugeot, Toyota, General Motors) from 1.1.1990 to 30.9.2006. For every

day, one data item was defined in terms of the relative change (in percent) of the
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class decreasing unchanged increasing
percent 37.3 23.8 38.9

Table 13: Class distribution in stock prediction experiment.

method classification rate
IBL-DS 0.563
LWF02 0.569
LWF04 0.559
Win200 0.519
Win400 0.528
Win800 0.529
TWF996 0.520
TWF998 0.520
k-NN 0.539

Table 14: Classification rates for stock prediction experiment.

stock in comparison with the day before; thus, a total number of 4,088 examples

was obtained. Based on these examples, we considered the following classification

problem: Given the change of the other six stocks, decide whether the VW-stock is

increasing (change > 0.5%), unchanged (−0.5% ≤ change ≤ 0.5%), or decreasing

(change < −0.5%); table 13 shows the distribution of the class attribute.

The classification results are given in table 14. To prove the existence of concept

drift, we also included the standard k-NN classifier with k = 5 as a baseline. As can

be seen, this method can indeed be improved, but not by those approaches using a

simple time window. As a possible explanation for the poor performance of these

approaches, note that the distribution of the (input) data is quite skewed and far

from uniform; considerable changes of the stock rates occur rather rarely, but in

case they do, there is usually a high influence on the other stocks. The results are

much better for those approaches using a local (spatial) optimization of the case

base. In any case, IBL-DS performs rather well and can also compete with LWF.

Interestingly, the average size of the case base was 860 for LWF but only 377 for

IBL-DS.
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LWF TWF Win IBL-DS

flexible adaptation of case base size − − − +
limited case base size ± + + +
control of processing time − − − +
case selection depends on temporal relevance + + + +
case selection depends on spatial relevance + − − +
case selection depends on consistency − − − +
fast adaptation to abrupt concept shift − − − +
good adaptation to gradual concept drift + + + +

Table 15: Qualitative comparison of learning algorithms.

5.8 Summary of Evaluation

As already mentioned above, the evaluation of learning algorithms for data streams

is a delicate issue. Firstly, a good algorithm should have several desirable properties,

some of which might even be conflicting: Concept shift should be recognized quickly

and appropriate measures should be taken to react to such changes. Likewise, the

model should be able to gradually adapted in the case of concept drift. To meet

the strong requirements regarding processing time, the size of the model (case base)

should be limited. In this connection, it seems reasonable to select or delete exam-

ples on the basis of several indicators like temporal relevance, spatial relevance, and

consistency (even though these are of course not requirements per se). Secondly,

some of the above criteria are hard to quantify. Table 15 therefore provides a quali-

tative evaluation of learning algorithms according to the above criteria, summarizing

our experiences from the empirical studies.

6 Conclusions and Future Work

We have presented an instance-based adaptive classification algorithm for learning

on data streams. This algorithm, called IBL-DS, has a number of desirable prop-

erties that are not, at least not as a whole, shared by existing alternative methods.

Our experiments suggest that IBL-DS is very flexible and thus able to adapt to

an evolving environment quickly, a point of utmost importance in the data stream
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context. In particular, two specially designed editing strategies are used in com-

bination in order to successfully deal with both gradual concept drift and abrupt

concept shift. Besides, IBL-DS is relatively robust and produces good results when

being used in a default setting for its parameters.

The Java implementation of IBL-DS is available for experimental purposes and

can be downloaded, along with a documentation, under the following address:

wwwiti.cs.uni-magdeburg.de/iti dke.

There are various directions for further research. For example, techniques for model

(case base) maintenance and adaptation like the one proposed in [36] are quite

interesting, since they are less heuristic than those currently employed in IBL-DS.

As mentioned previously, however, it is not immediately clear how such techniques

can be used in a streaming application with tight time and resource constraints.

Nevertheless, investigating such approaches in more detail and trying to adapt them

correspondingly seems worthwhile. A second point concerns combining instance-

based and model-based learning. We already mentioned that IBL and model-based

learning have different advantages and disadvantages, and that their suitability for

classification on data streams will strongly depend on characteristics of the streaming

application. An interesting idea is to look at hybrid methods, such as the RISE

algorithm [18], in order to combine the advantages of both types of approaches.
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