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Abstract

Comparative analysis is a topic of utmost importance in structural bioinformatics. Recently, a
structural counterpart to sequence alignment, called multiple graph alignment, was introduced as a
tool for the comparison of protein structures in general and protein binding sites in particular. Using
approximate graph matching techniques, this method enables the identification of approximately
conserved patterns in functionally related structures. In this paper, we introduce a new method
for computing graph alignments motivated by two problems of the original approach, a conceptual
and a computational one. First, the existing approach is of limited usefulness for structures that
only share common substructures. Second, the goal to find a globally optimal alignment leads to
an optimization problem that is computationally intractable. To overcome these disadvantages, we
propose a semi-global approach to graph alignment in analogy to semi-global sequence alignment
that combines the advantages of local and global graph matching.

1 Introduction

Structural bioinformatics has gained increasing attention in the past ten years. With the steady
improvement of structure prediction methods, the inference of protein function based on structure
information becomes more and more important. Owing to the commonly accepted paradigm stating
that similar protein function is mirrored by similar structure, the comparison of protein structures is a
central task in this regard.

Many approaches to the functional analysis of proteins already exist, either on the sequence level
[1, 2] or on the structural level [3, 4, 5, 6, 7, 8, 9]. However, these methods typically aim at the
comparison of whole protein structures, some of them for example based on representations on a
folding level, such as the well-known DALI approach [4].

While sequence-based methods have proven to be an invaluable tool for the detection of evolutionary
similarities and the inference of protein function, prediction accuracy declines for proteins whose
sequence identity falls under a certain percentage [10, 11]. Moreover, these methods can not be
used to pinpoint the spatial location of functionally important residues, which is of great interest in
pharmaceutical chemistry.

Fold-based methods, on the other hand, can retrieve evolutionary conservation on a more remote
level. While often successful, similarity on the fold level does not always correspond to functional
similarity, and cases are known where proteins with similar folds carry out different functions as well
as cases where the same function is carried out by proteins with different fold geometries [12, 13,
14, 15].

Our approach uses a surface-based representation of protein binding sites [16]. Contrary to taking
the whole protein structure and amino acid sequence into account, we focus on putative protein
binding sites, clefts on the surface of proteins where certain biologically active ligands or cofactors
can bind. We argue that these sites are the essential structural entities of a protein that convey
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functional similarity, as they must be present to accommodate common substrates and thus are
more relevant for functional analysis than the overall fold. ¿From an application point of view, the
comparison of these binding pockets is especially relevant in the field of pharmaceutical chemistry
in order to detect potential cross-reactivities.

For these reasons, we consider a model of the physico-chemical conditions within these binding
sites to be more meaningful for a functional analysis of proteins. As we deliberately refrain from
using whole sequence or fold information, our method is in principle capable of discovering functional
similarities in distantly related proteins and even proteins that do not share a common fold, which
distinguishes it from classical approaches based on whole protein comparison [4, 5, 6].

On a formal level, we model protein binding sites in terms of graph representations, which allows us
to derive a structural alignment of binding pockets in the form of a graph alignment as introduced in
[17].

In this paper, we propose a new method for computing graph alignments motivated by two problems
of the original approach [17]. First, the existing approach is of limited usefulness for graphs that
only share similar subgraphs as it tries to find an optimal alignment of the whole graphs. Second,
finding a globally optimal graph alignment leads to an optimization problem which is computationally
intractable. To overcome these problems, we propose a semi-global graph alignment approach,
called SEGA (SEmi-global Graph Alignment).

2 Related Work

Most approaches to protein structure comparison can roughly be divided into fold-based, template-
based and surface-based methods, each group focusing on a different aspect of similarity. Fold-
based methods typically aim at a comparison of the overall structure of proteins in terms of fold
geometry [18, 19]. Among these are the well-known DALI method [4], CE [5], MAMMOTH [6] or
CATHEDRAL [20], which also employs graph theory.

Template-based methods on the other hand focus on identifying conserved spatial arrangements of
functionally important residues, such as catalytic triads, which are often more conserved than the
overall fold. Methods in this field employ geometric hashing [21, 22], dynamic programming [23],
graph theory [24, 7] and other strategies [25, 26]. Most of these approaches scan user defined or
automatically generated templates against a database to detect frequent patterns.

Surface-based methods usually seek to extract and compare protein binding sites, i.e., clefts on
the surface of proteins where a certain ligand can be bound. These methods mainly differ in the
way these surface pockets are modeled and extracted. SURFNET [27] identifies binding sites by
fitting spheres of different sizes between protein residues, whereas FEATURE [28] uses statistical
descriptions of the 3D environment. The pvSOAR approach [29] combines sequence information
and spatial positioning of pocket-flanking residues, which was expanded later by the derivation of
evolutionary substitution matrices [30]. SOIPPA represents functional sites by using a delaunay
tesselation of Cα-atoms [31].

The CavBase approach, upon which our method is based, represents binding sites by a spatial
arrangement of physicochemical properties. A similar representation is used by SiteEngine [32] and
MultiBind [9], albeit with slightly different rules for the assignment of these properties. SiteEngine
employs geometric hashing for the comparison of protein binding sites, whereas CavBase again
utilizes graph theory.

Graph theory plays an important role in all three cases as it offers a convenient and versatile frame-
work for the modeling of structures in a formal way, making them amenable to algorithmic methods.
In bioinformatics, they have been used for the modeling of protein structure data (e.g. [3, 33, 7,
34, 17, 31, 35]), as well as biological networks [36, 37]. The existence of a variety of different ap-
proaches for graph comparison, specifically designed for different types of graphs, is hence hardly
surprising.

In chemoinformatics, graph representations have been used for a long time. Classic approaches are
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based on subgraph isomorphism [38], thus a lot of algorithms exist for the calculation of common
subgraphs, utilizing clique detection [39, 40], back-tracking [41, 42] or optimization techniques [43,
44]. An excellent review is given by Raymond and Willet [44].

In the case of protein structure analysis, the approach of Artymiuk et al. [3] utilizes a subgraph
isomorphism algorithm [45] to search for amino acid side chain patterns. The more recent approach
of Xie and Bourne uses weighted subgraph isomorphism [31], while the SuMo approach of Jambon
et al. employs heuristics to find correspondences [7].

In the field of kernel-based machine learning, a number of algorithms have been developed that
measure structural similarity by using kernel functions as similarity measure. A kernel function de-
fined on a set X is an X ×X → R mapping satisfying certain formal properties, including symmetry
and positive semi-definiteness. Such kernel functions can be viewed as similarity measures based
on shared substructures of the graphs, e.g., random walks [46] or shortest paths [47]. In other words,
these functions build upon local similarities.

Another prominent concept in graph analysis is the graph edit distance initially introduced by San-
feliu and Fu [48]. Here, the similarity between two graphs is given by the minimal sequence of edit
operations needed to transform one graph into the other. The set of allowed edit operations is pre-
defined and typically includes insertions, deletions, and label/weight changes of nodes and edges.
Originating from the field of pattern recognition, this concept has also been used for the comparison
of protein binding sites [17, 35].

3 Global vs. local graph comparison

When analyzing experimentally determined structures, one has to deal with inaccuracies due to low
resolution, measurement errors or simply experimental limitations. For example, a protein struc-
ture derived from crystallography might differ from the biological structure, especially with regard
to side chain orientation of the amino acids, as they will interact differently with their physiological
surroundings in vivo. Moreover, molecular structures are not static but flexible and thus subjected to
conformational changes. Therefore, methods designed for the comparison of molecular structures
have to allow for flexibility.

Additionally, functionally related structures may only share similar substructures, a notion that has
been supported by recent studies [49]. This is also true for protein binding sites. In CavBase, protein
binding sites are extracted as cavities on the surface using the LigSite algorithm [50]. A major prob-
lem of cleft-detection algorithms (e.g. based on alpha-shapes or grid scanning) is their inaccuracy
in determining the borders of the cavity, leading to different binding site representations even for the
same protein. Moreover, protein ligands usually occupy only a small portion of such a cavity, hence
functionally related binding pockets do not necessarily share the same overall architecture.

The question is how to address these issues in the context of graph theory. As protein bind-
ing sites can be modeled as graphs, similar binding sites can be retrieved by graph comparison
approaches, more precisely, graph alignment, a graph-based counterpart to sequence alignment.
Essentially, a graph alignment establishes a one-to-one correspondence between single nodes of
the graphs, which translates into correspondences between basic biological units (e.g. domains,
residues, atoms).

In analogy to sequence alignment, graph comparison is done either on a global or a local scale.
Global approaches seek to find a correspondence or matching between graphs as a whole, e.g., in
the form of a global graph alignment. Local approaches reduce a comparison between complete
graphs to the (multiple) comparison of (small) substructures. For comparing graphs derived from
molecular structure data, both principles have different advantages and disadvantages.

Global approaches take the whole graph topology into account to derive mutual correspondences
between components of the graphs, from which a correspondence between basic structural units
of the modeled proteins or binding sites can be established. This usually comes at the price of a
high computational complexity, as finding an optimal correspondence comes down to solving a hard
(combinatorial) optimization problem that is typically approached by means of heuristic methods.
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Graph A Graph B 
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Figure 1: Two almost identical graphs (a), except for the variation of the angle at the white node (b),
which influences the length of several edges (dashed).

Graph A Graph B 

a) b) 

Figure 2: Two graphs that are quite different in terms of graph topology (a). Yet, their decomposition
into subgraphs of size two yields the same set of components (b).

More importantly, when using graphs derived from molecular structures, a global graph comparison
is more easily affected by topological differences due to conformational changes and inaccuracies
of the modeled structures and thus might fail to detect similarities among related proteins in different
conformations. While the issue of flexibility has been approached by several algorithms to protein
comparison [51, 52], little has been done in the field of graph methods beyond the use of tolerance
thresholds and label mismatches.

A simple illustration of this effect is shown in Fig. 1. The two “geometric” graphs depicted there are
almost identical, except for the variation of the angle at the white node. Yet, this small modification
already affects the whole graph topology, for example the length of the edges indicated by dashed
lines.

Local methods, on the other hand, typically derive a similarity measure by comparing local graph
features, e.g. subgraphs of a specific type. Main contributions to such similarity functions have
recently been made in the field of kernel-based machine learning [53]. These kernel methods are
less affected by topological variation and usually offer better runtime performance. However, they
typically lack interpretability, as they do not retrieve an alignment from which functionally important
features can be extracted.

Moreover, using such an approach inevitably carries the risk of producing a high similarity for graphs
whose overall topology is different, due to the loss of information caused by decomposing the graph
into substructures. In fact, decompositions of this type are typically not bijective, i.e., the complete
graph cannot be recovered from the components. A simple illustration is shown in Fig. 2. The two
graphs shown there are quite different in terms of their overall topology. Yet, they are decomposed
into the same set of components (subgraphs of size two). Thus, a local method operating on these
components will produce a high degree of similarity.

In order to avoid any terminological confusion, we like to point of out that, in this paper, the adjectives
“local” and “global” always refer to the way in which graphs are compared, independently of whether
a graph represents a whole molecular structure (sometimes called “global structure comparison”) or
only a part thereof (“local structure comparison”).
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Figure 3: CAVBASE representation of a protein binding site. Amino acids are shown in light grey.
Pseudocenters are depicted as spheres (donor = red, acceptor = blue, donor/acceptor = purple, pi
= grey, aromatic = green, aliphatic = cyan). Dots represent a surface approximation.

4 The SEGA Method

Having recognized the limitations of purely global or purely local graph comparison, an obvious
idea is to combine the advantages of both principles while avoiding their disadvantages. Such a
semi-global approach will be proposed in this section.

4.1 Modeling Molecular Structure Data

In the case of protein binding sites, we build upon the CavBase representation, a database storing
geometric information about protein binding sites [16] derived from the Protein Data Bank (PDB) [54].
As the consideration of each atom of each residue flanking a protein cavity would be computationally
demanding, a reduction of the spatial information is necessary. This is typically done by using only
Cα atom coordinates, which neglects the type of interaction an amino acid can participate in.

In CavBase, protein cavities are instead represented by a set of pseudocenters, spatial points rep-
resenting the possible interactions that may occur in a certain area within the cavity, based on the
bordering amino acids. A set of pseudocenters hence corresponds to an approximate description of
a protein binding site in terms of its most important characteristics, namely its geometric structure
and physico-chemical properties. An example is shown in Fig. 3. Note that this representation is
independent of sequence order or fold information.

Currently, CavBase distinguishes between seven types of pseudocenters: hydrogen-bond donor,
hydrogen-bond acceptor, mixed donor/acceptor, aromatic, aliphatic, metal groups and pi centers.
In the respective graph model, the pseudocenters are represented as nodes, labeled with the cor-
responding pseudocenter type. Edges are undirected and weighted by the Euclidean distance be-
tween pseudocenters.

4.2 Graph Alignment

Similar to a sequence alignment, a graph alignment establishes a one-to-one correspondence be-
tween the nodes of different graphs. In the special case of two graphs, a corresponding pairwise
graph alignment is a solution of a kind of bipartite graph matching problem.

As our graphs represent molecular structures that can differ in size, we have to allow for the possi-
bility that nodes remain unmatched, which is realized by allowing gaps denoted by ⊥. Formally, a
pairwise graph alignment can be defined as follows.

Definition 1. (Pairwise graph alignment) Let G1 = (V1, E1) and G2 = (V2, E2) be node-labeled and
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edge-weighted graphs (with a set of nodes Vi and a set of edges Ei ⊂ Vi × Vi). Then,

A ⊂ (V1 ∪ {⊥})× (V2 ∪ {⊥})

is a pairwise graph alignment if the following properties hold: Each tuple in A contains at least one
real node, i.e., (⊥,⊥) /∈ A, and each node of each graph occurs exactly once in the alignment:

∀ v(1) ∈ V1 : #{(a1, a2) ∈ A | v(1) = a1} = 1

∀ v(2) ∈ V2 : #{(a1, a2) ∈ A | v(2) = a2} = 1

This definition of a pairwise graph alignment can be extended to the definition of a multiple graph
alignment in a canonical way [17]. In this work, however, we focus on the construction of pairwise
alignments to obtain a measure of similarity between two graphs.

As in the case of sequences, the quality of a graph alignment is assessed by an underlying scoring
system that rewards “matches” and penalizes “mismatches” (both between nodes and edges) as
well as gaps. The graph alignment problem then consists of finding an alignment with maximal
score.

4.3 The SEGA Algorithm

SEGA essentially constructs a graph alignment for graph representations of putative protein binding
sites. However, instead of optimizing a global alignment directly, it assembles it from local matches
of subgraphs. The algorithm resorts to the complete graph topology only to resolve ambiguities that
may arise.

Since we want to establish a correspondence between nodes of different graphs, we need a measure
of similarity between these nodes. This can be obtained by simply comparing the node labels and
their immediate surroundings, the neighborhood of the nodes, determined by the closest neighboring
nodes and the edges connecting them.

For binding pockets, this corresponds to the comparison of pseudocenters and the spatial constella-
tion of physicochemical properties in close proximity of these centers. Contrary to other approaches,
we do not aim for the identification of completely matching substructures. Instead, we rather obtain
an estimation of the geometric similarity of two neighborhoods by comparing triplets of pseudocen-
ters that constitute such a neighborhood.

By deriving a mutual assignment of similar triangles and summing up the number of matches, we
derive an intuitive measure of similarity that can be used to obtain a local distance matrix.

In a second step, this distance matrix can be used to construct an alignment between two graphs
by deriving a mutual assignment of all nodes based on the distance matrix. This is done in an
incremental way. We argue that, depending on the neighborhood size, the occurrence of a pair of
nodes with identical or near-identical neighborhoods in two different binding sites will be rare, and
therefore more meaningful than pairs with higher distances. Consequently, such occurrences should
be considered first.

4.3.1 Neighborhood Distance Measure

Formally, the algorithm can be described as follows. A graph G is a tuple (V,E), where V is a set of
nodes and E ⊆ V × V a set of edges. We denote by `(v) the label of a node v ∈ V , and by e(v, w)
the weight of an edge (v, w) ∈ E. 1

Given two input graphsG1 = (V1, E1) andG2 = (V2, E2) with |V1| = n and |V2| = m, we first establish
the distance matrix

D = (dij)1≤i≤n,1≤j≤m (1)
1Since we are working with undirected edges, (v, w) ∈ E implies (w, v) ∈ E, and a more correct syntax for an edge would

be {v, w}; for convenience, we shall stick to the more commonly used tuple notation.
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Figure 4: Decomposition of the neighborhood of node vc with nneigh = 4. The subgraph defined by
the nneigh nearest nodes is decomposed into triangles containing the center node vc.

of dimensionality n×m. The entry dij corresponds to the distance between the nodes v(1)i ∈ V1 and
v
(2)
j ∈ V2 (1 ≤ i ≤ n, 1 ≤ j ≤ m), and is inversely related to a corresponding similarity degree

sij = sim(v
(1)
i , v

(2)
j ) . (2)

The similarity (2) between two nodes v(1)i and v(2)j is defined in terms of the similarity of their respec-
tive neighborhoods. For a given (center) node vc ∈ V , let N(vc, nneigh) ⊆ V consist of the closest
nneigh nodes in V , i.e., those nodes having the smallest Euclidean distance from vc. The neighbor-
hood of vc is then defined by the set N(vc, nneigh) of all triangles {u, vc, w} with u,w ∈ N(vc, nneigh),
u 6= w (see Fig. 4).

Let

t(1) = {v(1)1 , v
(1)
2 , v

(1)
3 } ∈ N(v

(1)
i , nneigh), v

(1)
1 = v

(1)
i ,

t(2) = {v(2)1 , v
(2)
2 , v

(2)
3 } ∈ N(v

(2)
j , nneigh), v

(2)
1 = v

(2)
j ,

be two triangles from the neighborhoods of nodes v(1)i ∈ V1 and v(2)j ∈ V2, respectively. We say that
the two triangles match if a mapping φ : t(1) → t(2) exists with either

φ(v
(1)
1 ) = v

(2)
1 , φ(v

(1)
2 ) = v

(2)
2 , φ(v

(1)
3 ) = v

(2)
3 ,

or

φ(v
(1)
1 ) = v

(2)
1 , φ(v

(1)
2 ) = v

(2)
3 , φ(v

(1)
3 ) = v

(2)
2 ,

and for which the following conditions hold:

(i) `(v
(1)
2 ) = `(φ(v

(1)
2 )), `(v

(1)
3 ) = `(φ(v

(1)
3 )),

(ii) max


|e(v(1)1 , v

(1)
2 )− e(φ(v

(1)
1 ), φ(v

(1)
2 ))|,

|e(v(1)2 , v
(1)
3 )− e(φ(v

(1)
2 ), φ(v

(1)
3 ))|,

|e(v(1)3 , v
(1)
1 )− e(φ(v

(1)
3 ), φ(v

(1)
1 ))|

 ≤ ε
The parameter ε ≥ 0 is a tolerance threshold that determines the allowed deviation of edge lengths.
Roughly speaking, two triangles form a match if there is a superposition that preserves node labels
and edge lengths. The only exception concerns the two center nodes v(1)i and v(2)j : These two nodes
are necessarily assigned to each other, but their labels can be different. As will become clear later
on, this enables the construction of approximate graph alignments that may contain mismatches
(mutually assigned nodes with different label). This is important, since protein structure data is
uncertain and noisy, e.g., due to measurement errors. Moreover, approximate matching techniques
account for biological variation caused by mutations that alter the amino acid sequence of a molecule
and, therefore, have an influence on the structure.
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The similarity (2) between two nodes v(1)i ∈ V1 and v(2)j ∈ V2 is now defined by the squared maximal

number of matching triangles from N(v
(1)
i , nneigh) and N(v

(2)
j , nneigh) that can be assigned in a

mutually exclusive way. That is, each triangle from N(v
(1)
i , nneigh) can only be matched with at most

one triangle from N(v
(2)
j , nneigh), and vice versa. Note that

0 ≤ sij ≤ smax =
nneigh(nneigh − 1)

2
(3)

To determine sij , we solve an optimal assignment problem. More specifically, we apply the well-
known Hungarian algorithm [55] to the smax×smax matrix whose entry at position (k, l) is 0 if the k-th
triangle in N(v

(1)
i , nneigh) can be matched with the l-th triangle in N(v

(2)
j , nneigh); otherwise, the entry

is 1. The Hungarian algorithm is a combinatorial optimization algorithm that solves the assignment
problem based on a cost matrix as input. Since the Hungarian algorithm, whose time complexity is
O((smax)3), computes the cost of a cost-minimal assignment, it returns smax − sim(v

(1)
i , v

(2)
j ), i.e.,

the number of triangles that could not be matched. This value defines the distance between v(1)i and
v
(2)
j , i.e.,

dij = smax − sim(v
(1)
i , v

(2)
j ) . (4)

4.3.2 Deriving a Global Alignment

The result of the above computation is an n×m distance matrix (1). This matrix is used as an input
for the second step of our algorithm, which seeks to find an optimal mutual assignment of nodes
from V1 and V2, respectively. Since dij can be considered as the cost of assigning nodes v(1)i and
v
(2)
j to each other, this problem can again be formulated as an optimal assignment problem, namely

as the problem to find the assignment with the minimal sum of costs. In principle, the Hungarian
algorithm could again be used to solve this problem.

However, a solution thus obtained, even if being optimal in the sense of minimizing the total cost of
node assignments, will usually not provide a reasonable alignment with respect to the overall graph
topology. This is because the algorithm does not take the spatial relationships between the nodes
into consideration. Moreover, it will resolve ambiguities in an arbitrary way. In fact, due to the nature
of the underlying distance matrix, whose entries are integers between 0 and smax, it is likely that a
cost-minimal solution is not unique. The Hungarian algorithm will simply pick one among the optimal
solutions, which is not necessarily in agreement with the overall graph structures.

To avoid this problem, we construct an alignment in an incremental way and resort to global informa-
tion from the graph topology to resolve such ambiguities. More specifically, we start by constructing
a seed solution in the form of a partial assignment of nodes. To this end, we only look at the nodes
v
(1)
i ∈ V1 and v

(2)
j ∈ V2 having a distance of 0 and, hence, being highly “affine”. Then, we realize

those assignments that are unambiguous and hence highly reliable. With

fc(v
(1)
i ) = { v(2)j ∈ V2 | dij ≤ c } ,

gc(v
(2)
j ) = { v(1)i ∈ V1 | dij ≤ c } ,

(where e.g. fc(v
(1)
i ) denotes the set of vertices in G2 whose distance to v

(1)
i is not greater than c)

we assign pairs v
(1)
i and v

(2)
j satisfying f0(v

(1)
i ) = {v(2)j } and g0(v

(2)
j ) = {v(1)i }, while nodes v

(1)
i

with |f0(v
(1)
i )| > 1 (and v(2)j with |g0(v

(2)
j )| > 1) are not yet assigned, as for these several conflicting

assignments are possible.

The seed solution thus obtained must satisfy the constraint that the set of mapped points for each
graph contains a basis of R3 in order to determine the relative position of a new node in three-
dimensional space in an unambiguous way. If this condition is not met, we collect a sufficient number
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of candidate pairs by relaxing the condition on the distance, i.e., we allow a maximal distance c > 0.
Let S1 ⊆ V1 and S2 ⊆ V2 denote the nodes occurring in these candidates. We construct all possible
candidate assignments(

(s
(1)
1 , s

(2)
1 ), (s

(1)
2 , s

(2)
2 ), (s

(1)
3 , s

(2)
3 ), (s

(1)
4 , s

(2)
4 )

)
⊆ S1 × S2

of size four that represent a unique three-dimensional geometry and are unambiguous in the sense
that s(2)i ∈ fc(s

(1)
i ) and s(2)j 6∈ fc(s

(1)
i ) as well as s(1)i ∈ gc(s

(2)
i ) and s(1)j 6∈ gc(s

(2)
i ) for all 1 ≤ i 6= j ≤ 4.

As a seed solution, we then select the candidate minimizing the spatial deviation∑
1<i<j<4

∣∣∣e(s(1)i , s
(1)
j )− e(s(2)i , s

(2)
j )
∣∣∣ ,

in order to match the candidates that are most similar in terms of geometry.

Now, suppose a current seed in the form of a partial alignment to be given. We may still have the
problem that some nodes could not be assigned unambiguously. In order to solve these ambiguities
in a reasonable way, we can again formulate an optimal assignment problem, this time augmented
by drawing upon global information. In the k-th iteration, we assign nodes having a distance of at
most ck, where ck is the k-th smallest cost value in the matrix D. More specifically, let W1 ⊂ V1 (W2

⊂ V2) denote the set of nodes from V1 (V2) that have already been assigned in a previous iteration.
Moreover, let

Uk1 = {v(1)i ∈ V1 | fck(v
(1)
i ) 6= ∅} \W1 ,

Uk2 = {v(2)j ∈ V2 | gck(v
(2)
j ) 6= ∅} \W2 .

We then derive a (partial) assignment of nodes in Uk1 and Uk2 by applying the Hungarian algorithm
to a cost matrix defined as follows. The matrix contains an entry for each pair of nodes v(1)i ∈ Uk1
and v(2)j ∈ Uk2 . If v(2)j 6∈ fck(v

(1)
i ), the corresponding cost value is set to a sufficiently high constant

C (indicating that these two nodes should not be assigned). Otherwise, the cost value is determined
by resorting to information from the (global) graph structure, namely by comparing the position of
v
(1)
i relative to the current seed nodes W1 with the position of v(2)j relative to W2. More precisely, the

cost is defined by∑
q=1,2...|W1|

∣∣∣ |v(1)i − w(1)
q | − |v

(2)
j − w

(2)
q |
∣∣∣ ,

where w(1)
q and w(2)

q denote, respectively, the q-th node in W1 and W2 (which are mutually assigned),
and |v(1)i − w

(1)
q | is the Euclidean distance between v(1)i and w(1)

q .

Applying the Hungarian algorithm yields a cost-minimal assignment. If v(1)i and v
(2)
j participate

in this assignment, i.e., have been assigned to each other, we add v
(1)
i to W1 and v

(2)
j to W2 if

v
(2)
j ∈ fck(v

(1)
i ), i.e., if the corresponding cost value is smaller than C.

This procedure iterates until all nodes of one graph are assigned, or until a predefined upper cost
value cmax has been reached (remaining nodes are not assigned). Setting such an upper limit (below
the maximal score in D) allows to compute a partial alignment. This is often more reasonable than
enforcing an alignment of the complete structures, e.g. if parts of the structures do obviously not
match.

4.3.3 Defining a Distance Measure

Our algorithm produces a global graph alignment, deriving an assignment between all constituents
of a binding site. As binding sites might share several common subparts that are not necessarily
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arranged in the same manner, quality measures based on root mean squared deviation (RMSD) that
are usually applied in e.g. template-based approaches [26, 23], are not suitable in our case, unless
the binding sites are globally similar.

To define a more general, size-independent measures of the quality of the constructed alignment A,
which can be interpreted as a distance between the two structures G1 and G2, we proceed from a
measure that can be seen as a degree of inclusion of G1 in G2:

δ(G1, G2) =

∑
(v

(1)
i ,v

(2)
j )∈A dij + cp · (|A| − |G1|)

|G1|
. (5)

The constant cp is a penalty that accounts for unmatched nodes which can simply be set to the
highest obtainable distance in the case where no triangles can be matched. A degree of inclusion
of G2 in G1 is defined analogously.

Based on (5), we define two measures of distance between G1 and G2, a “conjunctive” and a “dis-
junctive” one:

∆max(G1, G2) = max{δ(G1, G2), δ(G2, G1)} (6)
∆min(G1, G2) = min{δ(G1, G2), δ(G2, G1)} (7)

The measure (6) can be seen as a relaxed equality and is based on the expression of set equality
(A = B) in terms of two-sided inclusion (A ⊂ B and B ⊂ A). Thus, it requires that, to be similar,
G1 and G2 must be approximately equal in the sense of a mutual inclusion: G1 is (approximately)
included in G2 and likewise G2 in G1. As opposed to this conjunctive combination of the two degrees
of inclusion, the disjunctive combination (7) only requires a one-sided inclusion: either G1 is included
in G2 or G2 in G1. Obviously,

∆min(G1, G2) ≤ ∆max(G1, G2) .

The question which of these two measures, the conjunctive or the disjunctive one, yields more
suitable similarity degrees cannot be answered in general and instead depends on the application at
hand, in particular on the purpose for which the similarity is used (e.g., function prediction) and the
way in which protein binding sites are extracted and modeled (e.g., whether or not the model may
include parts of the protein not belonging to the binding site itself). Therefore, we define our ultimate
distance measure as a (linear) combination of the two above measures (6) and (7):

∆(G1, G2) = α ·∆max(G1, G2) + (8)
+ (1− α) ·∆min(G1, G2) .

As a side note, we remark that, formally, (8) is a special case of a so-called OWA (ordered weighted
average) aggregation of the two degrees of inclusion, G1 and G2, and the parameter α ∈ [0, 1]
controls the trade-off between the two extreme aggregation modes: The closer α is to 1, the closer
the aggregation is to the minimum, i.e., the more demanding it becomes.2

In principle, choosing a high value of α favors the detection of largely similar binding sites, for exam-
ple belonging to the same protein family or fold. A low value of α would be beneficial for the detection
of more remote similarities. (8) is inversely related to a similarity score.

4.3.4 Statistical significance

Any score used to compare proteins must be judged against the likelihood that a given score could
arise by chance. To obtain a measure of significance for the induced similarity scores, we chose
an empirical approach and calculated ten thousand pairwise alignments of randomly drawn cavities
from the CavBase.

2The value α corresponds to the “degree of andness” of the aggregation (8), i.e., the degree to which this aggregation
behaves like a conjunctive combination [56]; likewise, 1− α corresponds to the “degree of orness”.
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Figure 5: Estimation of a probability density function based on ten thousand randomly drawn com-
parisons for α = 0.

One possinility to assess significance for database searches is to use extreme value distributions
(EVD) [26]. In terms of database searches, finding the most similar item to a query usually involves
maximizing over all similarity scores. Interpreting these scores as random variables, the maximum
score can be viewed as an extreme value based on score distribution. The shape of the obtained
score distribution was indeed characteristic of an EVD. Since the EVD type was not know in advance,
we used the scores to estimate a generalized EVD by maximum likelihood estimation, yielding type
II (Frechét) EVDs. We used the corresponding cumulative distribution to calculate p-values for our
alignment scores. As can be seen, the fit is extremely accurate.

Since the score we obtain by using (8) does obviously depend on the parameter α, we fitted EVDs
individually for different values of α. Fig. 5 shows a histogram of the scores obtained, together with
the estimated type II EVD for α = 0. To convey an idea of the goodness of fit, we also plotted the
empirical and the estimated cumulative density function.

5 Experimental Results

First of all, we were interested in an assessment of the robustness of our approach in the presence
of noise and structural variation. This point is addressed in Section 5.3, where we compare the per-
formance of SEGA to several other graph-based approaches when confronted with different degrees
of structural variation.

In Section 5.4, we evaluate our approach in a retrieval experiment on a real-world benchmark
dataset. To this end, we used a dataset containing structurally diverse proteins that have also been
used for the evaluation of SiteEngine, which operates on a similar concept of protein binding pockets
[32]. Thus, we were able to compare our results directly to a different surface-based approach to
protein structure comparison.

In Section 5.5, we investigate the performance of SEGA when confronted with the complete CavBase.

Finally, Section 5.6 presents a study to assess the capability of SEGA to classify protein binding sites
with respect to the ligands they bind, especially for proteins with only remote structural similarity, as
this is a main application for our approach.

5.1 Data

As a real-world benchmark set, we used a set of representative proteins constructed for the evalu-
ation of SiteEngine, which operates on a similar concept of binding pockets. This dataset contains
several structurally different classes of proteins, among them proteins binding fatty acids, serine
proteases, adenine-containing ligands and others (for a detailed description see [32]).

In our classification study we used two additional datasets. The first one was initially constructed
in a previous study to assess the classification accuracy of global graph matching methods [35]. It
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contained 143 adenosine-5’-triphosphate (ATP) and 214 nicotine amide dinucleotide (NADH) binding
pockets whose ligands are bound in similar conformation (though not necessarily orientation; for
a detailed description see [35]). The idea was that binding sites that bind the ligand in similar
conformation are more likely to share a global architecture.

As our approach was built with the intention to recover more distant similarities, we constructed a
second classification dataset of protein binding sites, again for the ligands ATP and NADH, for which
each protein belongs to a different SCOP fold [18]. Proteins were sampled from CavBase and, in
case of multiple proteins belonging to the same fold, one was randomly selected, yielding a total of
50 NADH-binding pockets and 77 ATP-binding pockets.

5.2 Methods

In the following experiments, we compared our SEGA algorithm to several existing methods in terms
of performance:

• Bron-Kerbosch algorithm (BK) [39], a clique-detection algorithm commonly used in protein
structure comparison [34, 57] and currently still the standard procedure in CavBase.

• GAVEO [35], an evolutionary algorithm for the calculation of graph alignments.

• GH, a greedy heuristic based on clique detection [17].

• SH, a variant of SEGA, where the Hungarian algorithm [55] was used to construct a global
alignment from the distance matrix D.

All these algorithms were parametrized with a tolerance threshold ε = 0.2Å for the comparison of
edge lengths. The parameter nneigh was set to nneigh = 10 for SEGA and the Hungarian variant,
as these values showed the best performance in preliminary studies investigating the influence of
nneigh on the alignment quality (data not shown). For the other algorithms, standard parametrization
was used as specified in the original publications.

For the classification and retrieval experiments, we further included two kernel methods that have
been proposed for the comparison of protein structures, the random walk kernel (RW) [46] and the
shortest path kernel (SP) [47].

5.3 Robustness Toward Structural Variation

In a preliminary study, we wanted to compare the performance of SEGA compared to other graph-
based approaches in the presence of noise and mutations (since the type of pseudocenters itself
can change due to mutations). To do this in a systematic way, we needed protein binding sites for
which we could vary the degree of structural variation and mutation while still knowing the correct
alignment in advance. Since this is hardly possible for real-world datasets, we opted for a semi-
synthetic approach.

We randomly selected 100 protein binding pockets from CavBase that were co-crystallized with a
ligand. These pockets have the benefit of being relatively large which is useful in order to generate
non-trivial deformations.

For each binding pocket we generated 10 structurally diverse synthetic pockets by subjecting the
original pocket to structural noise, mutation or both. Structural noise was introduced by translating
each center by a randomly directed vector with a normally distributed length controlled by a deviation
parameter pdev (standard deviation). To introduce mutations we subjected all pseudocenters to label
mutation controlled by a mutation parameter pmut (mutation probability).

We then calculated pairwise alignments of the binding pockets and determined the percentage of
correctly matched pseudocenters of the core pocket for different values of pdev and pmut. Fig. 6
shows the mean percentage of correctly mapped centers for different algorithms3 under structural

3The kernel methods were excluded, as these methods can only calculate a distance measure between graphs.
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Figure 6: Average percentage of correctly mapped pseudocenters (y-axis) for different levels of: a)
distortion, b) mutation c) both.

Table 1: Mean µ and standard deviation σ for the runtime performance of the different algorithms
based on 1000 comparisons in seconds ×102.

BK GAVEO GH SH SEGA
µ 0.0134 5.8451 0.2811 0.0423 0.0185
σ 0.0497 21.9902 0.1288 0.0553 0.0227

noise, mutation and a combination of both. Runtime requirements of the approaches are summa-
rized in Table 1.

In the synthetic experiment, SEGA shows the most stable performance with respect to the other
graph-based approaches, rivaled only by GAVEO, although the runtime requirements of GAVEO are
much higher. When combining both sources of variation, the evolutionary optimization fails to attain
similar strong results.

In terms of runtime requirements, BK and SEGA show the best runtime behavior. GAVEO has
by far the highest runtime, which is not surprising, since evolutionary optimization is known to be
expensive. However, the clique-based BK and GH have the drawback of a space complexity of
O(n4) (n = number of nodes), which is problematic for calculating alignments for large graphs on
current machines. The other approaches only have a space complexity of O(n2).

5.4 Analysis on Benchmark Data

The goal of this study was to test our approach on a real benchmark dataset to assess whether
SEGA is capable of recovering similar binding sites. As a benchmark set, we used a dataset that
was compiled at the Nussinov-Wolfson group for the evaluation of SiteEngine [32]. We selected
the same query proteins that were used in the SiteEngine retrieval experiments and provided with
ranked results.

Initially, we used a fatty acid binding protein, the adipocyte lipid-binding protein from M. musculus
(1lib), as query structure and ranked the results according to (8), shown in Table 2. To give an idea
of the similarity of the pockets, we also included the sequence identity of the cavity flanking residues
and the RMSD value based on the calculated alignments.

Shulman-Peleg et al. reported five protein binding sites to be structurally very similar to the query
protein [32]. In fact, two cavities are derived from different crystal structures of the same protein.
These six proteins are the highest in the ranking, followed by other fatty acid binding proteins. This
differs from the SiteEngine results, which retrieved proteins from other classes among the top ten
(e.g ketosteroid isomerase, HIV protease and others). These were not present in our top ranking
results and achieved a non-significant score.

SEGA was able to retrieve 13 of the 15 fatty acid-binding proteins present in the dataset exclusively
on the top ranks with significant p-values, although some of them exhibit a different binding pattern
than the query protein (1kqw, 1mdc, 1cbs) [32]. This is in contrast to the SiteEngine experiment,
in which some of these structures did not receive a high rank. As SiteEngine uses a more rigid
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Table 2: Ranking of comparisons between the fatty acid binding protein 1lib and the SiteEngine
benchmark set (α = 1).

Rank PDB Function Score P-value Seq.id. Cavity Seq.id. RMSD (Å2)
1 1lib Adipocyte lipid-binding protein 90.00 < 10−10 1.00 1.00 0.00
2 1lie Adipocyte lipid-binding protein 41.04 < 10−10 1.00 0.88 3.12
3 1lid Adipocyte lipid-binding protein 40.16 < 10−10 1.00 0.97 2.74
4 1hms Heart muscle fatty acid-binding protein 20.72 3.96 · 10−10 0.64 0.62 5.22
5 1b56 Epidermal fatty acid-binding protein 10.14 2.79 · 10−5 0.53 0.54 5.78
6 1pmp Myelin P2 10.09 2.94 · 10−5 0.66 0.76 5.18
7 1ftp Locus muscle fatty acid-binding protein 9.13 8.88 · 10−5 0.44 0.43 8.31
8 1opb Cellular retinol binding protein II 8.61 21.61 · 10−4 0.38 0.35 8.22
9 1cbs Cellular retinoic acid binding protein II 8.19 2.61 · 10−4 0.37 0.39 8.12

10 2cbr Cellular retinoic acid binding protein II 7.30 7.17 · 10−4 0.38 0.39 8.01
11 1opa Cellular retinol binding protein II 7.00 1.06 · 10−3 0.38 0.35 7.92
12 1kqw Cellular retinol binding protein 6.60 1.70 · 10−3 0.38 0.35 8.48
13 1mdc Insect fatty acid binding protein 5.97 3.65 · 10−3 0.35 0.40 10.71
14 1fnj Chorismate Mutase 5.95 3.71 · 10−3 0.11 0.40 8.42

RMSD-based criterion, it is likely that proteins with a different binding pattern are not considered
similar while the more tolerant measure of SEGA still manages to recover similarities among these
proteins.

We also retrieved a chorismate mutase (1fnj) with a significantly high score. Upon visual inspection,
we found that both binding pockets contain sub-pockets showing a similar spatial positioning of
pseudocenters, and hence similar neighborhoods which lead to a high score. We can only interpret
this as a false positive result.

Additionally, we performed retrieval experiments for the remaining queries 1atp, 1mjh and 1lhu and
repeated these experiments with the competitor algorithms. The results are summarized by 11-point
precision-recall curves (Fig. 7).

In all cases except one, SEGA outperformed the other approaches, with the exception of 1lhu. In
this case, none of the algorithms yielded a good result, indicating that there might be no recogniz-
able structural resemblance between the query structure and other estradiol-binding pockets in the
dataset. This difference from the results of [32] might be due to the differences in pocket extraction
and representation between CavBase and SiteEngine.

To assess whether it is possible to retrieve a meaningful ranking for the class of estradiol-binding
pockets at all, we therefore included two more query structures (1ere, 1qkt) from this class in our
experiments. For these queries we were able to retrieve similar pockets from the dataset and again
SEGA performed best.

5.5 Retrieval of Similar Binding Sites from CavBase

A higher level of approximation always carries the risk of detecting a large percentage of false posi-
tives. In this experiment we wanted to address the question whether SEGA can retrieve meaningful
results on the top ranks even when confronted with a whole database of structures. To this end, we
queried the CavBase database with two different query structures that have also been used in the
evaluation of the pvSOAR algorithm [29].

As these structures where already used in a retrieval experiment spanning the whole Protein Data
Bank, we knew in advance which protein classes were likely to be retrieved, which was useful to
determine false positives in the rankings. As SEGA was designed to discover also remotely similar
sites, judging retrieved results is is not trivial, especially for the SiteEngine queries. Results are
shown in Tables 3 and 4.

In the first experiment, we used the main pocket of a member of the acetylcholinesterase family
(2ack) as a query structure (volume 1192.4 Å3). The active center contains a catalytic triad consist-
ing of a serine, histidine and glutamic acid (S200, H440, E327).
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Figure 7: 11-pt precision-recall curves for the retrieval of different proteins on the SiteEngine dataset.

Table 3: Results of querying the CavBase with an acetylcholinesterase structure (2ack)(α = 1).
Omitted ranks contained exclusively acetylcholinesterases.

Rank PDB Protein Score P-value Seq.id. Cavity Seq.id. RMSD (Å2)
1 2ack Acetylcholinesterase 90 < 10−16 1.00 1.00 0.00
2 1ax9 Acetylcholinesterase 36.19 3.3× 10−16 1.00 0.97 1.83
3 2wg1 Acetylcholinesterase 31.79 1.4× 10−14 1.00 0.97 2.80
. . . . . . . . . . . . . . . . . . . . . . . .
113 1w76 Acetylcholinesterase 7.57 5.4× 10−4 1.00 0.54 9.60
114 1c2b Acetylcholinesterase 7.18 8.6× 10−4 0.59 0.73 6.35
115 2wil Butyrylcholinesteras 6.07 3.2× 10−3 0.52 0.44 8.80
116 1qo9 Acetylcholinesterase 5.24 8.8× 10−3 0.40 0.47 7.76
117 1fss Acetylcholinesterase 5,04 1.1× 10−2 1.00 0.62 10.29
118 1p0q Butyrylcholinesterase 4,70 1.7× 10−2 0.53 0.29 9.62
119 1jxj α-Amylase 4,68 1.7× 10−2 0.14 0.06 10.21
120 1c7i PNB esterase 4,57 1.9× 10−2 0,33 0.44 11.26
121 1qe3 PNB esterase 4,53 2.1× 10−2 0,34 0.29 9.81

Table 4: Results of querying the CavBase with an alpha amylase structure (1bag)(α = 1).

Rank PDB Protein Score P-value Seq.id. Seq.id. Cavity RMSD (Å2)
1 1bag α-amylase 90.00 < 10−10 1.00 1.00 0.00
2 1ua7 α-amylase 15.16 2.3× 10−7 1.00 0.88 5.24
3 3dc0 α-amylase 14.49 5.2× 10−7 0.94 0.91 5.95
4 1g94 α-amylase 11.51 1.8× 10−5 0.26 0.30 7.46
5 1aqh α-amylase 10.04 1.0× 10−4 0.24 0.33 7.80
6 1u33 α-amylase, pancreatic 9.72 1.5× 10−4 0.28 0.46 9.07
7 1l0p α-amylase 9.66 1.6× 10−4 0.26 0.35 8.45
8 1vah α-amylase, pancreatic 9.64 1.7× 10−4 0.26 0.44 5.65
9 1b2y α-amylase 9.49 2.0× 10−4 0.28 0.37 8.43

10 1xd0 α-amylase 9.44 2.1× 10−4 0.28 0.28 9.26
11 1kck Cyclodextrin glucanotransferase 9.28 2.6× 10−4 0.25 0.41 8.59
. . . . . . . . . . . . . . . . . . . . . . . .
78 1qho α-amylase 5.81 1.7× 10−2 0.24 0.27 8.34
79 2d3n Glucan 1,4-alpha-maltohexaosidase 5.76 1.8× 10−2 0.26 0.35 7.44
80 1ud5 α-amylase 5.72 1.9× 10−2 0.26 0.50 7.17
81 1w9x α amylase 5.69 2.0× 10−2 0.28 0.36 8.23
82 1hvx α-amylase 5.56 2.3× 10−2 0.26 0.62 7.28
83 5cgt Cyclodextrin glucanotransferase 5.55 2.4× 10−2 0.25 0.28 7.89
84 3dhu α-amylase 5.54 2.4× 10−2 0.23 0.17 9.69
85 3bc9 α amylase, catalytic region 5.54 2.4× 10−2 0.27 0.42 7.89
86 1e40 α-amylase 5.50 2.5× 10−2 0.26 0,36 6.82
87 1cgv Cyclodextrin glucanotransferase 5.47 2.6× 10−2 0.25 0.32 9.73
88 1cgt Cyclodextrin glucanotransferase 5.40 2.8× 10−2 0.25 0.36 9.11
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Binkowski et al. reported that all significant results obtained by searching the CASTp database [58]
with 2ack as query structure belonged to the same family, as the binding site geometry represents
a unique pattern typical of this protein family. Our results are in good agreement with this, although
we did not use additional sequence information.

All top ranking results with a p-value < 0.05 belonged almost exclusively to the acetylcholinesterase
family (including those structures retrieved by Binkowski et al.), demonstrating that our algorithm is
capable of retrieving similar binding sites from CavBase correctly with high specificity. Additionally,
we retrieved more distantly related proteins, namely butyrylcholinesterases and para-nitrobenzyl
esterases, which both belong to the acetylcholinesterase-like proteins catalyzing similar reactions
on different substrates.

Of the catalytic triad, only two residues, S200 and H440, are actually located within the pocket of
the structure. The glutamic acid is usually not present in the main pockets of members belonging
to this family, as it is too buried. Nevertheless, as an indicator of the accuracy of the calculated
alignments, we checked whether the remaining two residues, respectively their pseudocenters are
matched correctly, which was the case in all comparisons with one exception, where none of the
catalytic residues were present in the pocket.

We subsequently tested SEGA with a second query, the enzymatic pocket of a bacterial α-amylase
(1bag). The largest cleft of α-amylase from B. subtilis (volume 1273.4 Å3) forms the substrate
binding site for polysacharides and is located on a TIM-barrel domain. This structure was also used
by Binkowski et al., who recovered similar proteins from different families by a database search.

Significant results with a p-value< 0.01 consisted of other members of the α-amylase, partly ortholo-
gous proteins from different organisms, partly related proteins with different functions. One example
was the α-amylase of B. stearothermophilus (1qho) which catalyzes the production of α-maltose
from glucan. Moreover, we found members of the cyclodextrin/cyclomaltodextrin glycosyltrans-
ferases (E.C.2.4.1.19), which catalyze the degradation of starch to cyclodextrins. These proteins
belong to the same glucosidase superfamily as α-amylases. The results are again in accordance
with the findings of [29].

The sequence identity between 1bag and many of the retrieved proteins is about 25%, which is well
below the range where functional inference becomes difficult [59]. Based on sequence information
alone, we would have missed many of these molecules, including the above-mentioned 1qho, whose
sequence identity to 1bag is 22%.

Interpreting retrieval results for the SiteEngine queries is less easily done, since we deliberately
used a surface-based approach to include also remotely similar proteins from other folds and fami-
lies. Nevertheless, to preserve a common standard throughout the experiments, we included these
structures as well in a comparative retrieval experiment. Thus, we added the SiteEngine queries
to the set of pvSOAR query structures and repeated the retrieval experiment against CavBase with
SEGA and the competitor algorithms4. Retrieved proteins were judged relevant if one of the following
criterions were met:

• Protein belongs to the same SCOP superfamily.

• Protein is annotated with the same EC number.

• Protein is known to bind the same ligand.

Table 5 shows the results. Since the number of relevant hits in CavBase were unknown, we resorted
to the average precision at k to evaluate the results. For each query SEGA showed the best results.

5.6 Classification of Protein Binding Sites

As we specifically designed SEGA for the classification of proteins with respect to their ligands, we
finally compared SEGA to other graph-based methods in a classification scenario. This gives us

4The high runtime requirements of GAVEO renders a retrieval of all queries against CavBase infeasible, hence we had to
exclude it from this experiment
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Table 5: Average precision at top k ranks for different approaches.

k BK GH RW SEGA SH SP
10 0.675 0.350 0.150 0.900 0.875 0.100
20 0.700 0.188 0.125 0.763 0.750 0.050
30 0.608 0.133 0.108 0.683 0.692 0.042
40 0.544 0.113 0.088 0.619 0.619 0.038
50 0.505 0.090 0.090 0.570 0.555 0.035

Table 6: Results of k-nearest neighbor classification (percentage of correct predictions) with leave-
one-out cross-validation of the original ATP/NADH dataset (α = 1).

k BK GAVEO GH RW SA SEGA SH SP
1 76.1 78.9 76.6 59.7 89.8 91.6 89.2 60.6
3 76.3 76.6 71.8 59.7 86.8 92.4 87.9 60.6
5 77.4 78.0 72.4 59.7 86.5 91.3 85.9 63.4
7 75.7 78.6 71.8 60.8 83.7 91.6 86.8 62.5

another indirect way to evaluate our approach in terms of classification accuracy. The idea is that,
the better a similarity measure is, the better the performance of a similarity-based classifier using
this measure should be. We realized this idea using the simple k-nearest neighbor classifier on a
binary classification problem: ATP versus NADH binding pockets.

Table 6 shows the results of a leave-one-out cross validation on the first ATP/NADH classification
problem based on different graph-based comparison methods. As a baseline we also included a
classification based on sequence alignments (SA) using Smith-Waterman.

This dataset was previously used for the evaluation of the GAVEO approach [35] to test the capability
of global graph alignments to predict the ligand correctly for cavities that bind a ligand in similar
conformation.

While the nature of the dataset should favor global methods, SEGA still outperforms both global (GH
and GAVEO) and local graph matching techniques (BK, RW and SP) which illustrates the benefit
of a combined semi-global approach. As a bonus, our approach is even slightly better than the
classification based on sequence alignment.

Since we developed SEGA in order to detect more remote similarities, too, globally similar binding
sites or ligands bound in similar conformations should not be mandatory. To test SEGA on a more
difficult classification problem, we constructed another ATP/NADH dataset, this time containing only
one structure per fold according to the SCOP classification. Results are represented in Table 7.
Expectedly, as the structures are only remotely similar, a low α performed best.

In both experiments, SEGA was able to achieve high classification accuracies, on datasets contain-
ing closely related and remotely related proteins, respectively.

While SEGA showed strong performance on binary classification problems, we finally wanted to test
the approach on a multiple classification problem. To this end, we resorted again to the SiteEngine

Table 7: Results of k-nearest neighbor classification (percentage of correct predictions) with leave-
one-out cross-validation for the one-fold ATP/NADH dataset (α = 0.1).

k BK GAVEO GH RW SA SEGA SH SP
1 70.8 54.3 33.9 50.4 70.0 91.3 88.2 56.7
3 64.5 57.5 51.9 56.7 67.7 89.0 88.2 55.9
5 62.2 63.8 39.4 66.1 70.0 87.4 85.0 56.7
7 62.9 63.8 39.4 63.0 68.5 83.5 82.7 57.9
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Table 8: Results of k-nearest neighbor classification (percentage of correct predictions) with leave-
one-out cross-validation for the SiteEngine dataset (α = 1).

k BK GAVEO GH RW SA SEGA SH SP
1 61.7 59.1 45.4 18.0 72.2 79.8 77.0 8.7
3 54.1 55.2 33.3 25.7 68.3 76.0 72.7 20.2
5 49.2 53.6 31.7 25.1 65.9 70.5 69.4 16.4
7 44.8 54.1 30.6 24.6 65.1 68.3 69.4 13.7

benchmark set, this time performing an n-to-n comparison of all binding sites. Table 8 summarizes
the results for the multiclass problem. Again SEGA outperformed the other approaches.

6 Conclusion

In this paper, we have presented a new method for the computation of a graph alignment as a means
for comparing proteins on a structural level. Our method, called SEGA, is a semi-global strategy in
the sense that it shares properties with both local and global graph matching, similar to semi-global
sequence alignments.

More precisely, it establishes a correspondence between the basic building blocks of the model (such
as atoms or pseudocenters) from comparisons on the level of local substructures, resorting to global
structure information only when necessary, which is more robust towards structural deviations and
inaccuracies.

Yet, it generates a complete alignment of pseudocenters. From a biological point of view, this kind of
information is often desirable, and perhaps even more important than a related (numerical) degree
of similarity.

In our experiments, SEGA could outperform both purely global graph alignment (GH, GAVEO) as
well as purely local approaches (BK, RW, SP), supporting our assumption that a semi-global strategy
is better suited to deal with the specific problems that arise when analyzing protein binding pockets
derived from crystal structures (e.g. structural deviations, varying cavity sizes and noisy data).

The fact that SEGA also outperformed the baseline sequence alignment in classification experiments
is another example for the benefit of using structure-based analysis in addition to the well-established
sequence methods. Both concepts should be viewed as complementary for determining the function
of unknown proteins.

Compared to hitherto existing methods for graph comparison, SEGA achieves a remarkably good
alignment quality paired with a high computational efficiency. Moreover, the experiments indicated
that the less rigid SEGA approach is capable of detecting more remote similarities among proteins.
In the classification experiments, SEGA outperformed the existing methods by a wide margin, show-
ing that this strategy is indeed beneficial for the analysis of protein structures.

Most methods and algorithms for analyzing graphs are quite specialized and not universally appli-
cable. Given the existence of many types of graphs (directed vs. undirected, labeled vs. unlabeled,
etc.), it is clear that a method suitable for one problem class might not be useful for (and perhaps not
even applicable to) another one. This is of course also true for our SEGA algorithm. Yet, we believe
that the basic ideas underlying this algorithm are of more general interest, and that its adaptation to
other types of problems, both within the biological sciences and even beyond, is promising enough
to be addressed in future work.
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