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Abstract Fuzzy rules, doubtlessly one of the most powerful tools of fuzzy
logic, have not only been used successfully in established application areas
like control engineering and approximate reasoning, but more recently also
in the field of data mining. In this chapter, we provide a synthesis of different
approaches to fuzzy association analysis, that is, the data-driven extraction
of interesting patterns expressed in the form of fuzzy rules. In this regard,
we highlight a specific advantage of a fuzzy in comparison to a conventional
approach, namely an increased expressiveness that allows for representing
patterns of interest in a more distinctive way. Therefore, we specifically focus
on the modeling of a less common type of pattern, namely gradual depen-
dencies between attributes in a data set.

1 Introduction

Tools and techniques that have been developed during the last 40 years in the
field of fuzzy set theory and fuzzy logic (in the broad sense) have been applied
quite successfully in a variety of application areas. A prominent example of
the practical usefulness of such techniques is fuzzy control [22, 23]. Yet, fuzzy
extensions of existing methods have also been used and developed in many
other fields, including approximate reasoning, optimization, decision support,
image processing, and robotics, just to name a few.

While different tools from fuzzy logic have been employed in all these
fields, it is arguably fair to say that fuzzy rule models have received special
attention. Indeed, rule-based models have always been a cornerstone of fuzzy
systems and a central aspect of research in fuzzy logic. To a large extent,
the popularity of rule-based models can be attributed to their potential com-
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2 Eyke Hüllermeier

prehensibility, a distinguishing feature and key advantage in comparison to
“black-box” models such as neural networks.

While aspects of knowledge representation and reasoning have dominated
research in fuzzy logic for a long time, problems of automated learning and
knowledge acquisition have more and more come to the fore in recent years
[18]. There are several reasons for this development, notably the following:
First, caused by the awareness of the well-known “knowledge acquisition bot-
tleneck”, there has been an internal shift within fuzzy systems research from
“modeling” to “learning”, i.e., from the knowledge-driven to the data-driven
design of fuzzy systems (see e.g. [2]). Second, this trend has been further am-
plified by the great interest that the fields of knowledge discovery in databases
(KDD) and its core methodological component, data mining, have attracted
in recent years [12].

The goal of this chapter is to elaborate on the use of fuzzy rules in data
mining. More specifically, using the problem of association analysis as an im-
portant and to some extent representative example, we seek to highlight one
of the key advantages of fuzzy methods, namely their increased expressiveness
for representing and discovering patterns of interest in data. To this end, we
begin with a brief introduction to association analysis in Section 2. In the
following sections, we shall then discuss different types of fuzzy association
rules. The chapter ends with some concluding remarks in Section 6.

2 Association Analysis

Association analysis [1, 25] is a widely applied data mining technique that has
been studied intensively in recent years. The goal in association analysis is to
find “interesting” associations in a data set, that is, dependencies between so-
called itemsets A and B expressed in terms of rules of the form “IF A THEN
B”, or A ⇀ B for short. To illustrate, consider the well-known example where
items are products and a data record (transaction) is a shopping basket such
as {butter, milk, bread}. The intended meaning of an association A ⇀ B
is that, if A is present in a transaction, then B is likely to be present as
well. For example, the rule {butter, bread} ⇀ {milk} suggests that people
buying bread and butter are likely to purchase milk, too.

A standard problem in association analysis is to find all rules A ⇀ B the
support and confidence of which reach user-defined thresholds minsupp and
minconf, respectively. Given a database comprising N data records (trans-
actions) D = {x1, . . . , xN}, the support and confidence of a (candidate) rule
A ⇀ B are defined, respectively, as follows:
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supp(A ⇀ B) =

N∑
i=1

A(xi) ·B(xi), (1)

conf(A ⇀ B) =
supp(A ⇀ B)∑N

i=1 A(xi)
, (2)

where A(x) = 1 if the subset of items A is present in the transaction x
and A(x) = 0 otherwise. Thus, support is just the frequency of transactions
containing both A and B, i.e., the number of positive examples of the rule
A ⇀ B, while confidence puts the number of positive examples in relation
to the number of all examples (positive and negative).

More generally, the following contingency table can be taken as a point of
departure for analyzing and evaluating a relationship between items or item
subsets A and B:

B(x) = 0 B(x) = 1

A(x) = 0 n00 n01 n0•
A(x) = 1 n10 n11 n1•

n•0 n•1 n

In this table, n00 denotes the number of transactions x for which A(x) =
0 and B(x) = 0, and the remaining entries are defined analogously. Most
of the commonly used evaluation measures for association rules, including
support (n11/n) and confidence (n11/n1•), can be expressed in terms of these
numbers.

2.1 Fuzzy Items and Contingency Diagrams

In the above setting, a single item can be represented in terms of a binary
(0/1-valued) attribute reflecting the presence or absence of the item, i.e., the
latter is considered as a feature of a transaction. To make association analysis
applicable to data sets involving numerical attributes, such attributes are
typically discretized into intervals, and each interval is considered as a new
binary feature. For example, the attribute temperature might be replaced
by two binary attributes cold and warm, where cold = 1 (warm = 0) if the
temperature is below 10 degrees and warm = 1 (cold = 0) otherwise.

An obvious extension is to use fuzzy sets (fuzzy partitions) instead of inter-
vals (interval partitions), and corresponding approaches to fuzzy association
analysis have been proposed by several authors [7, 8]. There are different mo-
tivations for a fuzzy approach to association rule mining. In particular, it has
been emphasized that, by allowing for “soft” rather than crisp boundaries
of intervals, fuzzy sets can avoid certain undesirable threshold or “boundary
effects” (see e.g. [26, 19]). The latter refers to the problem that a slight vari-
ation of an interval boundary may already cause a considerable change of the
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evaluation of an association rule, and therefore strongly influence the data
mining result.

Here, we shall emphasize another potential advantage of fuzzy association
analysis, namely an increased expressiveness that helps to represent asso-
ciation rules in a more distinctive way. Roughly speaking, this is due to
the fact that, given a candidate rule A ⇀ B and a transaction x, the re-
spective truth degrees of the rule antecedent and consequent define a tuple
(u, v) = (A(x),B(x)) ∈ [0, 1]2, i.e., a point in the unit square. Instead, in the
non-fuzzy case, only the four corner points of this square are assumed, and
the numbers of points in these corners correspond to the numbers in the above
contingency table. In [16], the term contingency diagram was introduced for
the collection of the points produced by all transactions in a database. More
precisely, a contingency diagram is a two-dimensional diagram in which every
transaction x defines a point (u, v) = (A(x),B(x)) ∈ [0, 1]2. Thus, for every
transaction x, the values on the abscissa and ordinate are given, respectively,
by the degrees u = A(x) and v = B(x) to which it satisfies the antecedent
and the consequent part of a candidate rule.

An example of a contingency diagram is shown in Fig. 1. This diagram has
been produced for the abalone data set1 from the UCI repository [13] (i.e.,
“transactions” are instances of the abalone species), modeling the fuzzy sets
of high values by linearly scaling the corresponding attribute domains to the
interval [0, 1]. This diagram may serve as a point of departure for evaluating
a candidate rule of the form

{high length, high width} ⇀ {high weight}, (3)

suggesting that an abalone with high length and width tends to have a high
weight. Note that, when “binarizing” the diagram by thresholding member-
ship degrees at 1/2, a contingency table is obtained that does not support
the rule (3). In fact, since (A(x),B(x)) ∈ (1/2, 1] × [0, 1/2] for most of the
observations and hence n10 � n11, the confidence is this rule is very low.

3 Canonical Extension of Association Rules

The standard approach of association rule mining can be generalized to the
fuzzy case in a rather straightforward way, namely by means of a proper
generalization of the measures of support and confidence. Recall that, instead
of a set-based representation of transactions in terms of itemsets, one can also
adopt a feature-based representation and identify items with binary (fuzzy)
attributes. Denote by A the (finite) set of underlying fuzzy attributes. Thus,
each transaction is represented in terms of a feature vector x, and for each
A ∈ A, A(x) ∈ [0, 1] indicates the degree to which x has feature A or, say,

1 We did not use the whole data set but only a randomly selected subset of 1500 instances.
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Fig. 1 Example of a contingency diagram. Each value A(x) on the x-axis is a conjunctive
(minimum) combination of the degrees to which an abalone has high length and high width,
respectively, and the corresponding value B(x) on the y-axis is the membership degree of
the abalone in the fuzzy set of high overall weights.

to which A is present in x. Correspondingly, the degree of presence of a
feature subset A = {A1, . . . , Am}, that is, a compound feature considered as
a conjunction of primitive features A1, . . . , Am, is specified as

A(x) = �(A1(x), A2(x), . . . , Am(x)), (4)

where � is a t-norm serving as a generalized conjunction. The simplest
way to extend evaluation measures, then, is to replace set-theoretic oper-
ations, namely Cartesian product and cardinality, by corresponding fuzzy
set-theoretic operations. Modeling the Cartesian product through t-norm
combination and the cardinality of a fuzzy set in terms of the σ-count, one
thus obtains

supp(A ⇀ B) =

N∑
i=1

�(A(xi),B(xi)) (5)

conf(A ⇀ B) =

∑N
i=1 �(A(xi),B(xi))∑N

i=1 A(xi)
(6)

Coming back to our previous example, the evaluation of the rule (3) is now
better but still not very strong. Depending on the t-norm used in (6), the
confidence is only around 1/2.

The choice of the t-norm � in (5–6) is indeed an interesting question.
Without going into details here, we just mention the existence of theoretical
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arguments in favor of the minimum and the product operator; see [9] for a
deeper discussion of this topic.

Another important point concerns computational aspects. In fact, since
scalability is an issue of utmost importance in data mining, the usefulness of
fuzzy extensions presupposes that fuzzy patterns can be mined without sac-
rificing computational efficiency. Fortunately, efficient algorithmic solutions
can be assured in many cases, mainly because fuzzy extensions can usually
resort to the same algorithmic principles as non-fuzzy methods. For the above
extension, for instance, almost all commonly used rule mining algorithms can
be adapted in a rather straightforward way.

4 Implication-based Association Rules

Fuzzy rules can be interpreted in different ways, and depending on the in-
terpretation, different (fuzzy) logical operators are used for modeling a rule
on a formal level [11]. In contrast to conjunction-based rules that are typi-
cally used in applications like fuzzy control, and in which the antecedent and
consequent part are combined by means of a t-norm, so-called gradual rules
combine these parts by means of a residuated implication operator �. The
latter is derived from a t-norm � through residuation:

a� b = sup{ c | �(a, c) ≤ b } (7)

This approach to modeling a rule is in agreement with the following inter-
pretation: “The more the antecedent part A is true, the more the consequent
B is true”, for example “The higher the length and width of an abalone, the
higher its weight” [24, 10].

So-called pure gradual rules are obtained when using the following impli-
cation operator:2

a� b =

{
1 if a ≤ b

0 if a > b
(8)

Using this operator, a rule “The more x is in A, the more it is B” is inter-
preted as an ordinary constraint

A(x) ≤ B(x) . (9)

This constraint is satisfied if x has property B at least as much as property
A, otherwise it is violated.

An implication-based approach to association rule mining, along with a
corresponding re-interpretation of the meaning of a rule, was proposed in
[15, 17]. Note, however, that (9) alone is arguably not in agreement with

2 This operator is the core of all residuated implications (7).
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the intuitive idea of a “positive example” of a rule. In particular, since an
implication is true if its antecedent is false, a transaction x with A(x) = 0
would fully support a rule A ⇀ B.

As proposed in [15], a possible way out is to combine the implication
A(x) � B(x) conjunctively with the relevance of a transaction x for the
rule, RelA,B(x), thereby expressing that x supports A ⇀ B if (i) it satisfies
the rule in the sense of an implication, and (ii) it is a relevant or, say, non-
trivial example for the rule in the sense that is satisfies the condition part.
This approach suggests a support measure of the following kind:

suppx(A ⇀ B) = � (
RelA,B(x), A(x)� B(x)

)
Regarding the definition of RelA,B(x), note that the constraint (9) is trivially
satisfied only in the case A(x) = 0. Therefore, it appears sensible to let
RelA,B(x) = 1 if A(x) > 0 and = 0 otherwise. In combination with the
implication (8), this yields the following simple support:

supp(A ⇀ B) =
N∑
i=1

{
1 if 0 < A(xi) ≤ B(xi)
0 otherwise

Depending on the type of application, it may of course be reasonable to
consider non-triviality as a gradual concept. For example, one may argue
that the larger A(x), the more difficult it is to satisfy constraint (9), i.e.,
the less trivial this constraint becomes. In this case, an obvious definition of
relevance (non-triviality) is RelA,B(x) = A(x). In conjunction with (8), this
leads to the following support measure:

supp(A ⇀ B) =

N∑
i=1

{
A(x) if A(xi) ≤ B(xi)

0 if A(xi) > B(xi)

Again, this result has an intuitively appealing interpretation: A transaction
x is a positive example if it satisfies the constraint A(x) ≤ B(x), otherwise
it is a negative example. The degree to which x is a positive resp. negative
example corresponds to the degree to which it satisfies the antecedent A, i.e.,
to its degree of relevance.

In terms of this interpretation, our exemplary rule (3) is still not strongly
supported by the data, mainly because A(x) > B(x) for most x. However, the
situation changes when modifying the rule by applying the linguistic hedge
“very” to the antecedent part, formally modeled by squaring the membership
function [27, 21]. The resulting rule “The more an abalone has very high
length and width, the more it has high weight” is then rather well supported,
and the confidence (6) increases to more than 0.8.
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5 Gradual Dependencies

As mentioned above, fuzzy rules modeled by means of residuated implication
operators, called gradual rules, are interpreted semantically as THE MORE—
THE MORE relationships: “The more the antecedent A is true, the more the
consequent B is true” [10]. This interpretation is arguable, however. In fact,
since A(x) ≤ B(x) suffices to satisfy a gradual fuzzy rule in a logical sense,
there is actually no real consideration of the change of an attribute value
and, therefore, no examination of a tendency. For example, if B(x) ≡ 1, then
a gradual rule is always perfectly satisfied, although B(x) does not depend
on A(x).

Therefore, instead of pursing a logical approach using implication opera-
tors to evaluate a rule A ⇀ B, a statistical alternative was proposed in [16].
This approach directly proceeds from the contingency diagram. Informally
speaking, a gradual dependency is reflected by the relationship between the
points in this diagram. In particular, a THE MORE—THE MORE relation-
ship manifests itself in an increasing trend, i.e., an approximate functional
dependency between the u- and v-values: the higher u, the higher v tends
to be. In [16], it was therefore suggested to analyze contingency diagrams
by means of techniques from statistical regression analysis. For example, if
a linear regression line with a significantly positive slope can be fit to the
data, this suggests that indeed a higher u = A(x) tends to come along with
a higher v = B(x).

A qualitative, non-parametric alternative to this numerical approach was
proposed in [3]. Roughly speaking, to evaluate a candidate rule A ⇀ B, the
authors count the number of pairs of points (u, v) and (u′, v′) in the con-
tingency diagram for which u < u′ and v < v′. As an advantage of this
approach, note that it is more flexible in the sense of not making any as-
sumption about the type of functional dependency; as opposed to this, the
regression approach implicitly assumes a linear dependency. From Fig. 1, for
example, a positive trend between u = A(x) and v = B(x) is clearly visible,
but this trend is not linear. On the other hand, since the actual distances
between the points are ignored, there is also a disadvantage, namely a loss of
information about the strength of a relationship.

The two above approaches, the numerical and the qualitative one, essen-
tially come down to looking for two types of correlation between the u- and
v-values, namely the standard Pearson correlation and the rank correlation.
In order to combine the advantages of both approaches, [20] proposed to
measure the strength of a dependency in terms of a fuzzy rank correlation
measure that combines properties of both types of correlation. Indeed, as
discussed in the following, this measure is able to capture the strength of a
tendency while remaining flexible and free of specific model assumptions.



Fuzzy Rules in Data Mining 9

5.1 Fuzzy Rank Correlation

Consider n ≥ 2 paired observations {(ui, vi)}ni=1 ⊂ (U×V)n of two variables
U and V , where U and V are two linearly ordered domains. The goal of a rank
correlation measure is to measure the dependence between the two variables
in terms of their tendency to increase and decrease in the same or the opposite
direction. If an increase in U tends to come along with an increase in V , then
the (rank) correlation is positive. The other way around, the correlation is
negative if an increase in U tends to come along with a decrease in V . If there
is no dependency of either kind, the correlation is (close to) 0.

Several rank correlation measures are defined in terms of the number C
of concordant, the number D of discordant, and the number N of tied data
points. For a given index pair (i, j) ∈ {1, . . . , n}2, we say that (i, j) is concor-
dant, discordant or tied depending on whether (ui − uj)(vi − vj) is positive,
negative or 0, respectively. A well-known example is Goodman and Kruskal’s
gamma rank correlation [14], which is defined as γ = (C −D)/(C + D).

5.1.1 Fuzzy Equivalence and Order Relations

Bodenhofer and Klawonn [6] propose a fuzzy extension of the gamma coeffi-
cient based on concepts of fuzzy orderings and �-equivalence relations, where
� denotes a t-norm [4].

A fuzzy relation E : U × U → [0, 1] is called fuzzy equivalence with re-
spect to a t-norm �, for brevity �-equivalence, if it is reflexive (E(u, u) = 1),
symmetric (E(u, u′) = E(u′, u)), and �-transitive (�(E(u, u′), E(u′, u′′)) ≤
E(u, u′′)). Moreover, a fuzzy relation L : U × U → [0, 1] is called fuzzy
ordering with respect to a t-norm � and a �-equivalence E, for brevity
�-E-ordering, if it is E-reflexive (E(u, u′) ≤ L(u, u′)), �-E-antisymmetric
(�(L(u, u′), L(u′, u)) ≤ E(u, u′)), and �-transitive(�(L(u, u′), L(u′, u′′)) ≤
L(u, u′′)). A �-E-ordering L is called strongly complete if, for all u, u′ ∈ U,
either L(u, u′) = 1 or L(u′, u)) = 1. Finally, let R denote a strict fuzzy order-
ing associated with a strongly complete �-E-ordering L; in the case of the
well-known �Lukasiewicz t-norm, defined by �(a, b) = max(0, a + b− 1), this
relation can simply be taken as R(u, u′) = 1 − L(u, u′) [5].

5.1.2 The Fuzzy Gamma Rank Correlation

Consider a set of paired data points {(ui, vi)}ni=1 ⊂ (U×V)n and assume to be
given two �-equivalences EU and EV and two strict fuzzy order relations RU

and RV. Using these relations, the concepts of concordance and discordance of
data points can be generalized as follows: Given an index pair (i, j), the degree
to which this pair is concordant, discordant, and tied is defined, respectively,
as
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C̃(i, j) = �(RU(ui, uj), RV(vi, vj)), (10)

D̃(i, j) = �(RU(ui, uj), RV(vj , vi)), (11)

T̃ (i, j) = ⊥(EU(ui, uj), EV(vi, vj)), (12)

where � is a t-norm and ⊥ is the dual t-conorm of � (i.e. ⊥(a, b) = 1−�(1−
a, 1 − b)). The following equality holds for all index pairs (i, j):

C̃(i, j) + C̃(j, i) + D̃(i, j) + D̃(j, i) + T̃ (i, j) = 1.

Adopting the simple σ-count principle to measure the cardinality of a fuzzy
set, the number of concordant and discordant pairs can be computed, respec-
tively, as

C̃ =

n∑
i=1

∑
j �=i

C̃(i, j), D̃ =

n∑
i=1

∑
j �=i

D̃(i, j).

The fuzzy ordering-based gamma rank correlation measure γ̃, or simply “fuzzy
gamma”, is then defined as

γ̃ =
C̃ − D̃

C̃ + D̃
. (13)

From the definition of γ̃, it is clear that the basic idea is to decrease the
influence of “close-to-tie” pairs (ui, vi) and (uj , vj). Such pairs, whether con-
cordant or discordant, are turned into a partial tie, and hence are ignored
to some extent. Or, stated differently, there is a smooth transition between
being concordant (discordant) and being tied.

5.2 Modeling Gradual Dependencies

The idea of [20] is to evaluate a gradual dependency A ⇀ B in terms of
two measures, namely the number of concordant pairs, C̃, and the rank cor-
relation γ̃ as defined in (13). Comparing this approach with the classical
support-confidence setting of association analysis, C̃ plays the role of the
support of a rule, while γ̃ corresponds to the confidence. These measures
can also be nicely interpreted within the formal framework proposed in [9],
in which every observation (in our case a pair of points (A(xi),B(xi)) and
(A(xj),B(xj))) is considered, to a certain degree, as an example of a pat-
tern, as a counterexample, or as being irrelevant for the evaluation of the
pattern. In our case, these degrees are given, respectively, by the degree of
concordance, the degree of discordance, and the degree to which the pair is
a tie.

More formally, the support and confidence of a gradual dependency A ⇀
B can be defined as follows:
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supp(A ⇀ B) = C̃, conf(A ⇀ B) =
C̃ − D̃

C̃ + D̃
,

where

C̃ =
∑
xi

∑
xj

C̃(xi, xj) =
∑
xi

∑
xj

� (R (A(xi),A(xj)) , R (B(xi),B(xj))) ,

D̃ =
∑
xi

∑
xj

D̃(xi, xj) =
∑
xi

∑
xj

� (R (A(xi),A(xj)) , R (B(xj),B(xi))) .

Considering the special case of the �Lukasiewicz t-norm, it can be verified that
E(a, b) = [1−|a−b|/r]10 is a �-equivalence on R and R(a, b) = [(a−b)/r]10 is a
strict fuzzy ordering, where [·]10 denotes the mapping a �→ min(1,max(0, a)).
Note that these relations are parameterized by the value r ∈ (0, 1]. For r →
0, the confidence measure converges toward the classical (non-fuzzy) rank
correlation, whereas for r = 1, we obtain R(a, b) = a − b if a ≥ b and
= 0 otherwise. The degree of concordance (discordance) is then proportional
to the Euclidean distances, which means that this case is very close to the
numerical evaluation in terms of Pearson correlation.

Using this approach, the confidence of our exemplary rule (3) increases to
more than 0.95, regardless of parameter r specifying the fuzzy ordering. This
is hardly surprising, since the positive dependence of B(x) on A(x) is quite
obvious from Fig. 1.

6 Concluding Remarks

In this chapter, we have reviewed several fuzzy set-based extensions of meth-
ods for association rule mining, an important problem task in data mining.
Our main goal was to highlight some advantages of fuzzy extensions, no-
tably an increased expressiveness that allows for modeling different types of
patterns associated with different interpretations.

In fact, just like fuzzy rules in general, a pattern represented in terms
of a fuzzy IF—THEN expression can be interpreted in different ways, and
the concrete semantics is reflected by the logical operators used for model-
ing a dependency and the measures used for evaluating candidate patterns.
In particular, we have distinguished between conjunction-based rules, which
are obtained as a straightforward extension of conventional association rules,
implication-based rules, in which antecedent and consequent part are com-
bined in terms of a residuated implication operator, and fuzzy gradual de-
pendencies, which are modeled as a kind of statistical instead of a logical
relationship.
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In the non-fuzzy case, where A(x),B(x) ∈ {0, 1}, the different types of
rules distinguished in the fuzzy case simply coincide, since only three cases
can occur. Adopting the notions of positive example, negative example and
irrelevancy introduced in [9], a transaction x is a positive example supporting
the rule if A(x) = B(x) = 1, a negative example if A(x) = 1 and B(x) = 0,
and it is irrelevant if A(x) = 0.

Finally, we like to emphasize again an important aspect of data mining
that was not addressed in this chapter, namely scalable algorithms for mining
(fuzzy) associations in an efficient way. In fact, a fuzzy extension would be less
interesting if a gain in terms of expressiveness would come along with a loss
in terms of efficiency. Fortunately, as mentioned earlier, existing algorithms
for mining association rules can often be adapted in a rather straightforward
way, without compromising efficiency. This is true at least in the case of
conjunction-based fuzzy rules, which are indeed closest to conventional asso-
ciation rules. On the other hand, the development of efficient algorithms is
indeed less obvious for implication-based fuzzy rules and gradual dependen-
cies. For a closer discussion, we refer to the references given in the respective
sections.
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