
Learning Similarity Functions from
Qualitative Feedback

Weiwei Cheng and Eyke Hüllermeier

FB Mathematik/Informatik, Philipps-Universität Marburg, Germany,
{cheng,eyke}@mathematik.uni-marburg.de

Abstract. The performance of a case-based reasoning system often de-
pends on the suitability of an underlying similarity (distance) measure,
and specifying such a measure by hand can be very difficult. In this paper,
we therefore develop a machine learning approach to similarity assess-
ment. More precisely, we propose a method that learns how to combine
given local similarity measures into a global one. As training information,
the method merely assumes qualitative feedback in the form of similarity
comparisons, revealing which of two candidate cases is more similar to
a reference case. Experimental results, focusing on the ranking perfor-
mance of this approach, are very promising and show that good models
can be obtained with a reasonable amount of training information.

1 Introduction

The concept of similarity lies at the heart of case based reasoning (CBR), and
the success of a CBR system often strongly depends on the specification of
a suitable similarity measure. Unfortunately, domain knowledge provided by
human experts is often not sufficient to define an optimal measure by hand.
This problem remains despite the existence of “divide-and-conquer” techniques
such as the “local–global principle”, stating that the (global) similarity between
two cases can be obtained as an aggregation of various local measures pertaining
to different dimensions or features of a case [1].

In fact, even though it is true that local similarity measures can sometimes
be defined in a relatively straightforward way, the proper combination of these
local measures often remains a challenging problem. The reason is that, usually,
the definition of a local measure only requires the comparison of properties or
attribute values that are measured on the same scale and, therefore, are indeed
comparable. However, to aggregate different local measures into a global one,
one has to combine properties that may not be easily comparable, and whose
importance may be highly subjective or context-dependent.

In this paper, we address the above problem by using machine learning meth-
ods to elicit global similarity measures on the basis of feedback in the form of
examples. In this regard, the type of feedback expected as input by a learn-
ing method is of special importance. Roughly, two types of feedback can be
distinguished, namely absolute and relative. Typically, the former corresponds

to quantitative information about the degree of similarity between two cases,
whereas the latter only provides qualitative information about the (order) rela-
tion between similarities. Even though absolute feedback is convenient from a
learning point of view, it is of course demanding and hence hard to acquire from
human experts. In this paper, we therefore proceed from qualitative feedback
which is much less difficult to obtain: Given a reference case and two cases to
compare with, we only expect information about which of these two cases is
more similar. Essentially, this is what Stahl in [2] refers to as relative case utility
feedback.1

The paper is organized as follows: In Section 2, we detail the formal setting
underlying our learning method. The method itself is then introduced in its basic
form in Section 3 and evaluated empirically in Section 4. We discuss possible
extensions of the basic model in Section 5 and related work in Section 6. The
paper ends with concluding remarks in Section 7. Before proceeding, we mention
that, formally, our approach will not be developed in terms of similarity functions
but instead resort to the dual concept of a distance function.

2 Problem Setting

A case base is a subset CB ⊆ C with |CB | < ∞, where C �= ∅ denotes the set
of all conceivable cases. We assume the existence of d local distance measures

δi : C × C → R+ (i = 1 . . . d). (1)

For each pair of cases a, b ∈ C, δi(a, b) ∈ R+ is a measure of the distance
between these cases with respect to a certain aspect. For example, suppose cases
to be represented as graphs, i.e., C is a set of graphs. A local distance δi(a, b)
may then be defined by |n(a) − n(b)|, where n(a) is the number of nodes in a,
or by max(n(a), n(b))−s, where s is the size of the maximal common subgraph.

According to the local–global principle, the (global) distance between two
cases can be obtained as an aggregation of the local distance measures (1):

∆(a, b) = AGG (δ1(a, b), δ2(a, b) . . . δd(a, b)) , (2)

where AGG is a suitable aggregation operator. As a special case, consider a
representation of cases in terms of d-dimensional feature vectors

a = (a1, a2 . . . ad) ∈ A1 × A2 × . . . × Ad, (3)

where Ai is the domain of the i-th attribute Ai. C is then given by the Cartesian
product of these domains, A1 ×A2 × . . .×Ad, and the local distances are of the
form

δi : Ai × Ai → R+, (4)

1 In a different context though quite similar way, relative feedback of that kind is also
used in information retrieval [3].

i.e., δi(ai, bi) assigns a distance to each pair of attributes (ai, bi) ∈ Ai × Ai;
obviously, (4) is a special case of (1). Even though a feature-based representation
is of course not always optimal (in terms of performance), it is often the most
feasible approach and still predominant in practice [4]. In our experiments in
Section 4, we shall use data sets with numerical attributes and local distances
δi(ai, bi) = |ai − bi|.

2.1 Linear Combination of Local Measures

For the time being, we shall focus on a special type of aggregation operator (2)
which is simple and often used in practice, namely a linear combination:

∆(a, b) =
d∑

i=1

wi · δi(a, b). (5)

Note that it makes sense to require

w = (w1 . . . wd) ≥ 0 (6)

in order to guarantee the monotonicity of the distance measure (2). That is, if
a local distance increases, the global distance cannot decrease.

Despite its simplicity, the linear model (5) has a number of merits. For exam-
ple, it is easily interpretable, as a weight wi is in direct correspondence with the
importance of a local measure. In principle, it thus also allows one to incorporate
additional background knowledge in a convenient way, e.g., that attribute Ai is
at least as important as attribute Aj (wi ≥ wj). Finally, the linear model is
attractive from a machine learning point of view, as it is amenable to efficient
learning algorithms and, moreover, to non-linear extensions via “kernelization”
[5]. We shall come back to this point in Section 5.

2.2 Learning Distance Measures and Learning to Rank

The problem we shall consider in the next section is to learn the weights wi

in (5) from user feedback. The kind of training information we assume to be
given as input to a learner is qualitative feedback of the following form: case a is
more similar to b than to c. Information of this type will be denoted by a triplet
(a, b, c) ∈ C

3. Note that qualitative feedback of the above kind is typically much
easier to acquire than absolute feedback, that is, the degree of distance ∆(a, b)
between two cases a and b.

A global distance function induces for any query a total order on the case
base: Given a query q = (q1 . . . qd) ∈ C and two cases a, b ∈ CB,

a �q,∆ b
df⇐⇒ ∆(q,a) ≤ ∆(q, b).

Indeed, it is often only the ordering of cases that really matters, not the dis-
tance degrees themselves. For example, to retrieve the k nearest neighbors in

NN retrieval, a correct ordering of the case base is sufficient. Seen from this
point of view, it is actually not important to approximate the true distance (2)
accurately in the sense of minimizing a norm |∆ − ∆est| (such as the L2 norm)
on C × C → R+ mappings. Instead, it is more important to find an estimation
∆est that induces (almost) the same rankings, i.e., an estimation for which

�q,∆est ≈ �q,∆ . (7)

In our experiments in Section 4, we shall therefore evaluate a distance function
∆est by comparing the ranking induced by this function with the actually true
ranking (in terms of standard distance measures for rankings).

3 The Learning Algorithm

Suppose to be given a set of training data T, which consists of a finite number
of exemplary similarity constraints (a, b, c), where a, b, c ∈ CB. As mentioned
previously, the basic learning problem is to find a distance function (5) which
is as much as possible in agreement with these constraints and also satisfies the
monotonicity property (6). Besides, this function should of course generalize as
well as possible beyond these examples in the sense of (7).

3.1 Distance Learning as a Classification Problem

A key idea in our approach is to reduce the above learning problem to a binary
classification problem. Due to the assumption of a linear distance model, this
is indeed possible: The inequality ∆(a, b) < ∆(a, c) required by a constraint
(a, b, c) is equivalent to

〈w,x〉 =
d∑

i=1

wi · xi > 0,

where xi
df= δi(a, c)−δi(a, b). From a classification point of view, x = T (a, b, c) =

(x1 . . . xd) is hence a positive example and −x a negative one. That is, a sim-
ilarity constraint (a, b, c) can be transformed into two examples (x,+1) and
(−x,−1) for binary classification learning; see Fig. 1 for a schematic illustra-
tion. Moreover, the vector w = (w1 . . . wd) that defines the distance function (5)
in a unique way also defines the model (hyperplane) of the associated classifica-
tion problem.

3.2 Ensemble Learning

Binary classification is a well-studied problem in machine learning, and a large
repertoire of corresponding learning algorithms is available. In principle, all these
methods can be applied in our context. Here, we make use of an ensemble learn-
ing technique, mainly for two reasons. First, ensembles typically produce more

Fig. 1. Transformation of the distance learning problem to a classification problem:
Each similarity constraint referring to a case triplet gives rise to a classification example.

accurate predictions than individual learners. Secondly, as will be detailed in Sec-
tion 3.4, the ensemble technique is also useful in connection with the selection
of informative queries to be given to the user.

More specifically, we train an ensemble of m linear perceptrons, using the
noise-tolerant learning algorithm proposed in [6], on permutations of the original
training data; the j-th perceptron is represented by a weight vector w(j) =
(w(j)

1 . . . w
(j)
d). The output produced by this ensemble for an input x ∈ R

d is
given by the average of the individual outputs:

M(x) =
1
m

m∑
j=1

d∑
i=1

w
(j)
i · xi =

d∑
i=1

w∗
i · xi. (8)

The w∗
i can be taken as estimates of the wi in the distance function (5).

In [7], it was shown that (8) approximates the center of mass of the version
space and, hence, that this learning algorithm yields an approximation to a Bayes
point machine. The latter seeks to find the midpoint of the region of intersection
of all hyperplanes bisecting the version space into two halves of equal volume.
This midpoint, the Bayes point, is known to be approximated by the center of
mass of the version space.

3.3 Monotonicity

The monotonicity constraint (6) constitutes an interesting challenge from a ma-
chine learning point of view. In fact, this relatively simple property is not guar-
anteed by many standard machine learning algorithms. That is, a model that
implements a distance function ∆(·) may easily violate the monotonicity prop-
erty, even if this condition is satisfied by all examples used as training data.

Fortunately, our learning algorithm allows us to incorporate the monotonicity
constraint in a relatively simple way. The well-known perceptron algorithm is an
error-driven on-line algorithm that adapts the weight vector w in an incremental
way. To guarantee monotonicity, we simply modify this algorithm as follows:

Each time an adaptation of w produces a negative component wi < 0, this
component is set to 0. Roughly speaking, the original adaptation is replaced by
a “thresholded” adaptation.

In its basic form, the perceptron algorithm provably converges after a finite
number of iterations, provided the data is linearly separable. We note that this
property is preserved by our modification (proof omitted due to space restric-
tions). Obviously, monotonicity of the single perceptrons implies monotonicity
of their average (8).

3.4 Active Learning

So far, we did not address the question of where the training data T actually
comes from. The simplest assumption is that T is just a random sample, even
though this assumption is of course not always justified in practice. In this sec-
tion, we consider the interesting scenario in which additional training examples
can be gathered by asking for feedback from the user of a CBR system. Thus,
feedback is derived by selecting two cases b, c and a reference case a, and asking
the user whether b or c is more similar to a.

Again, the simplest way to generate such a query is to choose it at random
from CB. However, realizing that different queries can have different information
content, the goal of this step should be the selection of a maximally informative
query, i.e., an example that helps to improve the current distance function ∆est

as much as possible. This idea of generating maximally useful examples in a
targeted way is the core of active learning strategies [8].

In the literature, numerous techniques for active learning have been proposed,
most of them being heuristic approximations to theoretically justified (though
computationally or practically infeasible) methods. Here, we resort to the Query
by Committee approach [8]. Given an ensemble of models, the idea is to find
a query for which the disagreement between the predictions of these models
is maximal. Intuitively, a query of that kind corresponds to a “critical” and,
therefore, potentially informative example. In our case, the models are given by
the ensemble of perceptrons (cf. Section 3.2). Moreover, given a reference case
a and two other cases b and c, two models ∆1, ∆2 disagree with each other if
∆1(a, b) < ∆1(a, c) while ∆2(a, b) > ∆2(a, c).

Various strategies are conceivable for finding a maximally critical query, i.e.,
a query for which there is a high disagreement among the ensemble. Our current
implementation uses the following approach: Let W =

{
w(1) . . . w(m)

}
be the

set of weight vectors of the perceptrons that constitute the current ensemble.
In a first step, the two maximally conflicting models are identified, that is, two
weight vectors

{
w(i),w(j)

} ∈ W such that ‖w(i) − w(j)‖ is maximal. Then,
using these two weight vectors, two rankings πi and πj of the cases in CB are
generated, respectively, taking a randomly selected reference case a as a query.
Starting from the top of these rankings, the first conflict pair (b, c) is found, i.e.,
the first position k such that b and c are put on position k, respectively, by πi

and πj , and b �= c.2 This conflict pair then gives rise to a query for the user.
Depending on the answer, either (a, b, c) or (a, c, b) is added as an example to
the training data T (and the learner is retrained on the expanded data set).

4 Experimental Results

This section presents the results of experimental studies that we conducted to
investigate the efficacy of our approach. The aim of the experiments was twofold.
A first goal was to show that the performance is convincing in absolute terms,
which means that good predictions can be achieved with a reasonable amount of
training information. Second, we wanted to provide evidence for the effectiveness
of the special features of our learning algorithm, namely the incorporation of
the monotonicity constraint, the use of an ensemble of models, and the active
learning strategy.

4.1 Quality Measures

Let πest denote the ranking of the case base induced by a learned distance
function ∆est. That is, when ordering all cases according to their estimated
distance to the query, πest(a) is the position of case a. To evaluate ∆est, we
compare πest with the ranking π induced by the true distance function ∆. To
this end, we use three different quality measures: Kendall’s tau, recall, and the
position error.

Kendall’s tau is a well-known and widely used rank correlation measure [9]. It
calculates the number of pairwise rank inversions, i.e., the number of discordant
pairs (a, b):

#
{
(a, b) | π(a) < π(b), πest(a) > πest(b)

}
.

More specifically, the Kendall tau coefficient normalizes this number to the in-
terval [−1,+1] such that +1 is obtained for identical rankings and −1 in the
case of reversed rankings.

To complement the rank correlation, which takes the whole ranking into
account, we employed a second measure that puts more emphasis on the top-
ranks and is closely related to the recall measure commonly used in information
retrieval. Let K be the set of top-k elements of the ranking π, that is, K = {a ∈
CB | π(a) ≤ k}, where k is an integer that is usually small in comparison with
the size of the case base (as a default value, we use k = 10); likewise, let Kest

denote the top-k elements of πest. We then define

recall(π, πest) df=
#(K ∩ Kest)

k
. (9)

This measure corresponds to the percentage of top-k cases of the ranking π that
are also among the predicted top-k cases. It is motivated by the assumption
2 In principle, an additional strategy is needed for the case where the two orderings

are identical. However, even though this problem is theoretically possible, it never
occurred in our experiments. Therefore, we omit further details here.

that, typically, the top-k cases of a ranking are more important than the cases
at lower ranks.

Focusing even more on the top and looking only at the case which is most
similar to the query, we define the position error by the position of this case in
the predicted ranking (minus 1): pos(πest) df= πest

(
π−1(1)

) − 1, where π−1 is
the inverse of π, i.e., π−1(1) is the topmost case in π.

4.2 Data

To analyze our algorithm under different conditions, we used data sets of vary-
ing size in terms of the number of features and the size of the case base: UNI
(6/200), Iris (4/150), Wine (13/178), Yeast (24/2465), NBA (15,3924). The UNI
data set is a ranking of the top-200 universities world-wide in 2006, provided by
[10], where the universities are evaluated in terms of six numerical features (peer
review score, recruiter review score, international faculty score, international
students score, staff-to-student ratio, citation-to-staff ratio). Iris and Wine are
widely used benchmark data sets that are publicly available from the UC Irvine
machine learning repository [11]. Yeast is a genetic data set of phylogenetic pro-
files for the Yeast genome [12]. The genome consists of 2465 genes, and each gene
is represented by an associated phylogenetic profile of length 24. The NBA data
set records career statistics for regular seasons by NBA players. Each player is
characterized by a set of 15 match statistics, e.g., scoring, rebound, turnover,
steal, etc. This data set is part of the basketball player data set, which is pub-
lished and maintained by databasebasketball.com.

4.3 Experiments

To answer the questions raised at the beginning of this section, we conducted
three comparative studies:

– The first experiment investigates the advantage of using a modified percep-
tron learning algorithm that ensures monotonicity. We compare results for
the standard perceptron algorithm (standard) with those for the modified
one (monotone). For both variants, we use an ensemble of size m = 10 and
non-active learning.

– The second experiment investigates the advantage of using an ensemble of
models instead of a single model. Here, we compare the results obtained by
training a single perceptron (single) with those of an ensemble of size m = 10
(ensemble). For both variants, we use monotone, non-active learning.

– Finally, we investigate the improvements due to our active learning strategy.
To this end, we compare the active-learning strategy3 (active) as described
in Section 3 with the random strategy (random) that simply selects triplets
(a, b, c) ∈ CB at random.

3 Initialized with 10 randomly chosen triplets

In all experiments, we derived quality measures for different numbers of train-
ing data, ranging from 10 to 100. In a single experiment, we randomly generated
a weight vector w (uniformly in [0, 1]d) as the ground truth. A fixed number
of training examples was then generated according to this vector, either by se-
lecting triplets (a, b, c) at random or by using the active learning strategy. A
model is then learned on this data. To evaluate its quality, a query is generated
at random, and the ranking predicted for this query is compared to the true
ranking; this is done repeatedly and results are averaged.

Figures 2, 3, and 4 show the results in terms of mean values and standard
deviations obtained from 100 repetitions. As can clearly be seen from the learning
curves in these figures, our approach to learning distance functions is indeed quite
effective, and all its extensions do obviously pay off. This is especially true for
the incorporation of the monotonicity constraint and the active learning strategy,
where the learning curves show a visible improvement. The ensemble effect, on
the other hand, yields only a slight improvement (the learning curves are often
very close) which is, nevertheless, still statistically significant.

5 Extensions

The linearity assumption underlying model (5) is of course not always justified
in practice. Instead, the aggregation (2) may be a nonlinear operator, and the
classification examples x = T (a, b, c) created by triplets of cases (cf. Fig. 1) will
no longer be linearly separable. As our idea of transforming the distance learning
problem into a classification problem, as outlined in Section 3.1, strongly exploits
the linearity of (5), one may wonder whether this approach can be extended to
the nonlinear case. Indeed, there are different options for such an extension, two
of which will be sketched in this section.

5.1 Kernel-based Learning

First, it is important to note that our transformation only exploits the linearity
in the coefficients wi, not the linearity in the local distances. Therefore, the
approach can easily be extended to linear combinations of arbitrary functions of
the local distances. An especially important example is a model which is, in a
similar form, often used in fields like statistics and economics:

∆(a, b) =
d∑

i=1

wi · δi(a, b) +
d∑

i=1

d∑
j=i

wij · δi(a, b)δj(a, b). (10)

The terms δi(a, b)δj(a, b), which are called interaction terms, enable the mod-
eling of interdependencies between different local distances.

It is noticeable that (10) is closely related to the transformation induced by a
quadratic kernel (x,x′) �→ 〈x,x′〉2 in kernel-based learning. More generally, (10)

is actually equivalent to (5) when looking at the local distances δi as features.
Indeed, both models are special cases of the representation

∆(a, b) = v · φ(d(a, b)) =
k∑

�=1

v� · φ�(d(a, b)), (11)

where d(a, b) = (δ1(a, b) . . . δd(a, b)), and the φ� are properties of this vector of
local distances. This provides the basis for “kernelizing” our approach. Without
going into technical detail, we just mention that finding a model with maximal
(soft) margin then comes down to solving a quadratic program defined as follows:

min
v,ξi

1
2
‖v‖ + C

∑
(ai,bi,ci)

ξi s.t.
{

v · (φ(d(a, c)) − φ(d(a, b))) ≥ 1 − ξi

ξi ≥ 0 ,

where the (ai, bi, ci) are the training examples and C is a regularization param-
eter. Eventually, this leads to learning a model that can be represented as

∆(a, b) =
∑

i

αi (K(d(a, b),d(ai, ci)) − K(d(a, b),d(ai, bi))) ,

where K(·) is the kernel associated with the feature map φ(·).

5.2 Nonlinear Classification and Sorting

Our original model as well as the extension (10) establish a one-to-one corre-
spondence between the distance function ∆(·) and the model for the induced
classification problem. In fact, there is even a one-to-one correspondence be-
tween the parameters of ∆(·) and the parameters of the corresponding (linear)
classifier. A second extension is based on the observation that such a one-to-one
correspondence, even if desirable, is in principle not needed.

Suppose we train a possibly nonlinear classifier C(·) that separates the clas-
sification examples induced by the similarity constraints given. From this model,
it is perhaps not possible to recover the distance function ∆(·) in explicit form.
Still, given a query case q and any pair of cases a, b ∈ CB, the classifier C(·)
can answer the question whether a or b is more similar to q: In the first case
C(x) = +1, while in the second case C(x) = −1, where x = T (q,a, b). As
this information is a sufficient prerequisite for applying a sorting algorithm, it
is, in principle, again possible to order the case base for the query q. Such an
algorithm cannot be applied directly, however, as a non-perfect classifier may
produce non-transitive preferences. Yet, there are “noise-tolerant” ranking algo-
rithms that can handle non-transitive preferences and yield good approximations
to a true ranking [13].

6 Related Work

The learning and adaptation of similarity or distance measures has received
considerable attention is CBR and related fields. In particular, the work of Stahl

[14, 15, 2, 16] shares a number of commonalities with ours. In fact, the problem
considered in [14] is basically the same, namely to learn the weights in a linear
combination of local similarity functions. However, the setting of the learning
problem is quite different, just like the learning method itself. Stahl [14] applies
a conventional gradient descent algorithm to minimize an “average similarity
error”. To obtain this error, he assumes the availability of a “similarity teacher”
who, given a query case, is able to provide feedback in the form of a ranking of a
subset of cases of the case base. In [17], Stahl and Gabel also address the problem
of learning local similarity measures. They propose evolutationary optimization
techniques as an approach to adaptation.

Methods for feature weighing and selection have also been studied by many
other authors, especially in the context of k-NN classification [18–22]. In an early
work, Wettschereck and Aha have proposed a general framework for comparing
feature weighting methods [23]. They distinguish such methods along five dimen-
sions, namely feedback, weight space, representation, generality, and knowledge.
More recent methods for feature weighing can also be found in machine learning
research [24, 25].

Finally, problems related to feature weighing, selection, and aggregation are
of course also studied outside CBR and machine learning research, for example in
fields like decision making and information fusion (e.g. [26]). A complete review
of the literature, however, is beyond the scope of this paper.

7 Summary and Conclusions

To support the specification of similarity (distance) measures in CBR, we have
proposed a machine learning algorithm that proceeds from predefined local dis-
tance functions and learns how to combine these functions into a global measure.
The algorithm is quite user-friendly in the sense that it only assumes qualitative
feedback in the form of similarity comparisons: Case a is more similar to b than
to c. First experiments have yielded promising results, showing that the algo-
rithm is effective and, moreover, that its special features (monotonicity, ensemble
learning, active selection of examples) lead to increased performance.

Apart from technical aspects, we consider the general idea of the approach as
especially interesting, as it allows one to reduce the problem of distance learn-
ing to a conventional classification problem. Thus, distance learning becomes
amenable to a large repertoire of existing and well-understood algorithms. In this
regard, we are currently elaborating on several extensions of our basic model,
such as those outlined in Section 5.

References

1. Richter, M.M.: Foundations of similarity and utility. The 20th International
FLAIRS Conference, Key West, Florida (2007)

2. Stahl, A.: Learning similarity measures: A formal view based on a generalized
CBR model. In: ICCBR–05, Chicago, USA, Springer (2005) 507–521

3. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD–2002,
Proc. of the ACM Conference on Knowledge Discovery and Data Mining. (2002)

4. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
Technical Report UCD-CSI-2008-01, University College Dublin (2008)

5. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press (2001)

6. Khardon, R., Wachman, G.: Noise tolerant variants of the perceptron algorithm.
The Journal of Machine Learning Research 8 (2007) 227–248

7. Herbrich, R., Graepel, T., Campbell, C.: Bayes point machines. Journal of Machine
Learning Research 1 (2001) 245–279

8. Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In: Computational
Learning Theory. (1992) 287–294

9. Kendall, M.: Rank correlation methods. Charles Griffin, London (1955)
10. O’Leary, J.: World university rankings editorial - global vision ensures healthy

competition. The Times Higher Education Supplement (2006)
11. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
12. Pavlidis, P., Weston, J., Cai, J., Grundy, W.: Gene functional classification from

heterogeneous data. In: Journal of Comput. Biology. Volume 9. (2002) 401–411
13. Cohen, W., Schapire, R., Singer, Y.: Learning to order things. Journal of Artificial

Intelligence Research 10 (1999)
14. Stahl, A.: Learning feature weights from case order feedback. In: ICCBR–01,

Vancouver, Canada, Springer-Verlag (2001) 502–516
15. Stahl, A., Schmitt, S.: Optimizing retrieval in CBR by introducing solution simi-

larity. In: Proc. Int. Conf. on Art. Intell., IC-AI, Las Vegas, USA (2002)
16. Stahl, A., Gabel, T.: Optimizing similarity assessment in case-based reasoning. In:

Proc. 21th National Conf. on Artificial Intelligence, AAAI. (2006)
17. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.

In: ICCBR–03, Trondheim, Norway, Springer (2003) 537–551
18. Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve

retrieval in CBR: A case study in air traffic control. In: ICCBR–97, Providence,
Rhode Island, USA, Springer (1997) 291–302

19. Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In:
European Conference on Machine Learning. (1994) 171–182

20. Ricci, F., Avesani, P.: Learning a local similarity metric for case-based reasoning.
In: ICCBR–95. (1995) 301–312

21. Wilke, W., Bergmann, R.: Considering decision cost during learning of feature
weights. In: European Workshop on CBR. (1996) 460–472

22. Branting, K.: Acquiring customer preferences from return-set selections. In:
ICCBR–01, Vancouver, Canada, Springer (2001) 59–73

23. Wettschereck, D., Aha, D.: Weighting features. Proc. ICCBR–95, Sesimbra, Por-
tugal (1995) pages 347–358

24. Wu, Y., Ianakiev, K., Govindaraju, V.: Improvements in k-nearest neighbor clas-
sification. In: ICAPR. (2001) 222–229

25. Toussaint, G.: Geometric proximity graphs for improving nearest neighbor methods
in instance-based learning and data mining. Int. J. Comput. Geometry Appl. 15(2)
(2005) 101–150

26. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation
Operators. Springer (2007)

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

2

4

6

8

10

12

14
Position Error

monotone
standard

monotone
standard

monotone
standard

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Kendall tau

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Recall

0 20 40 60 80 100
0

100

200

300

400

500

600
Position Error

monotone
standard

monotone
standard

monotone
standard

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1
Kendall tau

0 20 40 60 80 100
0

10

20

30

40

50
Position Error

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Recall

monotone
standard

standard
monotone

monotone
standard

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Kendall tau

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Recall

0 20 40 60 80 100
0

10

20

30

40

50
Position Error

monotone
standard

monotone
standard

monotone
standard

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Kendall tau

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Recall

0 20 40 60 80 100
0

100

200

300

400

500

600

700
Position Error

monotone
standard

standard
monotone

standard
monotone

Fig. 2. Monotone vs. non-monotone learning: Experimental results in terms of rank
correlation, recall, and position error as a function of the number of training examples
(x-axis). Data sets from top to bottom: Iris, NBA, UNI, Wine, Yeast.

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1
Recall

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

Kendall tau

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

5

10

15

20
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

1

2

3

4

5

6
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

2

4

6

8
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Kendall tau

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8
Recall

0 20 40 60 80 100
0

10

20

30

40

50

60

70
Position Error

ensemble
single

ensemble
single

ensemble
single

Fig. 3. Single vs. ensemble learning: Experimental results in terms of rank correlation,
recall, and position error as a function of the number of training examples (x-axis).
Data sets from top to bottom: Iris, NBA, UNI, Wine, Yeast.

10 15 20
0.86

0.88

0.9

0.92

0.94

0.96
Kendall tau

10 15 20
0.75

0.8

0.85

0.9

0.95
Recall

10 15 20
0

0.5

1

1.5

2
Position Error

active
random

random
active

random
active

10 15 20
0.9

0.91

0.92

0.93

0.94

0.95

0.96
Kendall tau

10 15 20
0.5

0.55

0.6

0.65

0.7
Recall

10 15 20
0

5

10

15

20
Position Error

active
random

random
active

random
active

10 15 20
0.65

0.7

0.75

0.8

0.85

0.9
Kendall tau

10 15 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85
Recall

10 15 20
0

1

2

3

4

5

6
Position Error

random
active

random
active

random
active

10 15 20

0.65

0.7

0.75

0.8
Kendall tau

10 15 20
0.55

0.6

0.65

0.7

0.75
Recall

10 15 20
0

1

2

3

4

5

6

7
Position Error

random
active

random
active

random
active

10 15 20
0.55

0.6

0.65

0.7

0.75
Kendall tau

10 15 20
0.4

0.45

0.5

0.55

Recall

10 15 20
0

20

40

60

80

100

120

140
Position Error

random
active

random
active

random
active

Fig. 4. Active vs. non-active learning: Experimental results in terms of rank correlation,
recall, and position error as a function of the number of training examples (x-axis).
Data sets from top to bottom: Iris, NBA, UNI, Wine, Yeast.

