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Abstract. Label ranking studies the problem of learning a mapping
from instances to rankings over a predefined set of labels. We approach
this setting from a case-based perspective and propose a sophisticated
k-NN framework as an alternative to previous binary decomposition tech-
niques. It exhibits the appealing property of transparency and is based
on an aggregation model which allows to incorporate a broad class of
pairwise loss functions on label ranking. In addition to these conceptual
advantages, we also present empirical results underscoring the merits of
our approach in comparison to state-of-the-art learning methods.

1 Introduction

The topic of learning preferences has attracted increasing attention recently and
contributes to the more general trend of investigating complex and structured
output spaces in machine learning, such as label sequences or natural language
parsing trees [1, 2]. Label ranking, a particular preference learning scenario, stud-
ies the problem of learning a mapping from instances to rankings over a finite
number of predefined labels (alternatives). It can be considered as a natural gen-
eralization of conventional classification, where only a single label (the top-label)
is requested instead of a ranking of all labels. Applications of label ranking can
be found in various fields such as, e.g., natural language processing and text
categorization. Among those approaches proposed to address this category of
learning problems the following techniques provide a general means to extend ar-
bitrary (linear) binary classification algorithms: Ranking by pairwise comparison
as a natural extension of pairwise classification [6] and constraint classification
which aims at learning a linear utility function for each label [7].

Case-based learning algorithms have been applied successfully in various
fields such as, e.g., machine learning and pattern recognition [8]. These algo-
rithms defer processing the training data until an estimation for a new instance
is requested, a property distinguishing this class of learning methods from typical
model-based approaches. As a particular advantage of delayed processing, these
learning methods may estimate the target function locally instead of inducing a
global prediction model for the entire input domain from the data. Predictions
are typically obtained using only a small, locally restricted subset of the entire
training data, therefore supporting a human-accessible estimation process for
target objects. This appealing property is difficult to realize in algorithms using
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complex global models of the target function and critical to certain applications
where black-box predictions are not acceptable. In fact, this drawback arises al-
ready in binary classification, however, its severity increases in label ranking as a
consequence of the more complex structure of the underlying target space: Previ-
ous approaches on extending binary classification, such as the above-mentioned
techniques, generate inflated training sets embedded in a higher dimensional
feature space to encode preference constraints, or perform a decomposition into
multiple binary classification tasks. Hence, both techniques increase the com-
plexity level of constructing a prediction model such that it becomes difficult if
not impossible to provide a comprehensible prediction explanation.

Besides the question of transparency in target prediction, the process of de-
composing label rankings into binary preferences is accompanied by a loss of
information as from these binary training inputs alone, the original rankings
cannot be recovered [9]. As a result, it implicitly restricts the class of loss func-
tions which can potentially be minimized. In this paper, we propose a case-based
approach to label ranking as an alternative which maintains the appealing prop-
erty of transparency and is based on an aggregation model which allows to
incorporate a broad class of loss functions. In contrast to previous approaches,
it also provides a natural means of calculating confidence scores for predictions.

The subsequent section introduces the basic problem of label ranking and a
general architecture to approach this problem in a case-based learning frame-
work. Section 3 studies the subcomponent of aggregating label rankings with
respect to common choices of pairwise loss functions. Model-based approaches
to label ranking are reviewed in Section 4. Section 5 is devoted to an empiri-
cal evaluation of case-based label ranking and a comparison with the pairwise
ranking technique. Finally, various extensions and modifications of the basic
approach are discussed in Section 6.

2 Framework

In label ranking, the problem is to learn a mapping from instances z (e.g.,
representing a person) of an instance space X to rankings >, (total strict orders)
over a finite set of labels £ = {\1,...,A:}, where A; >, A; means that instance
x prefers label A; to A;. A ranking over £ can be represented by a permutation
as there exists a unique permutation 7 such that A\; =, A; iff 7(¢) < 7(j), where
7(i) denotes the position of the label \; in the ranking. The target space of all
permutations over c labels will subsequently be referred to as S.. Let us make the
idealized assumption that the training data submitted to the learning algorithm
consists of a set of instances (x1,71),..., (€m, 7m) which contain the complete
label rankings and therefore the entire sets of pairwise preferences. Of course, in
practice it might not always be possible to observe complete rankings. However,
by reducing the technical complexity, this assumption will allow us to focus on
the main components of case-based label ranking. Later on, we will discuss how
to handle the more general case where only a subset of all pairwise preferences
are available for each training example x;.
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In the following, we will discuss a general case-based framework for learn-
ing label rankings. The k-nearest neighbor algorithm (k-NN) is arguably the
most basic case-based learning method [5]. In its simplest version, it assumes
all instances to be represented by feature vectors x = ([z]1,...,[z]x)" in the
N-dimensional space X = RY endowed with the standard Euclidian metric as a
distance measure, though an extension to other instance spaces and more gen-
eral distance measures d(-, -) is straightforward. When a query feature vector x
is submitted to the k-NN algorithm, it computes the k training instances closest
to this point in terms of d(-,-). In the case of classification learning, the k-NN
algorithm estimates the associated class label by the most frequent label among
those training instances. It can be adapted to the regression learning scenario
by replacing the majority voting step with computing the (weighted) mean of
the target values.

A unified view of both classification and label ranking as discrete-valued
learning problems provides a straightforward generalization of the k-NN algo-
rithm such that the most common label ranking is used as the predicted target
object. However, several drawbacks make this approach seem inappropriate in
general:

— The cardinality of the target space in label ranking is |S;| = ¢!, a number
far beyond the typical cardinality in classification learning. Therefore, if the
local distribution of label rankings does not have sharp peaks, equal votes
statistics are much more likely (except for k = 1). Random tie-breaking, a
standard technique in k-NN learning, may be used rather frequently resulting
in randomly selecting a label ranking among the k nearest neighbors.

— In contrast to classification learning, where only the discrete metric (0/1
loss) is given on the target space, non-trivial metrics can be defined on label
rankings, a property shared with regression learning. The discrete k-NN
algorithm does not exploit this property in the aggregation step.

To avoid the above-mentioned drawbacks, a more sophisticated algorithm
should incorporate the structured nature of the space of label rankings. Our ap-
proach considers aggregation techniques for label ranking which are conceptually
related to averaging in k-NN regression learning. To this end, we incorporate a
common rank aggregation model in order to combine the k nearest neighbors
into a single ranking. This model has been used in a variety of applications, such
as in combining meta-search results, however, it is a novel component in a label
ranking algorithm. The consensus label ranking is computed such that it mini-
mizes the sum of pairwise disagreement indices with respect to all k rankings.
The corresponding formal model will be detailed in Section 3.

3 Aggregating Label Rankings

The problem of aggregating rankings, i.e., to merge a finite set of rankings into a
single consensus ranking in an suitable manner, arises in a variety of applications.
Among those are retrieval-related database applications, combining experts and
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the combination of meta-search results [10]. Moreover, the range of scientific
disciplines studying aggregation techniques extends to social choice theory where
the problem of combining votes constitutes a well-studied research topic.

In order to analyze the problem of aggregating label rankings in a formal

manner, let 71, .. ., 7, denote rankings of the c alternatives A1, ... , A.. A common
method to measure the quality of a ranking 7 as an aggregation of the set of
rankings 71, ..., Tk is to compute the sum of pairwise loss values
L
L(7) o ZZ(T, Ti)
i=1

with respect to a loss function [ : S, x S — R>¢ defined on pairs of rankings.
Having specified a loss function I(-), this model leads to the optimization
problem of computing a ranking 7 € S, (not necessarily unique) such that

k

L(#) = min 2 U7, 7). (1)
Common choices for the loss function are the Kendall tau loss [11], the sum
of absolute rank distances, which is also referred to as Spearman footrule loss
[10], and the sum of squared rank distances. The linear transformation of the
latter loss function into a similarity measure is well-known as the Spearman rank
correlation coefficient [12,13]. The Kendall tau loss lx essentially calculates the
number of pairwise rank inversions on labels to measure the ordinal correlation
of two rankings. More formally,

e (ro ) B {6, g) | () < 7(7) AT'(6) > 7' (7). 2)

The Spearman footrule loss I; and the sum of squared rank distances loss I, are
formally defined as

c

L) € Yl =7 @) and () €Y (@) - T @) @)

=1

In the following, we will elaborate on solving the optimization problem (1)
depending on the particular choice of the loss function. When using the Kendall
tau loss, the associated optimal solution is also referred to as the Kemeny-optimal
ranking. Kendall’s tau is an intuitively quite appealing loss function and Kemeny-
optimal rankings have several nice properties. Among those, they satisfy the
so-called Condorcet criterion, which states that if a certain label defeats every
other label in pairwise majority voting among the rankings, this label should be
ranked first. However, it has been shown in [14] that the problem of computing
Kemeny-optimal rankings is NP-hard.

In the case of the Spearman footrule loss, the optimization problem (1) is
equivalent to finding a minimum cost maximum matching in a bipartite graph
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with ¢ nodes [15]. Fagin et al. [10] proposed a computationally efficient approx-
imate aggregation algorithm which for complete rankings simplifies to ordering
the labels according to their median ranks, a task which can be accomplished
in O(kc+ clogc) time. In terms of accuracy, Fagin et al. [10] proved that this
algorithm computes a constant-factor approximation 7 of the optimal solution
for both the [y and the i loss function. More precisely,

TES, 4

k k k k
min le(r, 7i) < 2211(?,73-) and Tnéisncle(T’ 7i) < 421;((?,73-). (4)
i=1 i=1 i=1

i=1

Moreover, Dwork et al. [15] showed that median ordering indeed finds the optimal
solution for the [y loss in the case of unique median ranks. In the case of equal
median ranks, we shall apply random tie breaking.

For the sum of squared rank distances loss, a provably optimal solution of
(1) is obtained by ordering alternatives according to the so-called Borda count
[9], a voting technique well-known in social choice theory. The Borda count of
an alternative is the number of (weighted) votes for that alternative in pairwise
comparisons with all remaining options. This voting rule requires computational
time in the order of O(kc + clogc) and thus can be evaluated very efficiently.

In the experimental section, the Borda-count and the median ordering tech-
niques will be incorporated into the learning algorithm as they are computa-
tionally efficient and have a sound theoretical basis. However, as the aggregation
component is an isolated module within our case-based framework, alternative
aggregation techniques which may be suitable for the particular application at
hand may be integrated naturally (such as aggregation techniques which mini-
mize loss functions focusing on correct top ranks rather than distributing equal
weights to all positions).

As an appealing property of this aggregation model, average loss values,
%Zle I(7,7;), provide a natural means of associating a (reversed) confidence
score with a prediction 7, in contrast to previous approaches (cf. section 4)
where techniques for calculating confidence scores have not been proposed yet.
Moreover, it is convenient to rescale to the unit interval by

- i I(r,7:) 5)
<~ max es, (T, T!)

Bl

7,7

such that higher scores correspond to more reliable predictions. We will provide
empirical evidence in the experimental section that this approach indeed yields
a meaningful measure of confidence. Complementing the appealing property of
an accessible model, case-based ranking supports critical applications where a
transparent and reliable prediction process is a mandatory requirement.

4 Model-based Approaches

One natural approach for modeling preference rankings is to represent each in-
dividual label by means of an associated (real-valued) utility function. More
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precisely, a utility function f; : X — R is used for modeling each of the labels
Xi, @ = 1...c, where f;(z) is the utility assigned to A; by the instance z. To
obtain a ranking for z, the labels are ordered according to these utility scores,

If the training data would offer the utility scores directly, preference learning
in the label ranking scenario would reduce to a standard regression problem. This
information can rarely be assumed available, however. Instead, usually only con-
straints derived from comparative preference information of the form “This label
should have a higher utility score than that label” are given. Thus, the challenge
for the learner is to find a function that is as much as possible in agreement
with all constraints. A corresponding method for learning linear utility func-
tions f;(+), ¢ = 1...¢, from training data has been proposed in the framework
of constraint classification [7]. Constraint classification encodes each constraint
induced by comparative preference information as a binary training example.
The utility functions can be learned by solving the overall binary classification
problem by means of an arbitrary linear learning algorithm.

An alternative pairwise approach to label ranking learning has been intro-
duced in [6]. The key idea in pairwise label ranking is to learn, for each pair of
labels (A, Aj), ¢ < j, a binary predicate M;;(x) that predicts whether A\; >, A;
or A\; =4 A; for an input x. In order to rank the labels for a new instance,
predictions for all pairwise label preferences are obtained and a ranking that is
maximally consistent with these preferences is derived, typically by means of a
voting scheme. This approach is a natural extension of pairwise classification,
i.e., the idea to tackle a multi-class classification problem by learning separate
theories for each pair of classes.

5 Empirical Evaluation

The purpose of this section is to provide an empirical evaluation of case-based
label ranking in terms of accuracy and computational complexity. The first se-
ries of experiments has been set up in order to compare case-based label ranking
(k-NN-LR) using Borda and median aggregation with the pairwise label ranking
framework [6], where support vector machines [16] with linear (PW-SVM-LIN)
and RBF kernels (PW-SVM-RBF) were used as the binary base learner. For
pairwise ranking, we also considered the common Borda technique for aggregat-
ing comparative pairwise preference votes received from the binary classification
models. The constraint classification approach has not been included in the ex-
perimental evaluation as earlier experiments suggested that it typically achieves
a level of accuracy comparable to pairwise label ranking while being computa-
tionally far more demanding in general [3].

As benchmark datasets of sufficient size are not publicly available for label
ranking, we simulated this setting using the following multi-class datasets from
the UCI Repository of machine learning databases [17] and the Statlog collection
[18]): Ir1s, WINE, GLASS, VOWEL, VEHICLE. For each of these datasets, we
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| IRIS | WiNe | Grass | VoweL | VEHICLE
PW-SVM-LIN 0.767 +£0.148|0.910 +0.088|0.827 +0.054(0.484 +0.040{0.788 +0.040
PW-SVM-RBF 0.967 +£0.047|0.905 £0.083|0.842 £0.058(0.864 £0.021{0.857 £0.027
KNN-LR-MEDIAN|0.940 £0.066|0.927 +0.045[{0.831 40.091|0.864 +0.023|0.795 £0.039
KNN-LR-BORDA [0.940 4+0.058|0.933 +0.051{0.831 £0.091|0.864 +0.023|0.793 £0.051
PW-SVM-LIN 0.867 +£0.074|0.941 £0.055|0.923 £0.039(0.769 £0.028{0.892 £+0.027
PW-SVM-RBF 0.980 +0.023]0.958 +0.056|0.929 +0.037[0.962 +0.009{0.909 +0.019
KNN-LR-MEDIAN|0.963 4+0.029|0.949 +0.039{0.898 40.085(0.957 +0.008(0.876 +0.037
KNN-LR-BORDA [0.967 £0.031{0.969 +0.024[0.892 40.080(0.957 £0.008|0.887 £0.029
PW-SVM-LIN 0.844 +0.082|0.933 +0.063|0.891 +0.044(0.673 £+0.029{0.861 +0.024
PW-SVM-RBF 0.978 +0.031|0.944 +0.053|0.899 +0.044(0.922 +0.014{0.896 +0.017
KNN-LR-MEDIAN|0.960 £0.044|0.937 +0.052{0.882 40.075/0.922 £0.013|0.854 £0.032
KNN-LR-BORDA [0.960 40.044|0.952 £0.039(0.882 40.075{0.922 +0.013|0.853 £0.038

Table 1. Empirical comparison of case-based label ranking (KNN-LR) using Borda and
median aggregation with the model-based pairwise ranking approach, where support
vector machines with linear (PW-SVM-LIN) and RBF kernels (PW-SVM-RBF) were
used as the binary base learner. The empirical results are grouped in three separate sec-
tions, where the Spearman footrole (first section), the Spearman rank correlation (sec-
ond section) and the Kendall tau (third section) evaluation measures were computed
on the testsets (and used in the respective experiments for tuning hyperparameters on
the training sets).

trained a naive Bayes classifier’ and then for each instance, all the labels present
in the respective dataset were ordered with respect to decreasing predicted class
probabilities (in the case of ties, labels with lower indices are ranked first).?

For linear kernels the margin-error penalty C was chosen from {272, ...,210}
and for RBF kernels the considered sets of hyperparameters are given by C' €
{0.5,1,5,10,50,100,1000} and v € {1073,...,10%}. In the case of k-NN learn-
ing, the number of nearest neighbors k was selected from {1,3,...,15,21}. For
all parameters, the optimal values were selected using 10-fold crossvalidation on
the training sets where the accuracy was estimated with respect to the metric
on label rankings used in the specific experimental run. In order to facilitate
interpretability, we employed the Spearman footrule, the squared rank distances
and the Kendall tau loss functions (see Section 3) in a common normalized ver-
sion such that the loss (the similarity value) evaluates to —1 for reversed and to
+1 for identical label rankings. Hence, for the first set of experiments, the over-
all experimental setup consists of a nested two level crossvalidation procedure,
the inner level for selecting hyperparameters and the outer level for estimating
generalization accuracy using an additional crossvalidation step.

As anticipated on behalf of the theoretical results, Borda-aggregation slightly
outperforms median-aggregation in the case of the Spearman rank correlation,

! We employed the implementation for naive Bayes classification on numerical datasets
(NaiveBayesSimple) contained in the Weka machine learning package [19].
2 This setting was previously studied in active learning for label ranking [20].
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Fig. 1. Computational Time: (a) Training (results for k-NN-LR are omitted as storing
the training data requires only negligible effort). (b) Testing.

while a substantial difference between Borda- and Median-aggregation cannot
be observed for the Spearman footrule loss. For Kendall’s tau, both aggrega-
tion techniques achieve similar results. Surprisingly, our k-NN-LR is competi-
tive with PW-SVM-LIN on three datasets (WINE, GLASS and VEHICLE) and
even outperforms it on the remaining two by a large margin (IR1S and VOWEL).
PW-SVM-RBF outperforms our k-NN-LR approach on most datasets, however,
typically only by a small margin. Moreover, there are several directions for fur-
ther improving k-NN-LR, such as weighted aggregation, feature selection and
similarity learning which have not been incorporated yet (see Section 6).

We conducted a series of controlled experiments in order to study the com-
putational requirements of the proposed case-based framework using a synthetic
experimental setting. This setting is a replication of [6] and operates in the con-
text of expected utility theory. In this setting, the optimal pairwise decision
boundaries are hyperplanes, therefore, we selected a linear kernel for PW-SVM
with C' = 1000.3 Setting both the number of training and test instances to 1000,
k € {5,11,21} and the input dimension to 10, the training and prediction time of
PW-SVM-LIN and k-NN-LR-Median (the difference to k-NN-LR-Borda is neg-
ligible) was evaluated for ¢ € {5,10,15,20,50,100}. The experimental results,
depicted in Figure 1, demonstrate that even though we implemented k-NN-LR
in a non-optimized straightforward version which does not exploit any sophisti-
cated data structures for supporting efficient nearest neighbor search, it performs
very well in terms of computational efficiency. The computational complexity of
pairwise ranking can be attributed to the fact that the number of binary SVMs
to be trained is quadratic in the number of labels. In contrast to standard clas-
sification learning, the training sets for those binary subproblems have the same

3 Note that this property prohibits a meaningful comparison between pairwise ranking
with a linear base learner and k-NN label ranking in terms of accuracy.
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Fig. 2. Accuracy-Confidence Dependence: (a) Average rank correlation values are
shown for all predictions associated with a particular confidence level. (b) Rank corre-
lation values have been averaged over all predictions associated with at least the shown
confidence level.

size as the original dataset, which entails a substantial increase in computational
demands. Besides the theoretical difference in testing complexity in this setting
(O(c?) for pairwise and O(kc + clogc) for k-NN ranking), this evaluation un-
derscores the difference in complexity from a practical point of view: k-NN label
ranking scales easily to problems with huge numbers of alternatives whereas the
computational burden involved with pairwise ranking prohibits its application
in this regime in many cases.

An empirical comparison between the simple discrete generalization of k-NN
learning (see Section 2) and our approach in the above-described synthetic set-
ting provided strong support for the assumption that majority selection fails to
provide a suitable aggregation technique for label rankings: For ¢ > 10, discrete
k-NN always achieves optimal performance for £ = 1 and is outperformed by
k-NN-LR-Median and k-NN-LR-Borda for all considered choices of loss functions
by a large margin.

As mentioned in Section 3, the rescaled accumulated loss (5) can be inter-
preted as a confidence score for the prediction 7. In order to investigate the
dependence of the generalization accuracy on the magnitude of the confidence
scores, the k-NN-Borda algorithm (k = 5) was evaluated in the above-stated
setting: The VEHICLE dataset was randomly split into a training and test set of
equal size. The predicted label rankings and the associated confidence scores on
the test set were used to generate Figure 2, where in (a) the average Spearman
rank correlation was averaged over all predictions associated with a particular
discrete confidence level whereas in (b) the rank correlation was averaged over all
predictions with at least the specified confidence level. The confidence-accuracy
curves clearly indicate that indeed the proposed confidence measure is strongly
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correlated with the accuracy of predictions. Hence, rejection strategies which
refuse to make a prediction if the associated confidence level is below a certain
threshold may further increase accuracy, e.g., if we predicted a label ranking for
a test instance only if the associated confidence score equals 1.0 (which covers
roughly 34% of the entire test set), the Spearman rank correlation would increase
from the base level of 0.863 to 0.988 on this subset! Rejecting only the 10% least
confident predictions already increases the remaining average rank correlation to
0.913. Qualitatively similar observations can be made on the remaining datasets
whenever k£ > 1.

6 Extensions

Our general framework for case-based label ranking can be naturally extended to
accommodate for the specific kind of preference information available, such as to
the scenarios where a total order is only specified for a subset of all labels (partial
rankings), ties among labels are permitted, or only certain pairwise preferences
can be observed (such as for typical text categorization settings). Generalized
loss functions, such as the extensions to Kendall’s tau and the Spearman footrule
loss defined in [10], can be plugged into the aggregation model (1). A particularly
interesting generalization of label ranking is calibrated label ranking as introduced
in [4]. Roughly speaking, a calibrated ranking is a ranking with an additional
neutral label which splits a ranking into two parts, thus combining label ranking
and multilabel classification learning. We applied our case-based approach in
this setting, using the Reuters-2000 text data as a benchmark, and obtained
very promising results (omitted here due to reasons of space). Even though these
results are preliminary, they indicate that our approach is indeed amenable to
more general preference learning scenarios.

Ha and Haddawy [21] proposed an appealing probabilistic loss on preferences
which originates from the Kendall tau loss and extends to both partial and un-
certain preferences. Efficient methods for (approximate) rank aggregation with
respect to this measure have not been developed yet but could potentially be
plugged into the case-based label ranking framework in order to generalize to
the uncertainty case. Moreover, Ha and Haddawy [21] developed a successful
case-based system for collaborative filtering, where a new user is matched to the
user with the most similar preference structure in the database to provide movie
recommendations. This system computes similarity between objects (users) with
respect to partial preferences as opposed to label ranking where separate features
are assumed to be available.

Another interesting direction for extending the basic k-NN label ranking
algorithm is to consider a weighted aggregation model where the loss values are
weighted by the distances a; of the respective feature vectors to the query vector,
L'(7) = minres, Zle a;l(7,7;). Chin et al. [22] studied a weighted variant
of the Kendall tau loss function and proposed a polynomial time approximate
aggregation algorithm.
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The computational complexity involved in searching the k nearest neighbors
can be reduced by using sophisticated data structures, such as metric and kd-
trees, and in particular for high dimensional problems, there exist efficient tech-
niques for computing approzimate nearest neighbors [23]. More precisely, these
techniques may be used to improve scaling complexity in terms of the number
of instances.

A well-known drawback of the k-NN family of algorithms is its sensitivity
to the similarity metric used to determine distances. Besides feature selection
methods, a variety of sophisticated algorithms have been proposed which aim
at learning an appropriate similarity measure based on the given training set
in order to increase robustness and boost accuracy [24]. Integrating similarity
learning into k-NN label ranking seems to be another promising direction of
further research.

Regarding theoretical foundations, it would be interesting to transfer exist-
ing results on the performance of k-NN estimation (asymptotically valid bounds
on the estimation error [5]) to the label ranking scenario. Preliminary investiga-
tions indicate that this is indeed possible, though a detailed discussion is clearly
beyond the scope of this paper.

7 Conclusion

Despite its conceptual simplicity, case-based learning is one of the most effi-
cient approaches to conventional machine learning problems like classification
and possesses a number of appealing properties. The case-based approach thus
lends itself to be applied in label ranking, a recently introduced more complex
type of learning problem. The results in this paper show that case-based label
ranking indeed provides a viable alternative to model-based approaches. Beyond
the conceptual benefits of flexibility in terms of pairwise loss functions, trans-
parency and confidence computation, the empirical evaluation demonstrates that
k-NN label ranking achieves results comparable to state-of-the-art model-based
approaches while being amenable to the regime of large-scale problems. General-
izing binary classification techniques to label ranking learning in a model-based
methodology suffers substantially from the increased complexity of the target
space in ranking (in comparison to classification or regression learning), thus,
yielding high computational complexity even for moderately complex problems.
This contrasts with the k-NN approach, where the complexity of the target space
solely affects the aggregation step and, hence, carries much less weight.
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