
On Minimizing the Position Error
in Label Ranking

Eyke Hüllermeier1 and Johannes Fürnkranz2

1 Department of Mathematics and Computer Science, Marburg University
eyke@mathematik.uni-marburg.de

2 Department of Computer Science, TU Darmstadt
juffi@informatik.tu-darmstadt.de

Abstract. Conventional classification learning allows a classifier to make
a one shot decision in order to identify the correct label. However, in
many practical applications, the problem is not to give a single esti-
mation, but to make repeated suggestions until the correct target label
has been identified. Thus, the learner has to deliver a label ranking,
that is, a ranking of all possible alternatives. In this paper, we discuss a
loss function, called the position error, which is suitable for evaluating
the performance of a label ranking algorithm in this setting. Moreover,
we introduce “ranking through iterated choice”, a general strategy for
extending any multi-class classifier to this scenario, and propose an effi-
cient implementation of this method by means of pairwise decomposition
techniques.

1 Introduction

The main interest in the context of classification learning typically concerns the
correctness of a prediction: A prediction is either correct or not and, correspond-
ingly, is rewarded in the former and punished in the latter case. The arguably
best-known loss function reflecting this problem conception is the misclassifica-
tion or error rate of a classifier, that is, the probability of making an incorrect
prediction. In this paper, we are interested in another scenario which motivates
a generalization of the misclassification rate. As an illustration, consider a fault
detection problem which consists of identifying the cause for the malfunctioning
of a technical system. Suppose that a classifier has been trained to predict the
true cause, e.g., on the basis of certain sensor measurements serving as input
attributes (see, e.g., [1] for an application of that type). Now, if it turned out
that a predicted cause is not correct, one cannot simply say that the classifica-
tion process terminated with a failure. Instead, since the cause must eventually
be found, alternative candidates must be tried until the problem is fixed.

What is needed in applications of this type is not only a prediction in the
form of a single class label but instead a ranking of all candidate labels. In fact,
a ranking suggests a simple (trial and error) search process, which successively
tests the candidates, one by one, until the correct cause is found. An obvious

measure of the quality of a predicted ranking is a loss function that counts the
number of futile trials made before the target label is identified.

Apart from a suitable loss function, one needs a learner that produces label
rankings as outputs. In this regard, the most obvious idea is to use a scoring
classifier which outputs a score for each label, which is then used for sorting
the labels. In particular, one may use a probabilistic classifier that estimates,
for every candidate label λ, the conditional probability of λ given the input x.
Intuitively, probabilistic ranking (PR), i.e., ordering the labels according to their
respective probabilities of being the target label, appears to be a reasonable
approach.

In Section 3, we show that this approach is indeed optimal in a particular
sense. Despite this theoretical optimality, however, an implementation of the
approach turns out to be intricate in practice, mainly because estimating con-
ditional probabilities is a difficult problem. In fact, it is well-known that most
classification algorithms commonly used in the field of machine learning do not
produce accurate probability estimates, even though they may have a strong hit
rate. This motivates an alternative approach, to be introduced in Section 3.1,
that we call ranking through iterated choice (RIC). The idea of this method
is to employ a (multi-class) classifier as a choice function which, given a set
of candidate labels and related training data, selects the most promising among
these candidates. Roughly speaking, a label ranking is then obtained by repeated
classification: In every iteration, the learning algorithm removes this label, and
retrains a classifier for the remaining labels. Due to the retraining, RIC obvi-
ously comes along with an increased complexity. To overcome this problem, an
efficient implementation of this approach, which is based on pairwise decom-
position techniques, is proposed in Section 3.2. Experimental results, showing
that RIC does indeed improve accuracy in comparison with PR, are presented
in Section 4.

2 Label Ranking and Position Error

We consider a learning problem which involves an input space X and an output
set L = {λ1 . . . λm} consisting of a finite number of class labels. Assuming X ×L
to be endowed with a probability measure, one can associate a vector

px = (P(λ1 |x) . . . P(λm |x)) (1)

of conditional class probabilities with every input x ∈ X , where P(λi |x) =
P(λi = λx) denotes the probability that x belongs to class λi.

Given a set of training examples D = {(x1, λx1) . . . (xn, λxn)} ⊂ (X × L)n,
the learning problem is to induce a “label ranker”, which is a function that
maps any input x to a total order of the class labels, i.e., a complete, transitive,
and asymmetric relation �x on L; here, λi �x λj means that λi precedes λj in
the ranking associated with x. Formally, a ranking �x can be identified with
a permutation τx of {1 . . .m}, e.g., the permutation τx satisfying λτ−1

x (1) �x

λτ−1
x (2) �x . . . �x λτ−1

x (m). Here, τx(i) = τx(λi) is the position of label λi in the
ranking.

In hitherto existing approaches to label ranking [4, 3], the quality of a pre-
diction is measured in terms of a similarity or distance measure for rankings; for
example, a commonly used measure for comparing a predicted ranking (permu-
tation) τx and a true ranking τ∗x is the Spearman rank correlation. Measures of
that type take the position of all labels into account, which means, e.g., that
swapping the positions of the two bottom labels is as bad as swapping the posi-
tions of the two top labels.

Measures such as Spearman rank correlation quantify, say, the ranking error
of a prediction [5]. In this paper, we are interested in an alternative type of
measure, which is especially motivated by practical performance tasks where a
prediction is used in order to support the search for a true target label. As out-
lined in the introduction, an obvious loss function in this context is the number
of labels preceding that label in the predicted ranking. Subsequently, a deviation
of the predicted target label’s position from the top-rank will be called a position
error. Note that, while a ranking error relates to the comparison of two complete
label rankings τx and τ∗x, the position error refers to the comparison of a label
ranking τx and a true class λx. More specifically, we define the position error of a
prediction τx as PE(τx, λx) df= τx(λx), i.e., by the position of the target label λx

in the ranking τx. To compare the quality of rankings of different problems, it is
useful to normalize the position error for the number of labels. This normalized
position error is defined as

NPE(τx, λx) df=
τx(λx)− 1

m− 1
∈ {0, 1/(m− 1) . . . 1}. (2)

The position error of a label ranker is the expected position error of its predic-
tions, where the expectation is taken with respect to the underlying probability
measure on X × L.

Compared with the conventional misclassification rate, the position error
differentiates between “bad” predictions in a more subtle way: In the case of a
correct classification, both measures coincide. In the case of a wrong top label,
however, the misclassification rate is 1, while the position error assumes values
between 1 and m, depending on how “far away” the true target label is.

Like most performance measures, the position error is a simple scalar index.
To characterize a label ranking algorithm in a more elaborate way, an interesting
alternative is to look at the mapping C : {1 . . .m} → R such that C(k) =
P (τx(λx) ≤ k), i.e., C(k) is the probability that the target label is among the
top k labels in the predicted ranking. Of course, on the basis of this distribution,
only a partial order can be defined on a class of learning algorithms: Two learners
are incomparable in the case of intersecting C-distributions.

3 Minimizing the Position Error

What kind of ranking procedure should be used in order to minimize the risk
of a predicted ranking with respect to the position error as a loss function? As

mentioned before, an intuitively plausible idea is to order the candidate labels λ
according to their probability P(λ = λx) of being the target label. In fact, this
idea is not only plausible but also provably correct. Even though the result is
quite obvious, we state it formally as a theorem.

Theorem 1. Given a query instance x ∈ X , ranking the labels λ ∈ L according
to their (conditional) probabilities of being the target class λx yields a risk min-
imizing prediction with respect to the position error (2) as a loss function. That
is, the expected loss E(τx) = 1

m−1

∑m
i=1(i− 1) · P (τx(λx) = i) becomes minimal

for any ranking �x such that P(λi = λx) > P(λj = λx) implies λi �x λj.

According to the above result, the top rank (first position) should be given
to the label λ> for which the estimated probability is maximal. Regarding the
second rank, recall the fault detection metaphor, where the second hypothesis for
the cause of the fault is only tested in case the first one turned out to be wrong.
Thus, for the next choice, one has obtained additional information, namely that
λ> is not the correct label. Taking this information into account, the second
rank should not simply be given to the label with the second highest probability
according to the original probability measure, say, P1(·) = P(·), but instead to
the label that maximizes the conditional probability P2(·) = P(· |λx 6= λ>) of
being the target label given that the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) may appear meaningless from a
ranking point of view, since standard probabilistic conditioning yields

P2(λ) =
1− P1(λ)
P1(λ>)

∝ P1(λ) (3)

for λ 6= λ>, and therefore does not change the order of the remaining labels. And
indeed, in case the original P(·) is a proper probability measure and conditioning
is performed according to (3), the predicted ranking will not change at all.

3.1 Empirical Conditioning

One should realize, however, that standard conditioning is not an incontestable
updating procedure in our context, simply because P1(·) is not a “true” prob-
ability measure over the class labels. Rather, it is only an estimated measure
coming from a learning algorithm, perhaps one which is not a good probability
estimator. In fact, it is well-known that most machine learning algorithms for
classification perform rather poorly in probability estimation, even though they
may produce good classifiers. Thus, it seems sensible to perform “conditioning”
not on the measure itself, but rather on the learner that produced the measure.
What we mean by this is that the learner should be retrained on the original
data without the λ>-examples, an idea that could be paraphrased as “empirical
conditioning”.

This type of conditioning depends on the data D and the model assumptions,
that is, the hypothesis space H from which the classifier is taken. To emphasize
this dependence and, moreover, to indicate that it concerns an estimated (“hat”)

�

�
�
�

��

�
�

�
�

�

�

?
?

?

?

?

•

•

•

•⊕

?
?

?

?

?

•

•

•

•⊕

Fig. 1. Example of empirical conditioning: The optimal model (decision stump) for the
complete training data (left) and the data omitting the examples of the top label (�).

probability, the conditional measure P2(·) could be written more explicitly as
P2(·) = P̂(· |λx 6= λ>,D,H). To motivate the idea of empirical conditioning,
consider the simple example in Fig. 1, where the hypothesis space H is given by
the class of decision stumps (univariate decision trees with only one inner node,
i.e., axis-parallel splits in the case of numerical attributes). Given the examples
from three classes (represented, respectively, by the symbols �, ?, and •), the
best model corresponds to the split shown in the left picture. By estimating
probabilities through relative frequencies in the leaf nodes of the decision stump,
one derives the following estimates for the query instance, which is marked by a
⊕ symbol: P̂(� |⊕) = 12/15, P̂(? | ⊕) = 2/15, P̂(• |⊕) = 1/15; thus, the induced
ranking is given by � � ? � •. Now, suppose that the top label � turned out
to be an incorrect prediction. According to the above ranking (and probabilistic
conditioning), the next label to be tested would be ?. However, when fitting a
new model to the training data without the �-examples, the preference between
? and • is reversed, because the query instance is now located “on the • -side”
of the decision boundary. Roughly speaking, conditioning by “taking a different
look” at the data, namely a look that suppresses the � examples, gives a quite
different picture (shown on the right-hand side of Fig. 1) of the situation. In
fact, one should realize that, in the first model, the preference between ? and •
is strongly biased by the �-examples: The first decision boundary is optimal only
because it classifies all �-examples correctly, a property that looses importance
once it turned out that � is not the true label of the query.

According to the above idea, a classifier is used as a choice function: Given
a set of potential labels with corresponding training data (and a new query in-
stance x), it selects the most likely candidate among these labels. We refer to
the process of successively selecting alternatives by estimating top-labels from
(conditional) probability measures P1(·), P2(·) . . . Pm(·) as ranking through iter-
ated choice (RIC). As an important advantage, note that this approach can be
used to turn any multi-class classifier into a label ranker. In principle, it is not
required that a corresponding classifier outputs a score, or even a real probabil-

ity, for every label. In fact, since only a simple decision in favor of a single label
has to be made in each iteration, any classifier is good enough. In this regard, let
us note that, for the ease of exposition, the term “probability” will subsequently
be used in a rather informal manner.

Regarding its effect on label ranking accuracy, one may expect the idea of
RIC to produce two opposite effects: (1) Information loss: In each iteration, the
size of the data set to learn from becomes smaller. (2) Simplification: Due to
the reduced number of classes, the learning problems become simpler in each
iteration. The first effect will clearly have a negative influence on generalization
performance, as a reduction of data comes along with a loss of information. In
contrast to this, the second effect will have a positive influence: The classifiers
will become increasingly simple, because it can be expected that the decision
boundary for separating m classes is more complex than the decision boundary
for separating m′ < m classes of the same problem. The hope is that, in practice,
the second (positive) effect will dominate the first one.

3.2 Efficient Implementation

An obvious disadvantage of RIC concerns its computational complexity. In fact,
since empirical conditioning essentially means classifying on a subset of L, the
number of models needed is (potentially) of the order 2|L|. To overcome this
problem, we propose the use of pairwise decomposition techniques.

The idea of pairwise learning is well-known in the context of classification [2],
where it allows one to transform a polychotomous classification problem, i.e., a
problem involving m > 2 classes L = {λ1 . . . λm}, into a number of binary prob-
lems. To this end, a separate model (base learner) Mij is trained for each pair
of labels (λi, λj) ∈ L, 1 ≤ i < j ≤ m; thus, a total number of m(m− 1)/2 mod-
els is needed. Mij is intended to separate the objects with label λi from those
having label λj . Depending on the classifier used, an outputMij(x) can be inter-
preted, e.g., as the conditional probability pij = P (λx = λi |λx ∈ {λi, λj},x).
In a second step, an estimation of the probability vector (1), i.e., of the indi-
vidual probabilities pi = P(λx = λi |x), has to be derived from these pairwise
probabilities. To this end, different techniques have been developed. Here, we
resorted to the approach proposed in [7], which derives the pi as a solution of a
system of linear equations, S, that includes one equation for every label.

RIC can then be realized as follows: First, the aforementioned system of
linear equations is solved, and the label λi with maximal probability pi is chosen
as the top-label λ>. This label is then removed, i.e., the corresponding variable
pi and its associated equation are deleted from S. To find the second best label,
the same procedure is then applied to the reduced system S′ thus obtained, i.e.,
by solving a system of m− 1 linear equations and m− 1 variables. This process
is iterated until a full ranking has been constructed.

This approach reduces the training effort from an exponential to a quadratic
number of models. Roughly speaking, a classifier on a subset L′ ⊆ L of classes
is efficiently assembled “on the fly” from the corresponding subset of pairwise

models {Mij |λi, λj ∈ L′}. Or, stated differently, the training of classifiers is
replaced by the combination of associated binary classifiers.

The hope that empirical conditioning improves accuracy in comparison with
conventional probabilistic conditioning is essentially justified by the aforemen-
tioned simplification effect of RIC. Note that this simplification effect is also
inherently present in pairwise learning. Here, the simplification due to a reduc-
tion of class labels is already achieved at the very beginning and, by decomposing
the original problem into binary problems, carried to the extreme. Thus, if the
simplification effect is indeed beneficial in the original version of RIC, it should
also have a positive influence in the pairwise implementation (RIC-P). These are
exactly the two conjectures to be investigated empirically in the next section:
(i) Empirical conditioning (RIC) pays off with respect to accuracy, and (ii) the
increased efficiency of the pairwise implementation, RIC-P, is achieved without
sacrificing this gain in accuracy.

4 Empirical Results

In order to investigate the practical usefulness of empirical conditioning and the
related RIC procedure, we compare the corresponding strategy to the most ob-
vious alternative, namely ordering the class labels right away according to the
respective probabilities produced by a multi-class classifier (probabilistic rank-
ing, PR). So, given any multi-class classifier, capable of producing such prob-
abilities, as a base learner, we consider the following three learning strategies:
PR: A ranking is produced by applying the base learner to the complete data
set only once and ordering the class labels according to their probabilities. RIC:
This version refers to the ranking through iterated choice procedure outlined in
Section 3.1, using the multi-class classifier as a base learner. RIC-P: This is the
pairwise implementation of RIC as introduced in Section 3.2 (again using as base
learners the same classifiers as RIC and PR). In cases of non-unique top-labels,
we always break ties by coin flipping.

For 18 benchmark data sets from the UCI repository and the StatLib archive3

we estimated the mean (absolute) position error of each method using leave-one-
out cross validation, using two widely known machine learning algorithms as
base learners: C4.5 and Ripper. For comparison purpose, we also derived results
for the naive Bayes (NB) classifier, as this is one of the most commonly used
“true” probabilistic classifiers. Note that, since conditional probabilities in NB
are estimated individually for each class, empirical conditioning is essentially the
same as conventional conditioning, i.e., RIC is equivalent to PR.

From the win-loss statistics for NB in comparison with PR using, respectively,
C4.5 (10/8) and Ripper (10/8), there is no visible difference between these multi-
class classifiers in terms of label ranking accuracy. Important are the win-loss
statistics summarized in Table 1 (detailed results had to be omitted here due
to space restrictions but can be found in an extended version of this paper [6]).

3 http://www.ics.uci.edu/∼mlearn, http://stat.cmu.edu/

Table 1. Win/loss statistics for each pair of methods, using C4.5 (left) and Ripper
(right) as base learners.

PR RIC RIC-P PR RIC RIC-P

PR — 3/13 4/13 — 3/13 3/12
RI 13/3 — 7/8 13/3 — 2/13
RIC-P 13/4 8/7 — 12/3 13/2 —

These results perfectly support the two conjectures raised above. First, RIC
significantly outperforms PR: According to a simple sign test for the win-loss
statistic, the results are significant at a level of 2%. Second, RIP-P is fully
competitive to RIC (and actually shows a better performance in the case of
Ripper as a base learner).

5 Concluding Remarks

In the context of the label ranking problem, we have discussed the position er-
ror as an alternative loss function. To minimize this loss function, we proposed
ranking through iterated choice (RPC), a strategy that essentially reduces label
ranking to repeated classification. In each iteration, RPC performs empirical con-
ditioning, which in turn requires the retraining of classifiers. To avoid the need
for training a potentially large number of models, we used a pairwise implemen-
tation in which retraining is done implicitly, namely by combining the outputs
of certain pairwise models. In an experimental study, RPC was compared to
standard probabilistic ranking, where the class labels are ranked according to
the originally estimated probabilities. Our results suggest that retraining (em-
pirical conditioning) does indeed reduce the expected loss when using standard
multi-class classifiers as base learners, and that this gain in accuracy is preserved
by the pairwise implementation.

References

1. C. Alonso, JJ. Rodŕıguez, and B. Pulido. Enhancing consistency based diagnosis
with machine learning techniques. In Current Topics in AI, vol. 3040 of LNAI,
312–321. Springer, 2004.

2. J. Fürnkranz. Round robin classification. J. of Mach. Learn. Res., 2:721–747, 2002.
3. J. Fürnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In

Proc. ECML-03, Cavtat-Dubrovnik, Croatia, 2003.
4. S. Har-Peled, D. Roth, and D. Zimak. Constraint classification: a new approach

to multiclass classification. In Proc. ALT-02, pp. 365–379, Lübeck, 2002.
5. E. Hüllermeier and J. Fürnkranz. Learning label preferences: Ranking error versus

position error. In Proc. IDA–2005, Madrid, 2005.
6. E. Hüllermeier and J. Fürnkranz. On minimizing the position error in label ranking.

Technical Report TUD-KE-2007-04, TU Darmstadt, 2007.
7. T.F. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classifi-

cation by pairwise coupling. J. Machine Learning Res., 5:975–1005, 2004.

