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Abstract. We consider the problem of probability estimation in the
setting of multi-class classification. While this problem has already been
addressed in the literature, we tackle it from a novel perspective. Exploit-
ing the close connection between probability estimation and ranking, our
idea is to solve the former on the basis of the latter, taking advantage of
recently developed methods for label ranking. More specifically, we ar-
gue that the Plackett-Luce ranking model is a very natural choice in this
context, especially as it can be seen as a multinomial extension of the
Bradley-Terry model. The latter provides the basis of pairwise coupling
techniques, which arguably constitute the state-of-the-art in multi-class
probability estimation. We explore the relationship between the pairwise
and the ranking-based approach to probability estimation, both formally
and empirically. Using synthetic and real-world data, we show that our
method does not only enjoy nice theoretical properties, but is also com-
petitive in terms of accuracy and efficiency.

1 Introduction

The problem of classification is normally understood as learning a model that
maps instances to class labels. While useful for many purposes, there are nu-
merous applications in which the estimation of the probabilities of the different
classes is more desirable than just selecting one of them. Application areas of
this kind include safety-critical domains such as medical decision making, where
probabilities are useful as a measure of the reliability of a classification, or ap-
plications like computational advertising, where they allow one to focus on the
most promising alternatives. Moreover, given a probability for each class, it is
in principle possible to minimize any loss function, that is, to derive (or at least
approximate) Bayes-optimal decisions. This is especially useful in cost-sensitive
classification, where different types of misclassification may incur different costs
[12]. Simply minimizing the standard 0/1 loss will normally not produce desir-
able results in this setting.

As discussed in more detail in Section 2, the problem of probability estima-
tion is rather challenging and in a sense even more difficult than conventional
classification. In the field of machine learning, the problem has been approached



from different directions. Specifically interesting in this regard is the idea of ex-
ploiting the connection between probability estimation and ranking, another type
of prediction problem that has attracted increasing attention in recent years. In-
deed, ranking is in a sense in-between classification and probability estimation
or, stated differently, can be seen as an intermediate step from classification to
probability estimation [8]. In particular, the maximization of ranking measures
like the AUC requires sorting a given set of alternatives from most probable pos-
itive to most probable negative [5]. Thus, although precise probability degrees
of all alternatives are not necessarily needed, at least their order relation must
be predicted correctly.

For far, most work on the connection between probability estimation and
ranking, including AUC maximization, has focused on the binary case, distin-
guishing only between two classes (positive and negative). Essentially, this means
that only a single value needs to be estimated for each instance, namely the prob-
ability of belonging to the positive class. In this paper, we establish a connection
between probability estimation and ranking for the case of multiple classes. To
this end, we refer to another type of ranking problem, namely label ranking [3, 4].
While the binary case is intimately connected with bipartite ranking, in which
the instances are ranked themselves, the problem of label ranking consists of
ranking the class labels given an instance.

The rest of the paper is organized as follows. In the next section, we discuss
the problem of multi-class probability estimation and recall the basic ideas of
pairwise coupling and classifier calibration. In Section 3, we introduce the prob-
lem of label ranking. Then, in Section 4, we establish a tight link between label
ranking and probability estimation, taking advantage of a probabilistic ranking
model called Plackett-Luce. In Section 5, we show how the label ranking prob-
lem can be approached on the basis of this model. Building on the connection
established in Section 4 and the PL-based label ranking method introduced in
Section 5, we then introduce a method for probability estimation based on label
ranking in Section 6. Experimental results are presented in Section 7, before
concluding the paper in Section 8.

2 Multi-Class Probability Estimation

Consider the standard setting of multi-class classification with an instance space
X and a set of classes Y = {y1, . . . , yK}. We are interested in learning a proba-
bilistic classifier, that is, a model that estimates the conditional probabilities of
classes given an instance x ∈ X:

(p1, . . . , pK) = (PY(y1 |x), . . . ,PY(yK |x)) (1)

Since true probability degrees are rarely available for training, probabilistic clas-
sifiers are typically trained on standard classification data, that is, observations
of the form (x, y) ∈ X × Y, where the class label y is assumed to be generated
according to PY(· |x).



Probability estimation is known to be a quite hard problem, especially in com-
parison to standard classification. This comes at no surprise, noting that proper
probability estimation is a sufficient but not necessary condition for proper clas-
sification: If the conditional class probabilities (1) are predicted accurately, an
optimal classification can simply be made by picking the class with highest prob-
ability:

ŷ = arg max
yi∈Y

P̂(yi |x) (2)

More generally, the Bayes decision can be taken so as to minimize any loss
in expectation. On the other hand, a correct classification can also be obtained
based on less accurate probability estimates. In fact, the classification will remain
correct as long as the estimated probability is highest for the true class. Or, stated
differently, an estimation error will remain ineffective unless it changes the result
of the arg max operation in (2). This is also the reason for why methods like
naive Bayes show competitive performance in classification despite producing
relatively inaccurate probability estimates [7].

Methods like naive Bayes and decision trees are multi-class classifiers and
can in principle be used to produce probability estimates in this setting. In
practice, however, one often prefers to estimate probabilities in the two-class
setting, especially because estimating a single probability (of the positive class)
is much simpler than estimating K − 1 probabilities simultaneously. Moreover,
the binary case is amenable to a broader spectrum of classifiers, including logistic
regression, which is a proven method for probability estimation. On the other
hand, the reduction of multinomial to binomial probability estimation obviously
involves an aggregation problem, namely the need to combine probabilities on
pairs of classes into probabilities on the label set Y. This is the idea of “pairwise
coupling” techniques.

2.1 Pairwise Coupling

As a special type of binary decomposition technique, pairwise coupling allows
one to tackle multi-class problems with binary classifiers. The key idea is to
transform a K-class problem into K(K − 1)/2 binary problems, one for each
pair of classes. More specifically, a separate model Mi,j is trained for each pair
of labels (yi, yj) ∈ Y × Y, 1 ≤ i < j ≤ K, using the examples from these two
classes as their training set; thus, a total number of K(K−1)/2 models is needed.
Mi,j is intended to separate the objects with label yi from those having label yj .

At prediction time, a query instance x ∈ X is submitted to all models Mi,j .
The predictions pi,j = Mi,j(x) are typically interpreted by means of the Bradley-
Terry model [1], a probabilistic choice model expressing the probability that “yi
wins against yj” as follows:

pi,j = P(yi � yj) = PY(yi | {yi, yj}) =
pi

pi + pj
(3)

Based on the relationship (3), the unconditional probabilities pi can be derived
from the conditional (pairwise) probabilities pi,j . Obviously, however, it will not



always be possible to find a distribution (p1, . . . , pK) such that the equality
pi,j = pi/(pi + pj) holds for all 1 ≤ i < j ≤ K, simply because this system of
equations is over-constrained: K variables have to satisfy K(K− 1)/2 equations
(plus the constraint p1+ . . .+pK = 1). In fact, one should notice that the models
Mi,j are learnt independently of each other, so that the predictions pi,j are not
necessarily coherent.

Pairwise coupling techniques therefore seek to solve the above reconstruction
problem approximately. Different methods for putting this idea into practice
have been proposed and compared in [21]. For example, the following system
of linear equations can be derived by “averaging” over the identities PY(yi) =
PY(yi | {yi, yj}) ·PY({yi, yj}):

PY(yi) =
1

K − 1

∑
j 6=i

PY(yi | {yi, yj}) ·PY({yi, yj})

=
1

K − 1

∑
j 6=i

PY(yi | {yi, yj}) · (PY(yi) + PY(yj))

Or, in terms of the pi an pi,j :

(K − 1)pi =
∑
j 6=i

pi,j · (pi + pj)

In conjunction with the constraint p1+. . .+pK = 1 and the non-negativity of the
pi, this system has a unique solution provided that pi,j > 0 for all 1 ≤ i, j ≤ K.
Among the methods compared in [21], this approach turned out to perform
specifically well.

2.2 Classifier Calibration

As mentioned earlier, the scores produced by conventional classification methods
are typically quite biased: Although they might be good enough for correct
classification, they do not provide accurate probability estimates. This is true
even for methods with an inherently probabilistic interpretation, such as logistic
regression [24]. Among a number of possible reasons, let us mention that all such
methods are based on rather strong model assumptions that will commonly
be violated in practice. In naive Bayes, for example, this is the assumption
of conditional independence of the attributes given the class. Likewise, logistic
regression assumes that the log of the odds ratio is a linear function of the
attributes. Another reason is the fact that for commonly used loss functions
such as 0/1 loss or hinge loss, the true probability is not a risk minimizer [2].

To overcome this problem, several methods for “classifier calibration” have
been proposed in the literature [18, 22]. These are post-processing methods whose
idea is to find a mapping that turns classifier scores into meaningful probability
estimates. As an example, we mention the method of isotonic regression [23],
which, due to its nature as a nonparametric approach, is less susceptible to



the aforesaid problem of model misspecification. Besides, it has been shown to
perform quite well in practice [16].

Isotonic regression finds a monotone mapping from scores to probabilities or,
say, from poorly estimated probabilities to hopefully better ones. Monotonic-
ity assures that the order of classes can never be reversed: If class yi receives a
higher score by the classifier than yj , then the calibrated probability estimate for
the former cannot be smaller than the estimate for the latter. Against the back-
ground of our discussion about the relationship between ranking and probability
estimation, this is clearly a desirable property.

3 Label Ranking

In the setting of label ranking, each instance x from the instance space X is
associated with a total order of all class labels, that is, a total, transitive, and
asymmetric relation �x on Y, where yi �x yj indicates that yi precedes yj in the
order. Since a ranking can be considered as a special type of preference relation,
we shall also say that yi �x yj indicates that yi is preferred to yj given the
instance x.

Formally, a total order �x can be identified with a permutation πx of the set
[K] = {1, . . . ,K}. We define πx such that πx(i) is the index j of the class label
yj put on the i-th position in the order (and hence π−1x (j) = i the position of
the j-th label). This permutation thus encodes the (ground truth) order relation

yπx(1) �x yπx(2) �x . . . �x yπx(K) .

The class of permutations of [K] (the symmetric group of order K) is denoted
by Ω. By abuse of terminology, though justified in light of the above one-to-one
correspondence, we refer to elements π ∈ Ω as both permutations and rankings.

In analogy with the classification setting, we do not assume the existence of
a deterministic X −→ Ω mapping. Instead, every instance is associated with a
probability distribution over Ω. This means that, for each x ∈ X, there exists a
probability distribution PΩ(· |x) such that, for every π ∈ Ω, PΩ(π |x) is the
probability that πx = π.

The goal in label ranking is to learn a “label ranker” in the form of an
X −→ Ω mapping. As training data, a label ranker uses a set of instances xn,
n ∈ [N ], together with information about the associated rankings πxn

. Ideally,
complete rankings are given as training information. From a practical point of
view, however, it is important to allow for incomplete information in the form
of a ranking

yπx(1) �x yπx(2) �x . . . �x yπx(k) , (4)

where k < K and {π(1), . . . , π(k)} ⊂ [K]. For example, for an instance x, it
might be known that y2 �x y1 �x y5, while no preference information is given
about the labels y3 or y4. By definition, we let π−1(yi) = π−1(i) = 0 if yi is
not present in the ranking π; thus, the presence of a class yi is equivalent to
π−1(i) > 0.



Table 1. A distribution of rankings with three labels.

π PΩ(π |x)

y1 � y2 � y3 0.10
y1 � y3 � y2 0.25
y2 � y1 � y3 0.20
y2 � y3 � y1 0.20
y3 � y1 � y2 0.25
y3 � y2 � y1 0

4 Label Ranking vs Classification: A Probabilistic Link

In contrast to conventional classification, the setting of label ranking does not
assume the existence of a “true class label” of an instance. In fact, while the out-
put space in classification is given by the set Y of class labels, and a probability
vector of conditional class probabilities (1) can be associated with every instance
x ∈ X , the output space in label ranking is the class of permutations Ω. Yet,
as will be explained in the following, label ranking can be interpreted as a gen-
eralization of conventional classification or, the other way around, classification
can be seen as a special case of label ranking. Most naturally, this connection
is obtained by associating the “true class” in classification with the top-ranked
label in label ranking. For the ease of exposition, we shall subsequently drop the
conditioning on the instance x.

4.1 From Probabilities on Rankings to Class Probabilities

Formally, the connection between label ranking and classification is established
by means of a mapping between the spaces P(Y) and P(Ω), that is, the space
of probability distributions on Y and the space of probability distributions on
Ω. Associating the observed class in classification with the top-ranked label in
label ranking then comes down to mapping a measure PΩ ∈ P(Ω) to a measure
PY ∈ P(Y) such that

pj = PY(yj) =
∑

π∈Ω:π(1)=j

PΩ(π) . (5)

For example, the probability distribution PΩ in Table 1 is mapped to the dis-
tribution PY = (p1, p2, p3) = (0.35, 0.4, 0.25). Note that the most probable class
(y2) differs from the top-label in the most probable ranking (y1).

The other way around, there are several ways of embedding P(Y) in P(Ω)
(indeed, note that |Ω| is in general much larger than |Y|); we will come back to
this issue when discussing the so-called Plackett-Luce model below.

4.2 The Plackett-Luce Model

So far, no specific assumptions about the probability measure PΩ on Ω were
made. Needless to say, due to the large cardinality of the space Ω, it is practically



impossible to work with the full class of distributions P(Ω). For that reason,
different types of parametrized classes of probability distributions on rankings
have been proposed in statistics [15].

A prominent example is the Mallows model [14], a distance-based probabil-
ity model belonging to the family of exponential distributions. The standard
Mallows model is determined by two parameters:

PΩ(π | θ, π0) =
exp(−θD(π, π0))

φ(θ)
(6)

The ranking π0 ∈ Ω is the location parameter (mode, center ranking) and θ ≥ 0
is a spread parameter. Moreover, D(·) is a distance measure on rankings, and
the constant φ = φ(θ) is a normalization factor that depends on the spread (but,
provided the right-invariance of D(·), not on π0).

In the following, we shall focus on another model that was first studied by
Luce [13] and subsequently by Plackett [17]. The Plackett-Luce (PL) model
appears to be especially appealing for our purpose, as it establishes a natural
bridge between label ranking and classification. The PL model is specified by a
parameter vector v = (v1, v2, . . . , vK) ∈ RK+ :

PΩ(π |v) =

K∏
i=1

vπ(i)

vπ(i) + vπ(i+1) + . . .+ vπ(K)
(7)

Obviously, this model can be seen as a generalization of the above-mentioned
Bradley-Terry model (3) for the pairwise comparison of alternatives. Indeed, a
natural interpretation of the PL model is a stage-wise construction of a ranking:
A ranking is produced by a sequence of choices, where each choice problem
consists of selecting one among the labels that have not been picked so far, and
the probability of a label yi being selected is always proportional to its “skill”
parameter vi. First, the top label is chosen, and the probability of each label yi
to be selected is given by vi/(v1+v2+ . . .+vK). Then, the second label is chosen
among those still available, using the same selection principle, and so on and so
forth. In other words, with probabilities pi defined as “normalized skills”

pi = PY(yi) =
vi

v1 + v2 + . . .+ vK
, (8)

the probability of yi to be chosen among a set C ⊆ Y of remaining candidates
exactly equals the conditional probability PY(yi |C). Consequently, the proba-
bility (7) can also be written as follows:

PΩ(π |v) = PΩ(π |p) =

K∏
i=1

PY
(
yπ(i) |Ci

)
, (9)

where Ci = {yπ(i), . . . , yπ(K)} is the set of remaining candidates and p = v/||v||
is the probability vector obtained by normalizing the parameter vector v.

Thus, with a PL model v = (v1, . . . , vK), one can simultaneously associate
a distribution PY on Y and a distribution PΩ on Ω that are closely connected



with each other. In particular, this model is coherent with the mapping (5) in the
sense that PY(yi) = PΩ(π(1) = i). Moreover, the PL model defines a specific
though natural embedding of P(Y) in P(Ω) via (9). Last but not least, it allows
for computing the probability of incomplete rankings (which normally requires
an expensive marginalization, i.e., summation over all linear extensions) in a
quite convenient way: The probability of an incomplete ranking (4) is given by

P(π |v) =

k∏
i=1

vπ(i)

vπ(i) + vπ(i+1) + . . .+ vπ(k)
.

As an aside, we mention that the appealing properties of the PL model as out-
lined above are closely connected with the “choice axioms” of Luce [13]. In fact,
it is known that the PL model is the only ranking model satisfying these axioms.

5 Label Ranking based on the PL Model

A label ranking method based on the PL model has been proposed in [3]. The key
idea of this method is to define the PL parameters v as a function of the input
attributes specifying an instance: v = (v1, . . . , vK) = f(x). More specifically,
log-linear models are used to guarantee non-negativity, that is, the logarithm of
each parameter vi is modeled as a linear function:

vi = exp
(
〈w(i),x〉

)
= exp

 d∑
j=1

w
(i)
j · xj

 , (10)

where an instance is assumed to be represented in terms of a feature vector
x = (x1, . . . , xd) ∈ X ⊆ Rd.

5.1 Parameter Estimation

Learning a label ranking model then comes down to estimating the parameters

w
(i)
j (i ∈ [K], j ∈ [d]) in (10). This can be accomplished by means of maximum

likelihood estimation. More precisely, given a training data set

T =
{(

x(q), π(q)
)}N

q=1
(11)

with x(q) =
(
x
(q)
1 , . . . , x

(q)
d

)
, the parameters are determined by maximizing the

log-likelihood function

L =

N∑
q=1

nq∑
i=1

log v
(
π(q)(i), q

)
− log

nq∑
j=i

v
(
π(q)(j), q

) , (12)

where nq is the number of labels in the ranking π(q), and

v(i, q) = exp
(
〈w(i),x(q)〉

)
. (13)

For algorithmic details, we refer to [3].



5.2 From Label Ranking to Logistic Regression

Interestingly, we can show that the standard multinomial logistic regression ap-
proach for classification can be seen as a special case of the PL-based label rank-
ing method introduced above. To this end, consider the case of classification,
where a single class label is observed for each training instance. An observation
of this kind can be interpreted as a label ranking, of which only the top-position
is known. Or, stated differently, the probability of this observation corresponds
to the probability of selecting yi in the first step of the choice process:

PY(yi |x;w) = PΩ(π(1) = i |x;w) =
exp

(
〈w(i),x〉

)∑K
j=1 exp

(
〈w(j),x〉

) (14)

The log-likelihood function of the data is then given by

L =

N∑
q=1

K∑
i=1

tqi

〈w(i),x〉 − log

K∑
j=1

exp
(
〈w(j),x〉

) , (15)

where t is a coding matrix with tqi = 1 if the class of the q-th instance is yi
and tqi = 0 otherwise. This model exactly corresponds to the standard model of
multinomial logistic regression.

6 A Ranking Approach to Probability Estimation

In our discussion so far, we have established a close connection between (label)
ranking and classification. In terms of modeling, this connection mainly rests on
the interpretation of a classification (an observed class label) as a ranking with
the top-label observed. This connection is ideally supported by the PL model,
notably because the ranking parameters of this model are in direct correspon-
dence with class probabilities; besides, probabilities of incomplete rankings (i.e.,
rankings of a subset of the labels) are obtained through simple conditioning. As
a consequence, the PL model is also consistent with our monotonicity assump-
tion: The higher the class probability, the higher the (expected) position of the
corresponding label in the ranking.

In terms of methods, we have noticed that label ranking based on the PL
model can be seen as an extension of conventional multinomial logistic regres-
sion; or, vice versa, logistic regression corresponds to a special case of PL-based
label ranking, namely the case where only top-1 rankings (classes) are observed.
The obvious advantage of the label ranking framework is an increased flexibility
with regard to the exploitation of training information: While standard logistic
regression can only learn from observed class labels, label ranking is also able to
exploit comparative preference information of more general type. This includes,
for example, pairwise comparisons of the kind “for the instance x, class label yi
is more probable than yj”, even if one cannot assure that yi is the most likely



label. This could be useful in many practical situations, for example if the cor-
rect class label cannot be determined precisely although some candidate classes
can certainly be excluded [6].

More generally, a ranking can be interpreted as a special type of qualitative
probability on Y [20]. The order relation yi �x yj indicates that the conditional
probability of yi given x is higher than the probability of yj given x, though
without specifying any concrete numerical values. By learning a PL-based label
ranking model, these qualitative probabilities are then turned into quantitative
probabilities pi ∝ vi(x). Thus, label ranking can indeed be seen as a natural
bridge between classification and probability estimation.

6.1 PELARA: Probability Estimation via Label Ranking

Our method of Probability Estimation via LAbel RAnking (PELARA) can be
summarized as follows:

– The method assumes as training information a set of data (11) consisting of
instances x ∈ X together with label rankings (4) of varying length k ∈ [K]
(including k = 1 for the special case of a class observation).

– On this data, a label ranker is trained using the method outlined in Section
5 (and explained in more detail in [3]).

– As a result, we obtain a model M ′ that assigns a vector of PL parameters
to each query instance x:

M ′ : x 7→ v = v(x) ∈ RK+

– To obtain an (uncalibrated) probability estimate, these vectors are normal-
ized, i.e., v(x) is turned into

M(x) = p(x) = (p1(x), . . . , pK(x)) ∝ v(x) (16)

such that ||p(x)|| = 1.

The model M thus obtained defines a probability estimator.

6.2 Comparison with Decomposition Schemes

PELARA offers an appealing alternative to conventional methods such as pair-
wise coupling. Instead of decomposing the problem into a quadratic number of
binary problems first, and combining the predictions of the pairwise models af-
terward, our label ranking method solves the original problem in one go. As a
potential advantage, apart from simplicity, let us mention that the scores (prob-
abilities) thus produced should be well-balanced right away, without the need to
couple them in an approximate manner.

Indeed, one should notice that a pairwise decomposition will normally come
with a loss of information, and the underlying assumptions justifying the reduc-
tion are not entirely clear. For example, while in our approach, the observation of



class yi for an instance x is modeled in terms of the probability vi/(v1+. . .+vK),
it is split into K−1 binary training examples yi � yj , j ∈ [K]\{i}, in the pairwise
approach. However, selecting yi among the set of candidates Y is obviously not
the same as (independently) selecting yi in the pairwise comparisons between yi
and yj :

vi
v1 + . . .+ vK

6=
∏
j 6=i

vi
vi + vj

In the case of a uniform distribution v ≡ 1, for instance, the left-hand side
is 1/K while the right-hand side is (1/2)K−1. Similar arguments apply to the
decomposition of an observed ranking into pairwise preferences.

The most common alternative to the pairwise (all pairs) decomposition scheme
is one-vs-rest (OVR) decomposition [19]: One model is trained for each class label
yi, using this label as positive and all others as negative examples; for proba-
bility estimation, the predictions of these models are simply normalized. Thus,
OVR trains a smaller number of models. The individual models, however, are
typically more complex: Separating a class from all other class simultaneously
is normally more difficult than only separating it from each class individually,
and consequently may call for more complex decision boundaries. Besides, the
individual problems may become quite imbalanced.

Our approach is in a sense in-between pairwise and OVR learning: Like OVR,
it trains a linear number of models, one for each label. Yet, since these models are
all trained simultaneously, without building negative meta-classes, the aforesaid
disadvantage of OVR is avoided.

7 Experiments

This section presents experimental results, starting with a simplified analysis
that is meant to help understand some key differences between the pairwise
coupling and the ranking-based approach to probability estimation. Next, we
compare our method with state-of-the-art approaches to probability estimation
on a set of classification benchmarks.

7.1 On the Reconstruction Error of Pairwise Coupling

In comparison to the pairwise approach to probability estimation, which consists
of decomposing the original multi-class problem into binary problems first and
“coupling” the solutions (probability estimates) of these problems afterward,
our ranking-based method allows for solving the original problem in a single
step: Since all labels are treated simultaneously, there is no need for any type of
aggregation. In principle, this should be seen as an advantage, especially since
the decomposition step in pairwise learning is supposed to come along with a
loss of information.

More concretely, one may wonder to what extent pairwise coupling is able to
reconstruct a probability vector p = (p1, . . . , pK) from its pairwise components



pi,j = pi/(pi+pj) if these are corrupted with noise; this ability is in fact crucial,
since these pairwise components correspond to the predictions of the binary
classifiers, which are never perfect.
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Fig. 1. Reconstruction error (measured in terms of RMSE) of pairwise coupling as
a function of the level of noise (standard deviation) in the pairwise predictions; K
corresponds to the number of class labels.

Fig. 1 shows the expected RMSE between the true probability vector p and
its coupled reconstruction (based on the method described in Section 2.1) when
the pairwise probability estimates are given by the pi,j independently corrupted
with additive Gaussian noise (truncated if necessary, so as to assure values in
[0, 1]). More specifically, the figure shows the expected RMSE as a function of
the noise level, measured in terms of the standard deviation. As can be seen, the
reconstruction error does indeed increase almost linearly with the noise level.
What is also interesting to observe, however, is that the error becomes smaller
if the number of classes increases. This effect, which has also been observed
for other types of pairwise learning methods, can be explained by the level of
redundancy produced by the pairwise approach: Since the number of models
(and hence the number of prediction errors) increases quadratically, there is a
good chance to “average out” the individual prediction errors.

On the other side, the ranking-based approach will of course be affected by
prediction errors, too. These errors are not easily comparable to the pairwise
ones, but suppose that we add the same Gaussian noise to the individual com-
ponents pi of the vector p. The “reconstruction” in this case simply comes down
to renormalization. Fig. 2 plots the corresponding reconstruction error r against
the reconstruction error r′ of the pairwise coupling approach; the circles in this
picture are centered at the points (r, r′), where both r and r′ refer to the same
underlying (true) probability vector. Interestingly, while the ranking-based ap-
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Fig. 2. Reconstruction error of the ranking-based approach (x-axis) versus reconstruc-
tion error of pairwise coupling (y-axis) for K = 4, 8 and 12 labels.

proach seems to have an advantage in the case of a low number of labels (the
cloud of circles for four labels is above the diagonal), this advantage turns into a
disadvantage if the number of labels increases. Indeed, the larger the number of
labels, the more advantageous the pairwise coupling approach becomes; in the
figure, the cases of eight and twelve labels are shown for illustration.

Needless to say, these results have to be interpreted with caution, since
they are based on very idealized assumptions (e.g., independence of errors).
Yet, they confirm an observation that was already made in previous studies of
pairwise learning (albeit related to classification, not probability estimation):
Due to the large number of binary models constructed, coming along with a
high level of redundancy, the pairwise decomposition technique exhibits a kind
of error-correction mechanism, and the larger the number of classes, the better
this mechanism works [10].

7.2 Multi-Class Classification

In the absence of benchmark data with given probabilities as ground-truth, we
test our approach on standard classification benchmarks using the Brier score
as a performance measure. The Brier score, which is commonly used for this
purpose, compares a predicted probability vector p = (p1, . . . , pK) with a true
class y ∈ Y in terms of the following loss:

L(p, y) =

K∑
i=1

(
pi − Jy = yiK

)2
For comparison, we use pairwise coupling (PC) as described in Section 2.1 with
logistic regression as base learner. Additionally, we used the pairwise coupling



Table 2. Results in terms of average Brier score (± standard deviation).

data set #ins. #att. #cls. PC PC-HT OVR PELARA

iris 150 4 3 0.044±0.045 0.044±0.045 0.087±0.042 0.043±0.050
glass 214 9 6 0.439±0.013 0.434±0.018 0.442±0.050 0.432±0.043
wine 178 13 3 0.044±0.028 0.044±0.028 0.037±0.023 0.044±0.025
vowel 528 10 11 0.246±0.054 0.241±0.044 0.555±0.047 0.389±0.063
vehicle 846 18 4 0.241±0.021 0.240±0.020 0.270±0.021 0.240±0.023
segment 2310 19 7 0.060±0.018 0.070±0.015 0.134±0.016 0.068±0.012
dna 2000 180 3 0.140±0.025 0.141±0.021 0.124±0.029 0.157±0.041
pendigits 7494 16 10 0.028±0.002 0.043±0.002 0.094±0.004 0.053±0.003
poker 25010 10 10 0.566±0.002 0.566±0.002 0.567±0.002 0.565±0.002
satimage 4435 36 6 0.189±0.012 0.190±0.012 0.246±0.009 0.198±0.011
svmguide4 300 10 6 0.642±0.015 0.716±0.005 0.715±0.008 0.737±0.006
svmguide2 391 20 3 0.275±0.034 0.259±0.032 0.277±0.032 0.266±0.034
letter 15000 16 26 0.228±0.009 0.291±0.006 0.473±0.005 0.336±0.008
shuttle 43500 9 7 0.068±0.003 0.067±0.002 0.135±0.003 0.061±0.002

technique proposed by Hastie and Tibshirani [11], which is also quite commonly
used for this purpose (PC-HT). Finally, we include one-vs-rest logistic regression
(OVR) as a common approach to multi-class classification.

The results for various data sets from the UCI repository [9] are shown in
Table 2, together with some statistics of the data. These results are averages over
5 repeats of 10-fold cross validation. As can be seen, OVR is clearly outperformed
by the other methods. This is confirmed by a two-tailed sign test, which reports
significance at the level α = 0.05. PC, PC-HT and PELARA are almost perfectly
en par (with similar numbers of wins and losses in each pairwise comparison).

The average runtimes are shown in Tables 3. Here, PELARA performs rather
well and seems to be the most efficient on average. In particular, our ranking-
based approach shows clear advantages over the pairwise coupling methods
(while OVR is often quite fast, too).

8 Conclusions

While the problem of multi-class probability estimation is commonly tackled by
means of reduction techniques, which decompose the original problem into a set
of binary problems, we have proposed an alternative method that exploits the
intimate connection between probability estimation and ranking. More specifi-
cally, we take advantage of recent work on label ranking, which provides a nat-
ural bridge between classification and probability estimation. This connection
becomes especially apparent when making use of the Plackett-Luce model, a
probabilistic ranking model that links classification and ranking in a seamless
manner (by modeling ranking as a sequence of classifications).

Compared to the pairwise approach, our ranking-based method appears to
be more solid from a theoretical point of view, especially as it does not require
any ad-hoc aggregation mechanism. The corresponding reduction of complexity



Table 3. Runtimes in seconds for training each fold of the data; the relative runtimes
are summarized in the brackets.

data set PC PC-HT OVR PELARA

iris 0.19(1.63) 0.23(2.00) 0.13(1.14) 0.12(1)
glass 2.37(1.73) 2.18(1.59) 1.75(1.28) 1.37(1)
wine 0.24(1.88) 0.35(2.70) 0.33(2.51) 0.13(1)
vowel 6.08(1.04) 6.99(1.19) 0.74(0.13) 5.86(1)
vehicle 7.37(2.45) 5.51(1.83) 6.14(2.04) 3.01(1)
segment 18.80(1.77) 14.73(1.39) 17.84(1.68) 10.63(1)
dna 161.57(0.96) 166.18(0.99) 336.30(2.00) 168.54(1)
pendigits 25.87(1.30) 39.52(1.99) 46.09(2.32) 19.91(1)
poker 10.98(0.32) 62.70(1.83) 7.30(0.21) 34.29(1)
satimage 38.52(2.24) 44.13(2.57) 10.08(0.59) 17.16(1)
svmguide4 11.23(6.72) 5.42(3.25) 2.69(1.62) 1.67(1)
svmguide2 8.58(5.55) 3.07(1.98) 3.54(2.29) 1.55(1)
letter 179.76(0.33) 264.75(0.49) 25.13(0.05) 538.56(1)
shuttle 39.16(0.63) 90.00(1.44) 22.93(0.37) 62.32(1)

also comes with improvements in terms of runtime. Regarding predictive accu-
racy, however, the best approaches to pairwise coupling are indeed difficult to
beat, especially if the number of classes is large. A plausible explanation for this
observation, which is also coherent with similar findings for pairwise classifica-
tion, is the redundancy produced by the quadratic number of pairwise models.
Nevertheless, our results have shown that the ranking-based alternative put for-
ward in this paper is at least competitive to state-of-the-art pairwise coupling
methods.

Due to the lack of proper benchmark data, we could not yet explore what
we suppose to be the main strength of our method, namely the learning of
probability models from incomplete rankings, including pairwise comparisons of
the form “yi is more likely than yj as a class label for x, but also (qualitative)
comparisons involving more than two labels, such as y3 �x y5 �x y1. Currently,
we are looking for data of that kind, which, despite not having been collected
systematically so far, should in principle occur quite naturally in many domains.
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