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Abstract. In a recent work, we proposed a generalization of logistic
regression based on the Choquet integral. Our approach, referred to as
choquistic regression, makes it possible to capture non-linear dependen-
cies and interactions among predictor variables while preserving two im-
portant properties of logistic regression, namely the comprehensibility
of the model and the possibility to ensure its monotonicity in individ-
ual predictors. Unsurprisingly, these benefits come at the expense of an
increased computational complexity of the underlying maximum likeli-
hood estimation. In this paper, we propose two approaches for reducing
this complexity in the specific though practically relevant case of the 2-
additive Choquet integral. Apart from theoretical results, we also present
an experimental study in which we compare the two variants with the
original implementation of choquistic regression.
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1 Introduction

The Choquet integral is well-known as a flexible aggregation function and, as
such, has been used in various fields of application [1,2,3]. In machine learning,
it is less common so far, although the interest in using the Choquet integral
as a mathematical tool for tackling problems like classification, regression and
ranking is increasing [4,5,6,7,8,9].

In [10], we proposed a method called “choquistic regression”, which is a
generalization of logistic regression based on the Choquet integral. Choquis-
tic regression has a number of appealing properties. Most notably, it combines
three features in a non-trivial way, namely monotonicity, nonlinearity and in-
terpretability. As for the first, a monotone dependence between the input and
output attributes is often desirable in a classification setting and sometimes even
requested by the application [11,12,13]. At the same time, the Choquet integral
also allows for modeling interactions between different attributes in a flexible,
nonlinear way. Last but not least, thanks to the existence of natural measures
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for quantifying the influence of individual (e.g., the Shapley value) and the in-
teraction between groups of features (e.g., the interaction index), it provides
important insights into the model, thereby supporting interpretability [14].

Compared to standard logistic regression, these benefits are coming at the
expense of an increased computational complexity of the underlying learning al-
gorithm, which solves a maximum likelihood estimation problem. This is mainly
caused by the large number of parameters of the fuzzy measure on which the
Choquet integral is based, and the complicated dependency between these pa-
rameters. In this paper, we propose two approaches for reducing this complexity
in the specific though practically relevant case of the 2-additive Choquet inte-
gral. To this end, we shall try to optimally exploit the simplified structure of a
2-additive measure in comparison to a non-additive measure in the general case.

The rest of this paper is organized as follows. In the next section, we briefly
recall the basic definition of the (discrete) Choquet integral and some related
notions. In Section 3, we sketch the idea of using the Choquet integral for bi-
nary classification and recall the basics of choquistic regression. In Section 4, we
develop two alternative formulations of the learning (likelihood maximization)
problem, both pursuing the same goal of complexity reduction. In Section 5, we
present an experimental study in which we compare the two variants with the
original implementation of choquistic regression, prior to concluding the paper
with a few remarks in Section 6.

2 The Discrete Choquet Integral

In this section, we start with a brief recapitulation of the (discrete) Choquet
integral and, along the way, introduce the main mathematical notation used
throughout the paper.

Let C = {c1, . . . , cm} be a finite set and µ : 2C → [0, 1] a measure. For each
A ⊆ C, the value µ(A) can be interpreted as the weight or, say, the importance
of the set of elements A. A standard assumption on a measure µ(·), which is, for
example, at the core of probability theory, is additivity: µ(A∪B) = µ(A)+µ(B)
for all A,B ⊆ C such that A ∩B = ∅. Unfortunately, additive measures cannot
model any kind of interaction between elements: Extending a set of elements A
by a set of elements B always increases the weight µ(A) by the weight µ(B),
regardless of the “context” A.

This lack of expressivity motivates the use of non-additive measures, also
called capacities or fuzzy measures, which are simply normalized and monotone
but not necessarily additive [15]:

µ(∅) = 0, µ(C) = 1

µ(A) ≤ µ(B) for all A ⊆ B ⊆ C
(1)

A useful representation of non-additive measures, that we shall explore later on
for learning Choquet integrals, is in terms of the Möbius transform:

µ(B) =
∑
A⊆B

mµ(A) (2)



for all B ⊆ C, where the Möbius transform mµ of the measure µ is defined as
follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) . (3)

A measure µ is said to be k-order additive, or simply k-additive, if k is the
smallest integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property
is interesting for several reasons. In particular, as can be seen from (2), it means
that a measure µ can formally be specified by significantly fewer than 2m values,
which are needed in the general case.

So far, the “criteria” ci ∈ C were simply considered as binary features, which
are either present or absent in a set A. Mathematically, µ(A) can thus also be
seen as an integral of the indicator function of A, namely the function fA given
by fA(c) = 1 if c ∈ A and = 0 otherwise. Now, suppose that f : C → R+ is any
non-negative function that assigns a value to each criterion ci; for example, f(ci)
might be the degree to which a candidate satisfies criterion ci. An important
question, then, is how to aggregate the evaluations of individual criteria, i.e.,
the values f(ci), into an overall evaluation, in which the criteria are properly
weighted according to the measure µ. Mathematically, this overall evaluation
can be considered as an integral Cµ(f) of the function f with respect to the
measure µ.

Indeed, if µ is an additive measure, the standard integral just corresponds to
the weighted mean

Cµ(f) =

m∑
i=1

wi · f(ci) =

m∑
i=1

µ({ci}) · f(ci) , (4)

which is a natural aggregation operator in this case. A non-trivial question,
however, is how to generalize (4) in the case where µ is non-additive.

This question, namely how to define the integral of a function with respect
to a non-additive measure (not necessarily restricted to the discrete case), is
answered in a satisfactory way by the Choquet integral, which has first been
proposed for additive measures by Vitali [16] and later on for non-additive mea-
sures by Choquet [17]. In the discrete case, the Choquet integral is formally
defined as follows:

Cµ(f) =

m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f(c(1)) ≤ f(c(2)) ≤ . . . ≤
f(c(m)) (and f(c(0)) = 0 by definition), and A(i) = {c(i), . . . , c(m)}. In terms of
the Möbius transform of µ, the Choquet integral can also be expressed as follows:

Cµ(f) =
∑
T⊆C

m(T ) ·min
i∈T

f(ci) (5)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.



3 The Choquet Integral as a Tool for Classification

As mentioned earlier, the Choquet integral has been used as a tool for different
types of machine learning problems. In the following, we focus on the setting
of binary classification, where the goal is to predict the value of an output (re-
sponse) variable y ∈ Y = {0, 1} for a given instance represented in terms of a
feature vector

x = (x1, . . . , xm) ∈ X = X1 ×X2 × . . .×Xm

More specifically, the goal is to learn a classifier L : X → Y from a given set of
(independent and identically distributed) training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n (6)

so as to minimize the risk

R(L) =

∫
X×Y

`(L(x), y) dPXY (x, y) , (7)

where `(·) is a loss function (e.g., the simple 0/1 loss given by `(ŷ, y) = 0 if ŷ = y
and = 1 if ŷ 6= y).

In this context, the predictor variables (features) play the role of the criteria
ci ∈ C. The Choquet integral can be used in order to model nonlinear dependen-
cies between these variables and the response, thus taking interactions between
predictors into account while preserving monotonicity in each individual feature.
This can be done in different ways. In the following, we propose a model that
can be seen as an extension of logistic regression.

3.1 Choquistic Regression

The key idea of the method of “choquistic regression” as proposed in [10] is
to model the log-odds ratio between the positive (y = 1) and the negative
(y = 0) class as a function of the Choquet integral of the input attributes;
thus, the affine function x 7→ w0 +w>x modeling the log-odds ratio in standard
logistic regression is replaced by the Choquet integral. Formally, this leads to
the following model:

πc
df
= P(y = 1 |x) =

1

1 + exp
(
− γ
(
Cµ(fx)− β

)) , (8)

where Cµ(fx) is the Choquet integral (with respect to the measure µ) of the
evaluation function fx : {c1, . . . , cm} → [0, 1] that maps each attribute ci to a
value xi = fx(ci); β, γ ∈ R are constants. The value of ci is normalized in order
to turn each predictor variable into a criterion, i.e., a “the higher the better”
attribute, and to assure commensurability between the criteria [18].



The model (8) has several degrees of freedom, namely the fuzzy measure µ
(Möbius transform m = mµ), the threshold β and the scaling parameter γ. The
goal of learning is to identify these degrees of freedom on the basis of the training
data D. Like in the case of standard logistic regression, it is possible to harness
the maximum likelihood (ML) principle for this purpose. The log-likelihood of
the parameters can be written as

l(m, γ, β) = logP(D |m, β, γ)

= log

(
n∏
i=1

P(y(i) |x(i);m, β, γ)

)
(9)

=

n∑
i=1

y(i) log π(i)
c +

(
1− y(i)

)
log
(
1− π(i)

c

)
.

This is a convex function with respect to m, γ, and β. The problem, now, is to
maximize (9) while making sure that µ is a proper fuzzy measure. Formally, this
leads to the following constrained optimization problem:

max
m,γ,β

{
− γ

n∑
i=1

(1− y(i)) (Cm(x(i))− β)

−
n∑
i=1

log
(

1 + exp(−γ (Cm(x(i))− β))
)}

such that

0 ≤ β ≤ 1

0 < γ∑
T⊆C

m(T ) = 1 (10)

∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ci ∈ A (11)

4 Efficient Learning of 2-additive Measures

Solving the above optimization problem is a non-trivial task and may become
computationally expensive, mainly due to the constraints on the fuzzy measure
µ. In fact, since (11) needs to be satisfied for all subsets A ⊆ C, the number of
these monotonicity constraints is given by m2m−1 and thus grows exponentially
with the number of attributes.

In the following, we restrict ourselves to the specific case of 2-additive fuzzy
measures. This restriction is interesting for several reasons. In particular, one
may of course hope for a gain in terms of computational efficiency, and indeed,
this is the aspect that we shall focus on in the remainder of the paper. Besides,



however, let us mention that a restriction of this kind is also interesting from a
learning point of view: By allowing one to capture pairwise interactions between
attributes, the 2-additive case is a proper generalization of the linear model,
while at the same time, it is still reasonable in terms of the number of degrees of
freedom. In fact, while the number of parameters to be estimated is exponential
(in the number of attributes) in general, it is only quadratic in the 2-additive
case. Practically, we could observe that the high flexibility of the general model
is rarely needed; on the contrary, it often leads to problems of over-fitting the
data, thereby compromising generalization performance.

Coming back to the computational aspect, the number of parameters to be
estimated is indeed reduced, since m(A) = 0 for all A ⊆ C such that |A| > 2.
On the other hand, it is important to observe that the number of constraints
does not reduce: Although the number of summands in each of the constraints
(11) becomes smaller (since many of them are now 0), the number of constraints
themselves remains the same.

In the following, we shall therefore look for ways to exploit the simplified
structure of the 2-additive case in order to reduce the number of constraints.
More specifically, we shall propose two alternative formulations of the constraint
optimization problem to be solved for ML estimation.

4.1 Alternative Formulation I

To simplify notation, let C = {1, . . . ,m} (instead of C = {c1, . . . , cm}) and
let M denote the class of nonnegative monotone set functions on C, i.e., the
class of functions ν : 2C → [0,∞) such that ν(A) ≤ ν(B) for all A ⊆ B ⊆ C;
for the time being, we neglect the normalization condition (10), as it is less
important for our purpose (it constitutes a single constraint that must be added
to the optimization problem in order to turn a monotone measure into a fuzzy
measure). More specifically, we are interested in the subclass M2 ⊂ M of 2-
additive measures ν, i.e., whose Möbius transform satisfies mν(A) = 0 for all
A ⊆ C such that |A| > 2.

The following characterization is well-known (see, e.g., Proposition 1 in [19]):
ν ∈ M2 if and only if the following constraints Ci,X are satisfied for all i ∈ C
and X ⊆ Ci = C \ {i}:

Ci,X : mi +
∑
j∈X

mi,j ≥ 0 , (12)

where mi = mν({i}) and mi,j = mν({i, j}). Note that the number of constraints
(12) is still exponential in m. Yet, we can show that they can be expressed
equivalently in terms of a smaller number of constraints (albeit at the expense
of introducing additional variables).



Proposition 1. Condition (12) is equivalent to the following condition: For all
i ∈ C, there exist αi,j, j ∈ Ci, such that

αi,j ≥ 0∑
j∈Ci

αi,j ≤ 1

mi ≥ 0

mi,j ≥ −αi,j ·mi

(13)

Proof: Let ν ∈M2 and suppose (12) to hold. For i ∈ C, (12) with X = ∅ implies
mi ≥ 0. Now, define C−i = {j ∈ Ci |mi,j < 0}, C+

i = {j ∈ Ci |mi,j ≥ 0}, and let

αi,j =

{
0 if j ∈ C+

i
|mi,j |
mi

if j ∈ C−i

Since (12) holds with X = C−i , we have∑
j∈C−i

|mi,j | ≤ mi ,

and therefore∑
j∈Ci

αi,j =
∑
j∈C−i

αi,j =
∑
j∈C−i

|mi,j |
mi

=
1

mi

∑
j∈C−i

|mi,j | ≤ 1.

Moreover, mi,j ≥ −αi,j ·mi holds by definition, both for j ∈ C+
i and j ∈ C−i .

Thus, condition (13) holds, and hence (12) implies (13).
Now, suppose that (13) holds. Then, mi ≥ 0 and for any ∅ 6= X ⊆ Ci,

mi +
∑
j∈X

mi,j ≥ mi +
∑
j∈X
−αi,j ·mi

= mi −mi

∑
j∈X

αi,j

≥ mi(1−
∑
j∈X

αi,j) ≥ 0

Thus, condition (12) holds, and hence (13) implies (12). Q.E.D.
As a consequence of the above result, the constraints (11) can be replaced

by the equivalent constraints (13). Thus, the number of constraints can indeed
be reduced from exponential to quadratic, namely to 2m2 inequalities. On the
other hand, (13) also comes with a disadvantage: While the constraints (11) are
all linear, some of the constraints (13) are nonlinear (albeit convex); indeed,
recall that the αi,j are introduced as new variables that need to be determined
simultaneously with the mi and mi,j .



4.2 Alternative Formulation II

Our second reformulation of the problem is based on a theoretical result showing
that the classM2 or, more specifically, the class of normalized measures inM2

(i.e., those ν whose Möbius function additionally satisfies (10), forms a convex
polytope. The extreme points of this polytope are exactly those {0, 1}-valued
measures whose Möbius transforms are of the form

mA(X) =

{
1 if X = A
0 otherwise

, A ∈ E

or of the form

m′B(X) =

 1 if ∅ 6= X ( B
−1 if X = B

0 otherwise
, A ∈ E ′,

where E = {A ⊆ C | 1 ≤ |A| ≤ 2} and E ′ = {B ⊆ C | |B| = 2} [20]. In other
words, each feasible solution m can be written as a convex combination of these
m2 extreme points:

m =
∑
A∈E

αA ·mA +
∑
B∈E′

α′B ·m′B (14)

Consequently, the constraints (10–11) can be replaced by (14) in conjunction
with the following constraints:

αA ≥ 0

α′B ≥ 0∑
A∈E

αA +
∑
B∈E′

αB = 1

Like in our first reformulation, the number of constraints is thus significantly
reduced, this time even without introducing nonlinearities, albeit again at the
cost of a quadratic number of additional variables. More concretely, we end up
with m2 additional variables while reducing the number of constraints to m2+1.

5 Experiments

The collection of data for experimental evaluation is a bit hindered by the fact
that choquistic regression is a method for learning monotone models, i.e., models
in which the probability of a positive output is an increasing function of each
input attribute. Data sets for which monotonicity of this kind is a reasonable
assumption are less frequent than standard classification data. Nevertheless, we
managed to collect 10 such data sets; Table 1 provides a summary of their main
properties. Those with a numerical or ordered categorical output were binarized
by thresholding at the median. Moreover, all input attributes were normalized.



Table 1. Data sets and their properties.

data set #instances #attributes source

1 Employee Selection (ESL) 488 4 WEKA
2 Employee Rejection/Acceptance (ERA) 1000 4 WEKA
3 Lecturers Evaluation (LEV) 1000 4 WEKA
4 CPU 209 6 UCI
5 Mammographic (MMG) 961 6 UCI
6 Car Evaluation (CEV) 1728 6 UCI
7 Auto MPG 392 7 UCI
8 Den Bosch (DBS) 120 8 [21]
9 Breast Cancer (BCC) 286 9 UCI

10 Social Workers Decisions (SWD) 1000 10 [22]

Table 2. Classification accuracy (mean ± standard deviation derived from 10 repeats
of 5-fold cross-validation).

data set CR-orig CR-AI CR-AII LR

ESL .0655 ± .0225 .0668 ± .0227 .0639 ± .0208 .0678 ± .0255
ERA .2908 ± .0312 .2880 ± .0292 .2907 ± .0312 .2873 ± .0275
LEV .1478 ± .0202 .1491 ± .0222 .1530 ± .0213 .1686 ± .0240
CPU .0241 ± .0223 .0244 ± .0197 .0196 ± .0236 .0672 ± .0346
MMG .1685 ± .0240 .1697 ± .0232 .1661 ± .0232 .1712 ± .0268
CEV .0743 ± .0127 .0835 ± .0120 .0726 ± .0135 .1382 ± .0170
MPG .0663 ± .0244 .0644 ± .0281 .0636 ± .0254 .0627 ± .0277
DBS .1413 ± .0715 .1330 ± .0648 .1130 ± .0645 .1472 ± .0573
BCC .3041 ± .0581 .2840 ± .0556 .3065 ± .0524 .3079 ± .0586
SDW .2186 ± .0187 .2169 ± .0276 .2143 ± .0225 .2202 ± .0244

Experimentally, we compared three versions of choquistic regression, the orig-
inal formulation from Section 3.1 (CR-orig), the first reformulation from Section
4.1 (CR-AI), and the second reformulation from Section 4.2 (CR-AII). To make
the implementations as comparable as possible, we applied the same solver to
the different optimization problems, namely the fmincon function implemented
in the optimization toolbox of Matlab. This function provides a method for
constrained nonlinear optimization based on sequential quadratic programming.

In terms of classification accuracy, the different implementations of choquis-
tic regression should perform exactly the same, at least theoretically, because
they seek to maximize the same likelihood function under different but equiva-
lent constraints. Practically, of course, different formulations of the optimization
problem will yield slightly different solutions, although these differences should
be small. This expectation is confirmed by the result of a 5-fold cross validation,
which is summarized in Table 2; this table also shows results for standard logistic
regression (LR) as a baseline.



Table 3. Runtime complexity of the alternative implementations on different data
sets (name, number of attributes, number of instances) measured in terms of CPU
time (mean ± standard deviation in seconds) for different sample sizes (in % of the
complete data set).

data CR 20% 40% 60% 80% 100%

ESL orig 0.26 ± 0.05 0.31 ± 0.02 0.38 ± 0.02 0.45 ± 0.13 0.63 ± 0.05
4 AI 0.41 ± 0.13 0.50 ± 0.07 0.68 ± 0.13 0.80 ± 0.17 1.05 ± 0.18
488 AII 0.31 ± 0.09 0.39 ± 0.07 0.50 ± 0.06 0.61 ± 0.04 0.70 ± 0.04

ERA orig 0.23 ± 0.03 0.36 ± 0.01 0.50 ± 0.02 0.63 ± 0.01 0.78 ± 0.02
4 AI 0.53 ± 0.10 0.90 ± 0.08 1.06 ± 0.16 1.20 ± 0.20 1.35 ± 0.18
1000 AII 0.31 ± 0.05 0.52 ± 0.07 0.70 ± 0.09 1.12 ± 0.14 1.32 ± 0.16

LEV orig 0.34 ± 0.04 0.55 ± 0.05 0.71 ± 0.04 0.88 ± 0.07 1.03 ± 0.07
4 AI 0.96 ± 0.23 1.41 ± 0.21 1.84 ± 0.24 2.25 ± 0.18 2.50 ± 0.19
1000 AII 0.49 ± 0.07 0.76 ± 0.05 1.04 ± 0.10 1.68 ± 0.15 1.90 ± 0.14

CPU orig 0.77 ± 0.18 1.95 ± 3.39 3.37 ± 5.42 6.9 ± 8.97 14.23 ± 11.33
6 AI 1.85 ± 0.22 2.56 ± 0.52 2.79 ± 0.71 3.42 ± 0.18 6.11 ± 2.71
209 AII 0.50 ± 0.31 1.28 ± 0.24 1.33 ± 0.29 1.68 ± 0.56 2.06 ± 0.66

MMG orig 0.39 ± 0.15 0.56 ± 0.06 0.79 ± 0.12 0.95 ± 0.09 1.07 ± 0.11
6 AI 1.19 ± 0.24 1.77 ± 0.47 2.06 ± 0.61 2.71 ± 1.60 3.24 ± 1.96
961 AII 0.52 ± 0.13 0.83 ± 0.11 1.13 ± 0.10 1.54 ± 0.18 1.78 ± 0.19

CEV orig 2.45 ± 0.24 3.84 ± 0.38 5.09 ± 0.41 5.79 ± 0.51 6.74 ± 0.41
6 AI 5.36 ± 0.55 7.53 ± 1.00 9.89 ± 0.96 11.93 ± 2.83 13.72 ± 2.56
1728 AII 2.11 ± 0.33 3.68 ± 0.31 5.23 ± 0.52 6.88 ± 0.59 7.88 ± 0.58

MPG orig 1.83 ± 0.71 2.15 ± 0.62 2.69 ± 0.59 3.18 ± 0.54 3.45 ± 0.65
7 AI 2.58 ± 0.32 2.54 ± 0.66 3.46 ± 0.89 3.84 ± 0.75 4.15 ± 0.92
392 AII 0.61 ± 0.21 0.72 ± 0.12 0.95 ± 0.24 1.02 ± 0.19 1.3 ± 0.13

DBS orig 5.68 ± 1.11 5.36 ± 1.23 5.61 ± 1.02 5.59 ± 0.72 5.47 ± 1.05
8 AI 2.51 ± 1.81 2.88 ± 1.29 3.03 ± 1.42 3.17 ± 0.96 4.08 ± 1.10
120 AII 0.71 ± 0.19 0.78 ± 0.34 0.76 ± 0.18 0.82 ± 0.12 0.91 ± 0.13

BCC orig 1.22 ± 0.56 1.10 ± 0.27 1.19 ± 0.23 1.47 ± 0.38 1.47 ± 0.25
9 AI 2.29 ± 1.09 2.04 ± 1.52 2.16 ± 0.95 2.88 ± 2.5 2.97 ± 2.30
286 AII 0.47 ± 0.24 0.47 ± 0.06 0.55 ± 0.55 0.66 ± 0.11 0.78 ± 0.07

SWD orig 292.4 ± 31.1 382.8 ± 42.24 371.3 ± 12.67 394.0 ± 36.62 427.5 ± 36.62
10 AI 17.9 ± 13.4 27.82 ± 12.13 32.11 ± 10.10 32.35 ± 10.05 33.14 ± 10.77
1000 AII 4.7 ± 0.71 8.80 ± 1.34 13.01 ± 1.44 18.24 ± 2.21 22.66 ± 1.73



What we are of course most interested in is the runtime performance of
the different implementations, which we measured in terms of CPU usage.1 The
results, which are summarized in Table 3, convey a quite clear picture: While the
original implementation CR-orig is superior or at least competitive for data sets
with up to 6 attributes, it is visibly outperformed by the alternative formulations
for m > 6 attributes, and the difference in runtime rapidly increases with m. This
is in agreement with our expectations: An exponential number of constraints
is no big obstacle provided the number of attributes is small. In this case, a
reduction from exponential to quadratic does not compensate for the additional
overhead caused by introducing new variables. Due to the exponential growth of
the number of constraints in CR-orig, however, this situation quickly changes in
favor of CR-AI and CR-AII with an increasing number of attributes; indeed, as
can be seen from the SWD data, the runtime of CR-orig becomes unacceptable
as soon as m > 9.

This is also confirmed by another experiment we did with this data set: From
the total of 10 attributes, we randomly samples m ∈ {5, 6, . . . , 10}, trained a CR
model on the data set reduced to these k attributes (using the tree methods
CR-orig, CR-AI and CR-AII) and measured the runtime. This was repeated
many times and the runtime was averaged. Fig. 1 shows this average runtime as
a function of m.

Comparing the two alternatives CR-AI and CR-AII, it seems that the latter
is consistently faster, although the growth of the runtime as a function of m is in
both cases much more moderate than for CR-orig. Again, this is not unexpected
against the background of the results from the previous section.
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Fig. 1. Average runtime on the SDW data as a function of the number of attributes
included.

1 Experiments were carried out on an Intel Core(TM) i7-2600 CPU with 3.40GHz and
8 GB RAM under Windows 7.



6 Discussion

Our experimental results are in complete agreement with the theoretical com-
plexity (in terms of the number of constraints and the number of variables in-
volved) of the optimization problems. Thus, learning the Choquet integral for
classification can indeed be made more efficient by exploiting the special struc-
ture of the problem in the case of 2-additive fuzzy measures, essentially reducing
the complexity from exponential to quadratic in the number of attributes.

In order to compare the different variants of the problem (CR-orig, CR-AI,
CR-AII), we decided to use a rather general optimization method that can handle
all of them without the need for specific adaptations. An interesting alternative,
of course, is to implement each of the variants individually and as efficiently
as possible, seeking for a more specialized solver that allows for exploiting the
respective problem structure in an optimal way. In particular, this appears to be
important for a more thorough comparison of the two alternatives we proposed,
respectively, in Sections 4.1 and 4.2.

Theoretically, CR-AII seems to be advantageous to CR-AI, and indeed, the
experimental results are in agreement with this presumption. Nevertheless, the
reformulation in Section 4.1 should not be abandoned rashly. First, as just men-
tioned, it might be possible to improve its efficiency by means of specialized opti-
mization techniques; one may think, for example, of an alternating optimization
scheme in which, repeatedly, the αi,j are fixed while the mi,j are optimized and
vice versa, thereby circumventing the issue of nonlinearity.

Moreover, CR-AII might be more amenable for a generalization to the case
of k-additive measures, k > 2. In this regard, the second approach is arguably
difficult: Firstly, it is known that for k > 2, the extreme points of the convex
polytope of k-additive measures are not all {0, 1}-valued. Secondly, and more
importantly, the number of these extreme points is expected to grow extremely
fast, knowing that the number of extreme points of the polytope of additive
measures on m variables grows like the sequence of Dedekind numbers [23].
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