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Abstract

This paper introduces a new approach to
classification which combines pairwise de-
composition techniques from machine learn-
ing with ideas and tools from fuzzy preference
modeling. The approach, called fuzzy re-
lational classification, effectively reduces the
problem of classification to a problem of deci-
sion making based on a fuzzy preference rela-
tion. It will be shown that, by decomposing
such a relation into a strict preference, an in-
difference, and an incomparability relation, it
becomes possible to quantify different types
of uncertainty in classification, and thereby
to support more sophisticated classification
and postprocessing strategies.
Keywords: Machine learning, classification,
fuzzy preference relations, decision analysis.

1 Introduction

As one of the standard problems of supervised learn-
ing, the performance task of classification has been
studied intensively in the field of machine learning.
The arguably simplest type of classification prob-
lems are dichotomous (binary, two-class) problems for
which a multitude of efficient and theoretically well-
founded classification methods exists. Needless to say,
however, practically relevant problems are rarely re-
stricted to the binary case. One approach for tackling
polychotomous problems is to use model classes that
are able to represent a multi-class classifier, i.e., an
X → L mapping for |L| > 2, directly. An alterna-
tive strategy to approach such problems is to trans-
form the original problem into several binary problems
via a class binarization technique. The most popular
class binarization technique is the unordered or one-
against-rest binarization, where one takes each class
in turn and learns a binary concept that discriminates
this class from all other classes.

The key idea of the alternative learning by pairwise
comparison (LPC) approach (aka pairwise classifica-
tion, round robin learning, one-vs-one) is to transform
an m-class problem into m(m− 1)/2 binary problems,
one for each pair of classes.1 At classification time, a
query instance is submitted to all binary models, and
the predictions of these models are combined into an
overall classification. In [5, 6], it was shown that pair-
wise classification is not only more accurate than the
one-against-rest technique but that, despite the fact
that the number of models that have to be learned is
quadratic in the number of classes, pairwise classifi-
cation is also more efficient (at least in the training
phase) than one-against-rest classification.

This paper elaborates on another interesting aspect
of the LPC approach: Assuming that every binary
learner outputs a score in the unit interval (or, more
generally, an ordered scale), and that this score can
reasonably be interpreted as a “fuzzy preference” for
the first in comparison with the second class, the com-
plete ensemble of pairwise learners produces a fuzzy
preference relation. The final classification decision
is then made on the basis of this relation. In other
words, the problem of classification has been reduced,
in a first step, to a problem of decision making based
on a fuzzy preference relation.

The novel aspect here is to look at the ensemble of pre-
dictions as a fuzzy preference relation. This perspec-
tive establishes a close connection between (pairwise)
learning and fuzzy preference modeling, and therefore
allows for applying techniques from the former field
in the context of machine learning. In this paper, we
are especially interested in exploiting techniques for
decomposing a fuzzy (weak) preference relation into
a preference structure consisting of a strict prefer-
ence, an indifference, and an incomparability relation.

1Alternatively, one can consider a binary problem for
every ordered pair of classes, in which case the total number
of such problems is doubled. We shall come back to this
point later on.



As will be argued in more detail later on, the latter
two relations have a quite interesting interpretation
and important meaning in the context of classification,
where they represent two types of uncertainty: ambi-
guity and ignorance. Consequently, these relations can
support more sophisticated classification strategies, in-
cluding those that allow for partial reject options.

The remainder of the paper is organized as follows.
Section 2 details the LPC approach to classification,
and section 3 recalls the basics of fuzzy preference
structures. The idea of classification based on fuzzy
preference relations is outlined in section 4. Section 5
elaborates on an important element of this approach,
namely learning weak preferences between class labels.
First empirical results are presented in section 6, and
section 7 concludes the paper.

2 Learning by Pairwise Comparison

As mentioned earlier, learning by pairwise comparison
(LPC) transforms a multi-class classification problem,
i.e., a problem involving m > 2 classes (labels) L =
{λ1 . . . λm}, into a number of binary problems. To this
end, a separate model (base learner) Mi,j is trained
for each pair of labels (λi, λj) ∈ L. Mi,j is intended to
separate the objects with label λi from those having
label λj . If (x, λa) ∈ X × L is an original training
example (revealing that instance x has label λa), then
x is considered as a positive example for all learners
Ma,j and as a negative example for the learners Mj,a

(j �= a); those models Mi,j with a �∈ {i, j} simply
ignore this example.

At classification time, a query x is submitted to all
learners, and each prediction Mi,j(x) is interpreted as
a vote for a label. In particular, if Mi,j is a {0, 1}-
valued classifier, Mi,j(x) = 1 is counted as a vote for
λi, while Mi,j(x) = 0 would be considered as a vote
for λj . Given these outputs, the simplest classification
strategy is to predict the class label with the highest
number of votes. A straightforward extension of the
above voting scheme to the case of [0, 1]-valued (scor-
ing) classifiers yields a weighted voting procedure: The
score for label λi is computed by

ri
df=

∑
1≤j �=i≤m

ri,j , (1)

where ri,j = Mi,j(x), and again the label with the
highest score is predicted.

The votes ri,j in (1) and, hence, the learners Mi,j are
usually assumed to be (additively) reciprocal, that is,

rj,i ≡ 1 − ri,j (2)

and correspondingly Mi,j(x) ≡ 1 − Mj,i(x). Practi-
cally, this means that only one half of the m(m − 1)

classifiers Mi,j needs to be trained, for example those
for i < j. As will be explained in more detail be-
low, this restriction is not very useful in our approach.
Therefore, we will train the whole set of classifiers
Mi,j , 1 ≤ i �= j ≤ m, which means that no partic-
ular relation between ri,j and rj,i will be assumed.

3 Fuzzy Preference Structures

Considering the classification problem as a decision
problem, namely a problem of deciding on a class label
for a query input x, an output ri,j = Mi,j(x) can be
interpreted as a preference for label λi in comparison
with label λj : The higher ri,j , the more preferred is
λi as a classification for x, i.e., the more likely λi ap-
pears in comparison with label λj . Correspondingly,
the matrix

R =

⎡
⎢⎢⎢⎣

− r1,2 . . . r1,m

r2,1 − . . . r2,m

...
...

rm,1 rm,2 . . . −

⎤
⎥⎥⎥⎦ (3)

obtained by collecting the outputs of the whole clas-
sifier ensemble can be interpreted as a fuzzy or valued
preference relation. A classification decision can then
be made on the basis of the relation (3). To this end,
one can resort to corresponding techniques that have
been developed and investigated quite thoroughly in
fuzzy preference modeling and decision making [4]. In
principle, the simple voting scheme (1) outlined in sec-
tion 2 can be seen as a special case of such a decision
making technique.

In this paper, our interest concerns the application of
techniques for decomposing the relation R into three
associated relations with different meaning. Suppose
that R can be considered as a weak preference rela-
tion, which means that ri,j = R(λi, λj) is interpreted
as λi � λj , that is, “label λi is at least as likely as label
λj”. From this relation, one can derive a fuzzy prefer-
ence structure consisting of a strict preference relation
P , an indifference relation I, and an incomparability
relation J . Referring to the class of t-norms [9] to op-
erate on fuzzy preference degrees, a fuzzy preference
structure can be defined as follows: Let (T, S, N) be
a continuous De Morgan triplet consisting of a strong
negation N , a t-norm T , and its N-dual t-conorm S;
moreover, denote the T -intersection of two sets A and
B by A ∩T B and the S-union by A ∪S B. A fuzzy
preference structure on L is a triplet (P , I,J ) of fuzzy
relations satisfying

• P and J are irreflexive, I is reflexive;

• P is T -asymmetrical (P ∩T Pt = ∅), I and J are
symmetrical;



Figure 1: Classification scenario: Observations from
two classes (points) and new query instances (crosses).

• P ∩T I = ∅, P ∩T J = ∅, I ∩T J = ∅;
• P ∪S Pt ∪S I ∪S J = L × L.

The question of how to decompose a weak (valued)
preference relation R ∈ [0, 1]m×m into a strict pref-
erence relation P , an indifference relation I, and an
incomparability relation J such that (P , I,J ) is a
fuzzy preference structure have been studied exten-
sively in the literature (e.g. [4, 1]). Without going
into technical detail, we only give an example of a
commonly employed decomposition scheme (again, we
denote ri,j = R(λi, λj)):

P(λi, λj) = ri,j × (1 − rj,i)
I(λi, λj) = ri,j × rj,i (4)
J (λi, λj) = (1 − ri,j) × (1 − rj,i)

A related decomposition scheme will also be used in
the experimental part below.

4 Fuzzy Modeling of Classification
Knowledge

The relations I and J have a very interesting mean-
ing in the context of classification: Indifference corre-
sponds to the ambiguity of a classification decision,
while incompatibility reflects the corresponding de-
gree of ignorance. To illustrate what we mean, re-
spectively, by ambiguity and ignorance, consider the
simple classification scenario shown in Fig. 1: Given
observations from two classes, black and white, three
new instances marked by a cross need to be classified.
Obviously, given the current observations, the upper
left instance can quite safely be classified as white.
The case of the lower left instance, however, involves
a high level of ambiguity, since both classes, black
and white, appear plausible. The third situation is
an example of ignorance: The upper right instance is

Figure 2: Given the assumption of linear separability,
the query instance can be classified quite safely, even
though it is spatially isolated from all other examples.

located in a region of the instance space in which no
observations have been made so far. Consequently,
there is neither evidence in favor of class black nor in
favor of class white.

In the above example, the meaning of and difference
between ambiguity and ignorance is intuitively quite
obvious. Upon closer examination, however, these con-
cepts turn out to be more intricate. In particular, one
should realize that ignorance is not immediately linked
with sparseness of the input space. This is due to the
fact that generalization in machine learning is not only
based on the observed data but also involves a model
class with associated model assumptions. In fact, a di-
rect connection between ignorance and sparely popu-
lated regions of the input space can only be established
for instance-based (prototype-based) classifiers, since
these classifiers are explicitly based on the assumption
that closely neighbored instances belong to the same
class.

The situation is different, however, for other types of
models. For example, Fig. 2 shows a scenario in which
a query point in a sparse input region can be classi-
fied quite safely, given the observed data in conjunc-
tion with the assumption of a linear model. In other
words, given the correctness of the inductive bias of
the learner (linearity assumption), the current obser-
vations allow for quite confident conclusions about the
label of the query, even though the latter does not have
any close neighbors.

The above considerations give rise to the following con-
ception of ambiguity and ignorance in the context of
classification: Let M denote the model class underly-
ing the classification problem, and let V = V(D) be
the set of models which are compatible with the ex-
amples given, i.e., the set of models which can still be
regarded as possible candidates given the data D; in
the machine learning literature, V is called the version



space. Now, given a query x0 ∈ X , the set of possible
predictions is

Y0 = {M(x) |M ∈ V(D) ⊆ M} (5)

If the output of a model M ∈ M is a (deterministic)
class label, then Y0 is a subset of class labels (Y0 ⊆ L).
Otherwise, if M is a class of probabilistic classifiers,
then Y0 is a class of probability distributions over L.
In any case, it seems reasonable to define the degree
of ignorance of a prediction in terms of the diversity
of Y0: The more predictions appear possible, i.e., the
higher the diversity of predictions, the higher is the
degree of ignorance.

According to this view, ignorance (incomparability)
corresponds to that part of the (total) uncertainty
about a prediction which can potentially be reduced
by gathering more examples and thereby shrinking the
version space. As opposed to this, the degree of am-
biguity (indifference) corresponds to that part of the
uncertainty which is due to a known conflict and which
cannot be reduced any further.

The general idea of our method is to learn the weak
preference relation (3), using an LPC approach, and
to decompose this relation into a preference structure
(P , I,J ) such that J characterizes the ignorance in-
volved in a prediction, in the sense as outlined above,
and I the ambiguity of the classification. In this con-
text, two important questions have to be answered:
Firstly, how to learn a suitable weak preference re-
lation R, and secondly, how to decompose R into a
structure (P , I,J ). These problems will be discussed
in more detail in the following section.

5 Learning Weak Preference Relations

As mentioned above, the first step of our method con-
sists of learning the weak preference relation R. More
specifically, for every pair of labels (λi, λj), we have to
induce models Mi,j and Mj,i such that, for a given
query input x, Mi,j(x) corresponds to the degree of
weak preference λi � λj and, vice versa, Mj,i(x) to
the degree of weak preference λj � λi.

The models Mi,j are of special importance as they
directly determine the degrees of ambiguity and igno-
rance associated with a comparison between λi and
λj . This fact is also crucial for the properties that the
models Mi,j should obey.

According to the idea outlined in the previous sec-
tion, a weak preference in favor of a class label should
be derived from the set (5) of possible predictions.
As this set in turn depends on the version space V ,
the problem comes down to computing or at least ap-
proximating this space. In this connection, it deserves

Figure 3: Illustration of the version space (class of
hyperplanes that classify the training data correctly)
and the “region of ignorance” (shaded in light color).

mentioning that an exact representation of the version
space will usually not be possible for reasons of com-
plexity. Apart from that, however, a representation of
that kind would not be very useful either. In fact, de-
spite the theoretical appeal of the version space con-
cept, a considerable practical drawback concerns its
extreme sensitivity toward noise and inconsistencies
in the data.

To overcome these problems, our idea is to approxi-
mate a version space in terms of a finite number of
representative models. More specifically, consider the
problem of learning a binary model Mi,j from an un-
derlying model class M. To approximate the version
space associated with Mi,j , we induce a finite set of
models

Mi,j =
{M1

i,j ,M2
i,j . . .MK

i,j

} ⊆ M (6)

The set of possible predictions (5) is approximated cor-
respondingly by

Ŷ0 = Mi,j(x) =
⋃

k=1...K

Mk
i,j(x).

The way in which the models in (6) are obtained de-
pends on the model class M. The basic idea is to
apply randomization techniques as they are typically
employed in ensemble learning methods. In the exper-
iments below, we shall use ensembles of linear percep-
trons, each of which is trained on a random permuta-
tion of the whole data.

An illustration is given in Fig. 3. Assuming that the
two classes black and white can be separated in terms
of a linear hyperplane, the version space consists of all
those hyperplanes that classify the training data cor-
rectly. Given a new query instance, a unique class
label can be assigned only if that instance lies on the
same side of all hyperplanes (this situation is some-
times called “unanimous voting” [11]). Otherwise,
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Figure 4: Distribution of the scores output by an en-
semble Mi,j . The degree of ignorance corresponds to
the imprecision (width) of the distribution (here mea-
sured in a robust way in terms of the distance between
the α- and (1 − α)-quantile).

both predictions are possible; the corresponding set of
instances constitutes the “region of ignorance” which
is shaded in light color.

In the above example, {0, 1}-valued classifiers were
used for the sake of simplicity. In the context of fuzzy
classification, however, scoring classifiers with outputs
in the unit interval are more reasonable. Suppose that
each ensemble member Mk

i,j in (6) outputs a score
sk

i,j ∈ [0, 1]. The minimum of these scores would in
principle be suitable as a degree of (weak) preference
for λi in comparison with λj :

ri,j = min
k=1...K

sk
i,j .

As this order statistic is quite sensitive toward noise
and outliers, however, we propose to replace it by the
empirical α-quantile of the distribution of the sk

i,j (a
reasonable choice is α = 0.1).

Note that, in case the models in M are reciprocal,
only Mi,j or Mj,i needs to be trained, but not both.
We then have sk

i,j = 1 − sk
j,i, and the α-quantile for

Mi,j is given by 1 minus the (1−α)-quantile for Mj,i.
In other words, the degree of ignorance is directly re-
flected by the distribution of the scores sk

i,j = 1 − sk
j,i

and corresponds to the length of the interval between
the α-quantile and the (1 − α)-quantile of this distri-
bution. Thus, the more precise this distribution, the
smaller the degree of ignorance. In particular, if all
models Mk

i,j output the same score s, the ignorance
component shrinks to 0. An illustration is given in
Fig. 4.

Our approach of fuzzy relational classification (FRC)
as outlined above can be seen as a technique for de-

name # features # examples
1 australian scale 14 690
2 breast-cancer scale 10 683
3 fourclass scale 2 862
4 german 24 1000
5 heart scale 13 270
6 splice scale 60 1000
7 sonar scale 60 208
8 w1a 300 2477

Figure 5: Data sets used in the experiments.

riving a condensed representation of the classification-
relevant information contained in the version space.
Once a preference structure (P , I,J ) has been in-
duced, it can be taken as a point of departure for so-
phisticated decision strategies which go beyond simple
voting procedures. This approach becomes especially
interesting in extended classification scenarios, that is,
generalizations of the conventional setting in which a
single decision in favor of a unique class label is re-
quested. For example, it might be allowed to predict
several class labels instead of single one in cases of am-
biguity, or to defer an immediate decision in cases of
ignorance (or ambiguity). The latter scenario is known
as classification with reject option in the literature,
where one often distinguishes between ambiguity rejec-
tion [2, 7] and distance rejection [3]. Interestingly, this
corresponds roughly to our distinction between ambi-
guity and ignorance. As we explained above, however,
our conception of ignorance is more general and ar-
guably more faithful, as it takes the underlying model
assumptions into account: equating distance (between
the query and observed examples) with ignorance does
make sense for instance-based classifiers but not nec-
essarily for other approaches with different model as-
sumptions.

Of course, the design of suitable decision policies is
highly application-specific and beyond the scope of
this paper. In the next section, we therefore restrict
ourselves to a simple experimental setup which is suit-
able for testing a key feature of FRL, namely its ability
to represent the amount of uncertainty associated with
a classification. More specifically, we used FRL as a
means for implementing a reject option in the context
of binary classification.

6 Experimental Results

We conducted an experimental study on 8 binary clas-
sification data sets from the Statlog and UCI reposito-
ries (cf. Fig. 5).2 Each of the data sets was randomly

2These are preprocessed versions from the LIBSVM-
website.



split into a training and test set of (roughly) equal
size. As model classes Mi,j , we used ensembles of 100
perceptrons with linear kernels and the default addi-
tive diagonal constant 1 (to account for non-separable
problems), which were induced on the training data.
Each perceptron was provided with a random permu-
tation of the training set in order to obtain a diverse
ensemble [8]. This process was repeated 10 times to
reduce the bias induced by the random splitting pro-
cedure, and the results were averaged.

On the test sets, the real-valued classification out-
puts of the perceptrons were converted into normalized
scores using a common logistic regression approach by
Platt [10]. For a given test instance, the weak pref-
erence component ri,j = R(λi, λj) was derived by the
0.1-quantile of the distribution of the scores from the
ensemble Mi,j (see section 5). Moreover, as a decom-
position scheme we used a slight modification of (4):

P(λi, λj) = ri,j (1 − rj,i)
I(λi, λj) = 2 ri,j rj,i (7)
J (λi, λj) = 1 − (ri,j + rj,i)

The reason for the modification is that in (7), the ig-
norance component nicely agrees with our derivation
of weak preference degrees: It just corresponds to the
width of the distribution of the scores generated by
Mi,j (or, more precisely, the length of the interval be-
tween the quantiles of this distribution); therefore, it
reflects the diversity of the predictions and becomes
0 if all ensemble members Mk

i,j agree on exactly the
same score.

Finally, all test instances were ordered with respect
to the associated degrees of indifference (ignorance),
and corresponding accuracy-rejection diagrams were
derived. These diagrams provide a visual representa-
tion of the accuracy levels α as a function of the rejec-
tion rate ρ: If the ρ% test instances with the highest
degrees of indifference (ignorance) are refused, then
the classification rate on the remaining test instances
is α. Obviously, the effectiveness of FRL in represent-
ing uncertainty is in direct correspondence with the
shape of the accuracy-rejection curve: If the degree of
indifference (ignorance) produced by FRL is a good
indicator of the reliability of a classification, then the
ordering of instances according to indifference (igno-
rance) is in agreement with their respective degree of
reliability (chance of misclassification), which in turn
means that the accuracy-rejection curve is increasing.
The presumption that FRL is indeed effective in this
sense is perfectly confirmed by the experimental re-
sults, as can be seen in Fig. 6–7.

7 Conclusions

In this paper, we have introduced a new approach
to classification learning which refers to the concept
of fuzzy preference structures. This approach is in-
timately related with learning by pairwise compari-
son (LPC), a well-known machine learning technique
for reducing multi-class to binary problems. The key
idea of our approach, called fuzzy relational classifica-
tion (FRC), is to use LPC in order to learn a fuzzy
(weak) preference relation among the potential class
labels. The original classification problem thus be-
comes a problem of decision making, namely of taking
a course of action on the basis of this fuzzy prefer-
ence relation. This way, our approach makes machine
learning amenable to techniques and decision making
strategies that have been studied intensively in the lit-
erature on fuzzy preferences.

An interesting example of corresponding techniques
has been considered in more detail in this paper,
namely the decomposition of a weak preference rela-
tion into a strict preference, an indifference, and an
incomparability relation. We have argued that, in a
classification context, indifference can be interpreted
as the ambiguity of a prediction while indifference rep-
resents the level of ignorance. These concepts can be
extremely useful, especially in extended classification
scenarios which go beyond the prediction of a single la-
bel or do offer the option to abstain from a immediate
classification decision.

First empirical studies have shown that FRC is indeed
able to represent the uncertainty related to a classifica-
tion decision: The implementation of a reject options
turned out to be highly effective, regardless of whether
the decision to abstain is made on the basis of the de-
gree of ambiguity or the degree of ignorance.

The main contribution of this paper is a basic concep-
tual framework of fuzzy relational classification, in-
cluding first empirical evidence in favor of its useful-
ness. Nevertheless, this framework is far from being
complete and still leaves much scope for further de-
velopments. This concerns almost all steps of the ap-
proach and includes both aspects of learning and de-
cision making. Just to give an example, our approach
outlined in section 5 is of course not the only way to
learn a weak preference relation. Moreover, the aspect
of optimal decision making on the basis of pairwise
preferences has not yet been addressed (as it strongly
depends on the classification scenario). Issues of that
kind will therefore be explored in future work.
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Figure 6: Accuracy-rejection curves for the data sets
1–4.
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Figure 7: Accuracy-rejection curves for the data sets
5–8.
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