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Abstract

This paper tackles the problem of complexity re-
duction in evolving fuzzy regression models of the
Takagi-Sugeno type. The incremental model adap-
tation process used to evolve such models over time,
often produces redundancies such as overlapping
rule antecedents. We propose the use of a fuzzy
inclusion measure in order to detect such redundan-
cies as well as a procedure for merging rules that are
sufficiently similar. Experimental studies with two
high-dimensional real-world data sets provide evi-
dence for the effectiveness of our approach; it turns
out that a reduction in complexity is even accom-
panied by an increase in predictive accuracy.

Keywords: evolving fuzzy models, incremental
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1. Introduction

In nowadays industrial systems, there is an increas-
ing demand of automatic model updates as new up-
coming operating conditions, system behaviors [1],
new types of classes [2] or even drift occurrences
[3] may arise during on-line processes. These situa-
tions should be included into the models in order to
guarantee robust and process-save operations (pre-
dictions, control behaviors etc.) [4] [5]. Therefore,
Evolving fuzzy systems (EFS) have received increas-
ing attention in the recent years [6]. Such systems
allow for producing and maintaining fuzzy (rule-
based) models in a data-driven way, which is ac-
complished by learning and adapting these models
in an on-line, incremental manner on a continuous
stream of data [7]. Examples of EFS algorithms are
the DENFIS approach (short for Dynamic Evolv-
ing Neural Fuzzy-Inference System) [8], eTS (short
for evolving Takagi-Sugeno fuzzy systems) and its
extended version eTS+ [5], ePL (short for evolving
Participatory Learning) [9] or SAFIS (short for Se-
quential Adaptive Fuzzy Inference Systems) [10].
Due to the incremental, local learning process,

different types of redundancies might be produced
for EFS in the course of time. In particular, since
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existing rules can be moved in the input space and
new rules can be created, there is a danger of pro-
ducing highly overlapping and hence partly redun-
dant rules. As a consequence, one may obtain un-
necessarily complex systems with an ever increasing
number of rules and fuzzy sets.

Research on evolving fuzzy systems so far has
mainly focused on the predictive accuracy of the
models produced, while less attention has been paid
to the issue of model complexity. There are a few
exception, though. In [11], the authors use a geo-
metric similarity measure for detecting redundant
fuzzy sets and a weighted average for merging the
parameters of redundant (Gaussian) fuzzy sets and
rule consequents. The idea of removing obsolete
rules with low support by past samples was pre-
sented in [12] and, based on the concepts of rule
age and rule utility, further extended in [5]. In [9],
rules correspond to clusters in the input space, and
redundant rules are detected by calculating the sum
of absolute deviations between the (normalized) co-
ordinates of two cluster centers, whereas the original
cluster center is maintained. Another approach for
removing redundant fuzzy sets is proposed in [13],
where specific properties of Gaussian fuzzy sets are
exploited.

Building on the latter approach and adopting
ideas from [11], this paper improves upon existing
approaches in several respects. More specifically, we
make the following contributions to evolving fuzzy
regression models of the Takagi-Sugeno (TS) type:

1. Redundancy of rules is detected in the high-
dimensional feature space according to a fuzzy
inclusion measure determining the degree of in-
clusion of a rule A in a rule B. The same mea-
sure is used to reduce redundancies on the level
of one-dimensional fuzzy partitions (produced
by projecting rules to the individual axes).

2. The merging of two redundant multi-
dimensional rules, each one represented
by a cluster in the input space, is performed
by a novel cluster merging procedure taking
the significance of clusters into account and
using a variance update formula for properly
modulating the range of influence of the newly
created rule (cluster). A similar procedure is
proposed for merging fuzzy sets.

3. A novel concept for a consistent treatment of
contradictory rules is proposed.1



In the next section, we recall some basic con-
cepts of evolving fuzzy systems. In Section 3,
we introduce methods for detecting and eliminat-
ing significant overlap (redundancy) of rules in the
high-dimensional feature space and of fuzzy sets
on the level of one-dimensional fuzzy partitions.
Experimental results are presented in Section 4,
where FLEXFIS will be used as EFS learning engine
and serving a concrete implementation of our ideas
(though other methods built on the same fuzzy sys-
tems architecture would serve the same purpose).

2. Evolving Fuzzy Systems for Regression

The most commonly used model architecture in
modern EFS for regression, is the Takagi-Sugeno
(TS) fuzzy systems architecture:

f̂(~x) = ŷ =
C∑
i=1

liΨi(~x) (1)

with the normalized membership functions

Ψi(~x) = µi(~x)∑C
j=1 µj(~x)

, µi(~x) =
p

T
j=1

µij(xj) (2)

and consequent functions

li = wi0 + wi1x1 + wi2x2 + ...+ wipxp . (3)

Here, p is the dimensionality of the learning prob-
lem, and xj the value of the j-th input variable.
Moreover, µij denotes the fuzzy set in the j-th an-
tecedent of the i-th rule. These antecedents are
combined by means of a t-norm [14].
Among various fuzzy systems architectures, the

TS model is able to provide the most accurate esti-
mates and is therefore often used for modeling tasks
in which precision is of major importance. Besides,
however, interpretability is an important criterion,
too. Even though TS models are generally consid-
ered with reservation from this point of view, one
can argue that an understanding of such models is in
principle possible, especially when using local learn-
ing for the consequent parts [15]. In any case, it
is hardly disputable that interpretability presumes
a reasonable level of complexity. In this paper, we
therefore propose different methods for reducing the
unnecessary complexity of an EFS.

3. On-Line Complexity Reduction in EFS

This section deals with two approaches for reducing
the complexity of evolving TS fuzzy systems based
on local redundancy criteria. The first approach
is directly applied in the cluster space (recall that
each rule is associated with a cluster) and merges
clusters which are strongly overlapping. The sec-
ond approach acts on the fuzzy partition space and
performs a merging of fuzzy sets for each dimen-
sion (variable) separately. Of course, since rules are

(a)

(b)

Figure 1: (a): Two distinct clusters (rules) in the
two-dimensional feature space, indicated as ellip-
soids; (b): significant overlap caused by an adapta-
tion to new samples (rectangles) falling in-between
these clusters.

defined in terms of these fuzzy sets, this can again
have an influence on the redundancy of rules.

We like to emphasize the following properties of
both approaches: First, they both allow an incre-
mental, single-pass processing of the data, which
means that, in addition to the model itself, the
update process only requires the new data sample,
which is immediately discarded afterward. Second,
both methods are completely general and can be
used for any types of fuzzy sets.

3.1. Rule Merging in the Feature Space

Rules can become overlapping due to the fact that
clusters are moving in the feature space. Imagine,
for example, a two-dimensional feature space with
two clusters that are initially disjoint (see Fig. 1).
If new data points are emerging in-between these
clusters, they may both grow in size, and their cen-
ters may move toward each other. Eventually, this
may result in a significant overlap.

3.1.1. Measuring the Redundancy of Rules

In order to measure the redundancy of a rule A
with respect to another rule B, we compute a fuzzy
degree of inclusion of A in B. In fact, redundancy
is obviously better reflected by inclusion than by
similarity. Besides, whenever needed, similarity can
be derived from the primitive notion of inclusion,
namely as a kind of mutual inclusion: A and B



are similar if A is fuzzily included in B and, vice
versa, B is fuzzily included in A. More specifically,
we compute a standard measure of fuzzy inclusion
subsequent to each incremental learning step:

INC(A,B) =
p

T
i=1

inc(Ai, Bi), (4)

with Ai the fuzzy set in the i-th antecedent part
and

inc(Ai, Bi) =
∫
min(Ai(x), Bi(x))dx∫

Bi(x)dx
(5)

the degree of inclusion of the fuzzy set Ai in Bi.
Thus, A is included in B if a corresponding inclu-
sion holds in all dimensions, i.e., for the projections
of the two clusters to each of the axes. As a concrete
t-norm, we shall use the minimum. Despite the fact
that this measure needs some significant computa-
tion power for calculating the integral in (5), it is
still faster than a direct calculation of the inter-
section degree between two ellipsoids in the high-
dimensional space with complex mathematical for-
mulas [16] (O(pn) with n discretization steps of the
integral versus O(p3)).
For specific types of fuzzy sets, (5) can be de-

rived analytically. Otherwise, it is always possible
to make use of a suitable discretization, replacing
the integral by a sum.

The overlap between two rules can then be de-
fined as follows:

OL(A,B) = ⊥(INC(A,B), INC(B,A)), (6)

where ⊥ is a t-conorm. Thus, there is an overlap
between A and B if either A is included in B or B
is included in A (note that a conjunction by using a
t-norm at this place would model equality, which is
a stricter condition and would not be able to resolve
a full embedding of a smaller cluster in a larger one.
As a concrete t-conorm, we shall use the maximum.

3.1.2. Merging Rule Antecedents

Two rules A and B are merged if their overlap de-
gree (6) exceeds a threshold simthr. Assuming that
a rule corresponds to a hyper-ellipsoid (e.g., when
using Gaussians membership functions) or a hyper-
box (e.g., when using trapezoidal or triangular func-
tions) in the feature space, we denote by cAj the j-th
center coordinate of rule A and by σAj the range of
influence in the j-th direction (main axis of hyper-
ellipsoid or width of the hyper-box).
The merging itself is realized by computing a

weighted average of the rules, with the weights be-
ing proportional to the number of number of sam-
ples kA and kB covered by the rules, respectively.
Assuming kA ≥ kB , we subsequently consider rule
A as the more relevant and rule B the less rele-
vant rule. A combination of the ranges of influence
(widths) of the two rules is done by updating the

range of influence (in each direction) of the rule A
with the range of influence of rule B. To this end,
we make use of the recursive variance formula [17],
modified in an appropriate way (updating the range
of influence of rule A using the center and range of
influence of rule B). In order to guarantee a good
coverage of the original data cloud by the new rule,
a fraction of the variance of samples belonging to
rule B is added, which is determined by the per-
centage of samples kB/(kA + kB). In summary, the
two rules are merged as follows:

cnewj =
cAj kA + cBj kB

kA + kB
(7)

σnewj =

√
kA(σAj )2

kA + kB
+ (cAj − cnewj )2 +

(cnewj − cBj )2

kA + kB

+
kBσ

B
j

kA + kB
knew = kA + kB

Figure 2 demonstrates two examples where two
rules (represented as clusters) are merged because
of a high resp. medium overlap degree.

3.1.3. Merging Rule Consequents

Merging of two rule antecedents by (7) also ne-
cessitates a merging of the corresponding conse-
quent parts. Again, this is accomplished by tak-
ing the weighted mean, with respective weights
kA/(kA + kB) and kB/(kA + kB):

wnew = ~wAkA + ~wBkB
kA + kB

, (8)

where ~wA and ~wB denote the vector of coefficients
of the linear functions in the antecedent of rule A
and B, respectively.

A high dissimilarity of the consequent functions
in (8) may indicate an inconsistency in the rule base:
Two rules with very similar condition part yield very
different conclusions. In a case like this, a simple
linear combination of the consequent parts may not
appear appropriate.

In TS fuzzy systems, rule consequent functions
are represented by hyper-planes in the output space.
A reasonable measure for similarity, therefore, is
the angle between these hyper-planes, as it mea-
sures the difference of the direction followed by the
consequent functions in the output space. The an-
gle between two hyper-planes (corresponding to the
rules A and B) can be measured by the angle be-
tween the corresponding normal vectors a and b:

φ = arccos
(∣∣∣∣∣ ~aT~b|~a||~b|

∣∣∣∣∣
)
∈ [0, π] (9)

The maximal dissimilarity is obtained when the an-
gle between the two normal vectors is π

2 , as the ori-
entation of the vectors do not play a role. The sim-
ilarity of two hyper-planes yA and yB can then be
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Figure 2: (a): strongly overlapping clusters (overlap degree of 0.88) shown as thin solid lines are merged to
one bigger cluster (thick solid line), the original cluster before the update phase are shown in dotted lines;
(b): overlapping clusters (bottom and upper left) with medium degree (0.71), the merged cluster is nearly the
same as the original bottom cluster as the upper left cluster has very low support

defined as follows:

Scons(yA, yB) =
{

1− 2
π ∗ φ φ ∈ [0, π2 ]

2
π ∗ (φ− π

2 ) φ ∈ [π2 , π] (10)

Inspired by Yager’s idea of “participatory learn-
ing” [18], we propose the following modification of
the combination rule (8):

~wnew = ~wA + α · ρ(~wA, ~wB) · (~wB − ~wA), (11)

where α = kB/(kA + kB) and ρ(~wA, ~wB) is a mea-
sure of consistency of the two rule consequents.
This measure can be defined in different ways, e.g.,
“smoothly” by ρ(~wA, ~wB) = Scons(yA, yB) or, more
drastically, by

ρ(~wA, ~wB) =
{

1 if Scons(yA, yB) ≥ OL(A,B)
0 if Scons(yA, yB) < OL(A,B) .

For ρ = 0, we obtain ~wnew = ~wA, i.e., the conse-
quent of the more relevant rule. For ρ = 1, on the
other hand, (11) reduces to the original combination
rule (8).

3.1.4. Integration in EFS

In case when no cluster is updated but a new one
evolved, a rule merging process is obviously not
needed. Hence, the integration of the rule merging
process is simply accomplished by adding the fol-
lowing steps at the end of each incremental learning
cycle:

(1) If a new rule was evolved, no action is needed.
(2) Else perform the following steps (let R denote

the current set of rules):
(3) Check if overlap (similarity) of moved/updated

rule A with any other rule R ∈ R \ {A} calcu-
lated by (6) is higher than a pre-defined thresh-
old simthr

(4) If yes
(a) Perform rule merging of rule A with rule

B = arg maxB∈R\{A} OL(A,B) accord-
ing to (7).

(b) Perform merging of corresponding rule
consequent functions according to (11).

(c) Overwrite parameters (~cA, ~σA) of rule A
with the parameters of the merged rule
(~cnew, ~σnew).

(d) Delete rule B.
(e) Decrease number of rules: C = |R| = C−

1.

3.2. Fuzzy Set Merging in the Partition
Space

In the previous section, we proposed a novel rule
merging procedure which was acting directly on the
complete rule antecedent parts. In this section, we
go one step further and introduce an approach for
merging two or more single fuzzy sets in the fuzzy
partitions of the input variables (without necessar-
ily merging the rules in which these fuzzy sets ap-
pear). Redundant fuzzy sets are produced by two
or more clusters intersecting in a single dimension,
i.e., when being projected on one of the axes of the
high-dimensional feature space. A two-dimensional
example of such a situation is shown in Fig. 3.

On-line merging of fuzzy sets is necessary in order
to assure distinguishability within the fuzzy parti-
tions in each dimension. Distinguishability of the
fuzzy sets is a key prerequisite for interpretability
of a fuzzy model [19].

3.2.1. Similarity and Merging of Fuzzy Sets

For calculating the similarity of two one-
dimensional fuzzy sets, Sset(A,B), we adopt



Figure 3: After projection of the clusters to the x-
axis, the fuzzy sets are strongly overlapping.

the same measure as used in (6). Thus, we
again use (5) and apply the minimum operator
to combine the degree of inclusion of fuzzy set
A in B and of fuzzy set B in A. Note that this
approach prevents the merging of two fuzzy sets if
one of them is contained in the other one, but not
vice versa. This is reasonable, since fuzzy sets of
that kind usually represent different distributions
of data clouds in different regions of the input
space. Hence, a merging of such sets would yield
an imprecise representation of parts of the data.
If Sset(A,B) exceeds a given threshold, the two

sets are considered as sufficiently similar (redun-
dant) and are therefore merged. The value of the
threshold controls the trade-off between precision
and distinguishability. The higher the threshold,
the less merging steps will be carried out.
In case of Gaussian membership functions with

center µ and spread σ, two fuzzy sets are combined
into a new Gaussian kernel with the following pa-
rameters:

µnew = (max(U) + min(U))/2
σnew = (max(U)−min(U))/2 (12)

where U = {µA ± σA, µB ± σB}. The idea under-
lying this definition is to reduce the approximate
merging of two Gaussian kernels to the exact merg-
ing of two of their α-cuts, for a specific value of α.
Here, we choose α = exp(−1/2) ≈ 0.6, which is the
membership degree of the inflection points µ± σ of
a Gaussian kernel with parameters µ and σ.
A merging example is presented in Figure 4.

4. Evaluation

4.1. Experimental Setup

For the purpose of evaluation of the proposed com-
plexity reduction methods, we use the FLEXFIS al-
gorithm as outlined in Section 2. We compare this
algorithm with and without redundancy elimina-
tion in terms of model complexity (measured by the

Figure 4: Merging of two Gaussian fuzzy sets
(dashed and dotted dashed lines) to a new fuzzy
set according to (12)

number of rules) and accuracy (measures by mean
absolute error, MAE). Besides, we also measure the
additional computational cost caused by the redun-
dancy detection and elimination processes. In the
following, we summarize some of the main steps of
this algorithm (see [20] for a more detailed descrip-
tion). FLEXFIS uses Gaussian membership func-
tions and the product t-norm in (2). Essentially,
this means that every rule corresponds to a Gaus-
sian cluster in the p-dimensional input space (as-
sociated with a linear function as consequent part).
Before entering the on-line learning model, an initial
model of that type if normally constructed off-line,
using a small set of input/output examples. Then,
in the on-line phase, the model is adapted whenever
a new data sample ~x arrives:

• If ‖~x − ~cwin‖ ≥ ρ, with ~cwin the center co-
ordinates of the nearest cluster and ρ the so-
called vigilance parameter, then a new rule is
created. The center of the corresponding clus-
ter is ~cC = ~x, and its range of influence ~σC = 0.
• Otherwise, the center of the nearest cluster
~cwin is updated by moving it towards ~x. More-
over, the range of influence is adapted by means
of a recursive formula for the variance of a clus-
ter [17].
• The modified/evolved clusters are projected
to the axes of the attributes in order to up-
date/evolve the fuzzy partitions in each dimen-
sion: the centers and widths of the fuzzy sets
are associated with the corresponding center
coordinates and the width of the clusters in
each dimension (for the widths of the fuzzy
sets, a small positive constant ε is used as a
lower bound in order to avoid numerical insta-
bilities).
• The consequent parts of the rules are adapted.
To this end, correction vectors are added to
the linear consequent parameters and, likewise,
correction matrices to the current inverse Hes-
sian matrices. Then, recursive weighted least
squares (for local learning) is performed for all



rules.

The vigilance parameter in FLEXFIS is essential
for controlling the trade-off between rule evolution
and rule update; thus, it has an important influence
on the model complexity. As proposed in [20], we
use the default value 0.3

√
p+1√

2 , with p the dimen-
sionality of the input feature space. The threshold
for rule similarity in the feature space as well as for
fuzzy set similarity is set to 0.35 in all experiments.
The following data sets were used:

• The jester data set1 contains the ratings of
up to 36 jokes by users on a continuous scale
in the range [-10,10]. The goal is to rec-
ognize similar rating patterns among differ-
ent users and predict the rating scores of new
users. We used the dense subset of jokes
{5, 7, 8, 13, 15, 16, 17, 18, 19, 20} as described on
the web-site, including the ratings of about
25000 users, in a data streaming context for
updating the models on demand based on new
user data. The data was randomly split into a
training and a test set.
• A data set containing the five most important
features for estimating the prices of residen-
tial premises. The goal is to predict the house
prices for prospective years based on past con-
ditions. The training data set contains values
in the period from 1998 to 2004, whereas the
test data contains values from the period 2005
to 2006.

The main characteristics of the data sets are sum-
marized in Table 1. In both cases, the training sets
were considered as pseudo-streams and used as in-
put of our EFS. The test sets were then used for
evaluation, namely to determine the classification
accuracy of the respective methods.

4.2. Results

4.2.1. Results on Jester Data

The training samples are processed in four different
ways: EFS (without pruning), EFS+ERR (evolving
fuzzy system with elimination of redundant rules),
EFS+ERF (evolving fuzzy systems with elimina-
tion of redundant fuzzy sets) and EFS+ERR+ERF
(elimination of redundancies on both levels). For
the latter, the combination is done in the follow-
ing way: for each newly updated rule, it is first
checked whether it has become redundant to any
other rule — if so, rule merging is performed; then,
also all fuzzy sets projected from the updated rule
are checked whether they become redundant to any
other fuzzy sets — if so, fuzzy set merging is per-
formed and the merged fuzzy partitions stored in a
separate (second layer) fuzzy model (for visualiza-
tion to the user). The update and evolution process

1http://www.ieor.berkeley.edu/ goldberg/jester-data/

continues with the other (first layer) fuzzy model,
containing merged clusters, but never merged fuzzy
sets. The reason for this is that a fuzzy set merging
may cause a cluster dragging and miss-alignment
effect, according to a back-projection of the merged
sets to the high-dimensional feature space.

Table 2 presents the test results on the jester data
when predicting the scores of joke #20 for new users
based on past rating patterns. Obviously, our re-
dundancy elimination methods are able to signifi-
cantly reduce complexity, namely from 467 to only
2 rules, without increasing the mean absolute error
(MAE). Indeed, in terms of accuracy, the EFS do
even out-perform a batch 1-nearest neighbor clas-
sifier used as a baseline. They also come close to
Eigentaste (see [21]), a batch method specifically
developed for this data set. Computation time is
significantly higher when not using any pruning
scheme as much more rules are processed during
the incremental update phase. Finally, for EFS +
ERR, we reach an on-line time of 0.004 seconds for
updating the model with a single sample. The accu-
racy reported for EFS+ERR+ERF belongs to the
second layer fuzzy model.

4.2.2. Results on Residential Premise Data

For the residential premise data, the use of an in-
cremental approach can be justified, because the
data base is regularly updated with new premises;
re-training a model from scratch every time would
therefore become very time-consuming.

As test data, we used the prices of two consec-
utive years 2005-2006, whereas the earlier observa-
tions (1998-2004) were used as training data. The
results are reported in Table 3. Here, the impact
of eliminating redundancies is even more impres-
sive, at the price of a moderate increase in compu-
tational cost: The normalized mean absolute error
(MAE) decreases from 0.1728 to to 0.1561, proba-
bly since complexity reduction also reduces the risk
of over-fitting the training data. At the same time,
the complexity of the models is reduced, too, from
18 to 7 rules and from 90 to 11 fuzzy sets in total
(i.e., from 18 to 2.2 fuzzy sets on average per input
dimension).

Figure 5 visualizes the number of rules contained
in the model during the on-line update phase —
the dotted line represents the original model, the
solid line the model obtained through redundancy
elimination.

5. Summary and Conclusions

In this paper, we presented methods for eliminat-
ing redundancies in evolving rule-based fuzzy sys-
tems, thereby reducing the complexity and increas-
ing the transparency of such models. More specifi-
cally, we applied corresponding methods on two lev-
els, namely on the level of complete rules (with over-
lapping antecedent parts) and on the level of the



Table 1: Data sets and their characteristics

# Train. Samples # Test Samples # Input Var. Source
Jokes 16654 8329 9 Internet
Premise Prices 2902 1371 5 Historic Data Base of Sales

Table 2: Performance of EFS without and with pruning of redundant rules and fuzzy sets on jester data.

Method MAE # of Rules # of Fuzzy Sets Comp. Time in sec.
EFS 0.1931 467 4203 817.6
EFS + ERR 0.1958 2 18 77.08
EFS + ERF 0.1926 9 17 1203.2
EFS + ERR + ERF 0.1975 2 11 77.87
1-NN[21] 0.2370 NA NA NA
Eigentaste[21] 0.1870 NA NA NA

Figure 5: (Evolution progress on the number of
rules for NOx data set when using conventional EFS
(dotted line) versus EFS with redundancy elimina-
tion (solid line).

fuzzy partitions in each single dimension (overlap-
ping fuzzy sets). The degree of overlap of rules and
fuzzy sets is quantified by means of a fuzzy inclu-
sion measure. Even though our implementation was
evaluated using FLEXFIS approach, the methods
are more general and in principle applicable for all
evolving fuzzy systems of the Takagi-Sugeno type.
Moreover, they can be used in connection with ar-
bitrary fuzzy sets and t-norm operators in the rule
antecedent parts. Evaluations on high-dimensional
data sets show that complexity reduction does not
only produce more compact models, but may also
yield a gain in accuracy.
Future work includes the application of the pro-

posed approaches onto dynamically evolving cluster
models. There, it would be interesting to see the
impact of rule merging for cluster which are moving

together onto the quality of evolved cluster parti-
tions (e.g. measured in terms of cluster validation
indices).
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