
Graph-Kernels for the Comparative Analysis of
Protein Active Sites

Thomas Fober∗, Marco Mernberger∗, Ralph Moritz, Eyke Hüllermeier
Department of Mathematics and Computer Science

Marburg University, Germany
{thomas,mernberger,moritz,eyke}@mathematik.uni-marburg.de

Abstract: Graphs are often used to describe and analyze the geometry and physic-
ochemical composition of biomolecular structures, such as chemical compounds and
protein active sites. A key problem in graph-based structure analysis is to define a
measure of similarity that enables a meaningful comparison of such structures. In
this regard, so-called kernel functions have recently attracted a lot of attention, es-
pecially since they allow for the application of a rich repertoire of methods from the
field of kernel-based machine learning. Most of the existing kernel functions on graph
structures, however, have been designed for the case of unlabeled and/or unweighted
graphs. Since proteins are often more naturally and more exactly represented in terms
of node-labeled and edge-weighted graphs, we propose corresponding extensions of
existing graph kernels. Moreover, we propose an instance of the substructure finger-
print kernel suitability for the analysis of protein binding sites. The performance of
these kernels is investigated by means of an experimental study in which graph kernels
are used as similarity measures in the context of classification.

1 Introduction

The functional analysis of proteins is a key research problem in the life sciences and a
main prerequisite for resolving the proteome and interactome of living cells, tissues and
organisms. Since improved technology has led to an increased number of known protein
structures, structure-based prediction of protein function has now become a viable alter-
native to classical sequence-based prediction methods. In fact, structure-based approaches
complement sequence-based methods in a reasonable way, as it is well-known that func-
tional similarity does not necessarily come along with sequence similarity [GMB96].

Prediction of protein function can be seen as a classification problem. In machine learn-
ing, a large repertoire of classification methods has been developed, most of them relying,
in one way or the other, on a kind of similarity measure between the objects to be clas-
sified. What is needed, therefore, is a measure of similarity between protein structures.
More specifically, our focus in this paper will be on the special case of protein binding
sites derived from crystal structures. To model such structures in a formal way, we re-
sort to a graph representation which is able to capture the most important geometrical and
physicochemical properties of a binding site.

For a long time, graphs have been used in chemoinformatics for the modeling of chemical

compounds [BJ00]. In bioinformatics, they are becoming more and more important, too,
due to their general versatility in modeling complex structures such as proteins or inter-
action networks [BL04]. It is hence not surprising that a number of methods has been
developed for comparing graphs representing protein structures (e.g. [JIDG03; WHKK07;
FMKH09]), and for computing related similarity measures, for example based the con-
cepts of maximum (minimum) common subgraph (supergraph) [RGW02; RW02] or graph
edit distance [NB07].

In this context, so-called kernel functions (on graphs) have attracted increasing attention in
recent years[Gär03]. Here, the term ‘kernel’ refers to a class of functions that fulfill certain
mathematical properties and can typically be interpreted as similarity measures. These
functions are especially attractive as they can be used as a ‘plug-in’ for every kernel-based
machine learning method. In other words, as soon as a kernel function has been defined
on a certain class of objects, the related domain becomes amenable to these methods.

The random walk kernel [Gär03] and the shortest path kernel [Bor07] are among the most
prominent graph kernels that have been used in the fields of bio- or chemoinformatics.
However, as they have originally been defined for unweighted graphs, they are not imme-
diately applicable to the case of graphs modeling protein binding sites. In fact, as will be
explained in more detail in Section 2, binding sites are more naturally modeled in terms of
graphs with node labels and edge weights, and a representation ignoring labels and weights
would come along with an unacceptable loss of information. In Section 3, we therefore
extend the aforementioned kernel functions to the case of node-labeled and edge-weighted
graphs. Besides, we make use of the substructure fingerprint representation [FHZ06] to
define a class of kernels for protein binding sites. An experimental comparison of these
graph kernels will be presented in Section 4 and discussed in Section 5.

2 Modeling Protein Binding Sites

To model protein binding sites as graphs, we build upon CavBase [SHK01; SKK02], a
database developed for the purpose of identifying and extracting putative protein binding
sites from structural data deposited in the protein database (PDB) [BWF+00]. CavBase
detects putative binding sites as cavities on the surface of proteins by using the LIGSITE
algorithm [HRB97]. The geometry of a protein binding site is internally represented by a
set of pseudocenters, spatial points that represent the physico-chemical properties of a sur-
face patch within the binding site. Currently, CavBase uses seven types of pseudocenters
(donor, acceptor, donor-acceptor, pi, aromatic, aliphatic and metal) that account for dif-
ferent types of possible interactions between residues of the binding site and the substrate
of the protein. These pseudocenters are derived from the amino acid composition of the
binding site.

As a natural way to model such structures, we make use of node-labeled and edge-weighted
graphs. Nodes correspond to pseudocenters and are thus labeled with the pseudocenter
type. On average, a graph representation of a binding pocket has around 100 nodes, though
graphs with several hundred nodes and some extremes with thousands of nodes do exist.

Edges are weighted by the Euclidean distance between the pseudocenters and thus cap-
ture the geometry of the binding site. To reduce the complexity of the representation and
increase algorithmic efficiency, we use an approximate representation in which edges ex-
ceeding a certain length are ignored; in this regard, a threshold of 11 Angström has proved
to be a reasonable choice [FMKH09]. Despite this approximation, our representation will
produce graphs that are rather dense, as approximately 20 percent of all pairs of nodes are
connected by an edge. Consequently, the graphs have a large number of cycles. Indeed, a
cycle-free representation will normally not be able to reproduce the geometry of a binding
site in an accurate way. As will be seen later on, this property leads to problems for certain
types of kernel functions.

Formally, a node-labeled and edge-weighted graph will be denoted byG = (V,E, lV , lE),
where V is a finite set of nodes and E ⊆ V × V a set of edges. Moreover, lV : V →
LV is a function that maps each node to one among a finite set of labels LV . Likewise,
lE : E → R+ is a mapping that assigns weights to edges. We define the size of a graph in
terms of its number of nodes |V |. The adjacency matrix of a graph G will be denoted by
A.

We note that, since our edges are undirected, it would be more correct to use a subset
instead of a tuple representation. For convenience, however, we stick to the simpler tu-
ple notation, with the implicit understanding that (u, v) ∈ E implies (v, u) ∈ E and
lE((u, v)) = lE((v, u)).

3 Kernels for Node-Labeled and Edge-Weighted Graphs

Let G be a set of objects, in our case graphs. A G × G → R mapping k is called kernel if
it is symmetric and positive definite, that is, k(x, y) = k(y, x) for all x, y ∈ G and

m∑
i,j=1

cicjk(xi, xj) ≥ 0

for all m ∈ N, {c1, . . . , cm} ⊆ R, and {x1, . . . , xm} ⊆ G.

A generic way to define similarity measures for complex objects, such as graphs, is to
use decomposition techniques, that is, to decompose a complex object into a set of sim-
ple substructures of a specific type, and to reduce the comparison to the level of these
substructures. The idea is that, for such substructures, the definition of adequate similar-
ity measures is less difficult and, hopefully, the computation more efficient. Therefore,
graph kernels often belong to the class of R-convolution kernels, a special type of kernel
especially suitable for composite objects in a discrete space. Generally, an R-convolution
kernel k : G × G → R can be expressed in the following from:

k(G,G′) =
∑

g∈R−1(G)

∑
g′∈R−1(G′)

κ(g, g′) , (1)

where R−1(G) denotes a decomposition of G into substructures, and κ is a kernel defined
on such substructures. In the following, we consider specific instances of (1).

3.1 Random Walk Kernels

Random walk kernels were introduced in [Gär03] for unweighted graphs. Roughly speak-
ing, they decompose a graph into sequences of nodes generated by random walks, and
count the number of identical random walks that can be found in two graphs. Thus, the
random walk kernel is an R-convolution kernels with substructures given by paths. In the
following, we present an extension of these kernels to the case of edge-weighted graphs.

Interestingly, to compute a graph kernel, it is not necessary to sample random walks. In-
stead, one can exploit an important property of the adjacency matrix A of a graph G,
namely that [An]i,j is the number of paths of length n from node i to node j; here, An

denotes the n-th power of A. Let G× = G×G′ be the product graph of the graphs G and
G′, where the node and the edge set of G× are defined as follows:

V× = { (vi, v′j) | vi ∈ V, v′j ∈ V ′, lV (vi) = lV (v′j) }

E× =
{ (

(vi, v′j), (vk, v
′
l)
)
∈ V× × V× | ‖lE(vi, vk)− lE(v′j , v

′
l)‖ ≤ ε

}
Since [An×]i,j now corresponds to the number of equal paths of length n from node i to
node j that occur in G as well as in G′, the product graph G× allows one to calculate
k(G,G′) by performing simple matrix-operations. The requirement that node labels and
edge weights have to match along two paths is implicitly encoded in the definition of the
product graph (namely by the restriction to node pairs with lV (vi) = lV (v′j) and edges
with ‖lE(vi, v′j)− lE(vk, v′l)‖ ≤ ε); this idea was already used by [BOS+05], albeit only
for discrete edge labels. The similarity of the graphs G and G′, considering all equal paths
of length 1 to∞, is finally given by

kRW (G,G′) =
|V×|∑
i,j=1

[∞∑
k=0

λk ·Ak×

]
i,j

, (2)

where λk is a factor that guarantees convergence of the series. For certain choices of
λ, the above series can be calculated in a simple way. Choosing λk = (1/a)k, with
a ≥ maxv∈V×{degree(v)}, leads to the geometrical series, and (2) reduces to

kRWgeo
(G,G′) =

|V×|∑
i,j=1

[
(I − λ ·A×)−1

]
i,j

, (3)

where I is the unit matrix. Choosing λk = βk

k! leads to the exponential series and to

kRWexp
(G,G′) =

|V×|∑
i,j=1

[
eβ·A×

]
i,j

.

Since the product graph is of quadratic size and matrix inversion has cubic complexity, the
complexity of the random walk kernel is O(M6), with M = max{|V |, |V ′|}.

3.2 Shortest Path Kernels

The random walk kernel considers an extremely large number of substructures (paths).
Intuitively, this may not only come with a high computational complexity but also produce
a certain redundancy. To reduce the number of substructures, Borgwardt [BK05] proposed
to consider only the shortest paths between two nodes, an idea which leads to the shortest
path kernel. Again, we propose an extension of this kernel to the case of edge-weighted
graphs.

For two nodes vi, vj ∈ G, let sp(vi, vj) denote the length of the shortest path (sum of edge
weights on the path) between these nodes, and let

SP (vi, vj) = ({lV (vi), lV (vj)}, sp(vi, vj)) .

Thus, a path is represented by its length and the labels of the start and the end node (while
the node labels in-between are ignored). A simple kernel on substructures of this type is
the identity (Dirac kernel):

κpath(SP (vi, vj), SP (vk, vl)) =

{
1 if SP (vi, vj) = SP (vk, vl)
0 else

.

Since testing equality is of course not reasonable for real-valued edge lengths, we assume
these lengths to be discretized (into bins of length δ).

Now, we can define the generalized shortest path kernel as follows:

kSP (G,G′) =
1
C

∑
vi,vj∈V

∑
vk,vl∈V ′

κpath(SP (vi, vj), SP (vk, vl)) ,

where C = 1
4 (|V |2 − |V |) · (|V ′|2 − |V ′|) is a normalizing factor that guarantees 0 ≤

kSP (G,G′) ≤ 1.

To analyze the complexity of the shortest path kernel, assume |V | = |V ′| = M . The
computation of all shortest paths can be done using the Floyd-Warshall [Flo62] algorithm
in time O(M3). The results are stored in a shortest path matrix, in which the entry at
position (i, j) gives the cost of the shortest path from node i to node j. We consider in a
pairwise way all paths in both shortest path matrices and compare them using κpath which
needs time O(1). Since there are M4 comparisons to perform, the shortest path kernel
needs time O(M4).

3.3 Fingerprint Kernels

A very simple type of kernel, which has nevertheless been applied successfully for learning
on structured data such as molecules [FHZ06], is based on the idea of mapping a structured
object to a fingerprint vector of fixed length first, and to compare these vectors afterward.
Typically, each entry in this vector informs about the presence or absence of a specific
substructure (pattern).

In our case, we consider as substructures all non-isomorphic graphs of size 3. Assuming
n distinct node and k distinct edge labels, there exist

N(n, k) =
(
n

3

)
· k3 + n(n− 1) · k ·

(
k + 1

2

)
+ n ·

(
k + 2

3

)
substructures of this type, which can be verified by means of a case distinction: (i) All
three node labels are distinct: There are

(
n
3

)
possibilities to choose 3 distinct labels from

a set of n labels. Moreover, since edges are ordered uniquely in this case, there exist k3

possibilities for the edge labels. (ii) Two node labels are equal and different from the third:
There are n(n − 1) possibilities to choose the two labels, one for the identically labeled
nodes and one for the other. Assuming an arbitrary ordering on the nodes and edges, an
isomorphism can switch the equally labeled nodes so that the ordering of two edges will
change, too. To map isomorphic graphs uniquely, we sort the edges, which leads to only
k·
(
k+1
2

)
possible edge combinations. (iii) All nodes have equal label: An isomorphism can

reorder all nodes in this case. Therefore, to obtain a unique representation of the possible
graphs, all edges must be sorted according to their label. Thus, there are n possible node
labels and

(
k+2
3

)
edge combinations.

For a graph G, let

fG =
(
G w t1, G w t2, . . . , G w tN(n,k)

)
∈ {0, 1}N(n,k)

where {t1, . . . , tN(n,k)} is the set of all non-isomorphic subgraphs of size 3, numbered in
an arbitrary but fixed order. The predicate G w ti tests whether ti is contained in G and,
by convention, returns 1 if it evaluates to true and 0 otherwise. To compare two graphs
G and G′ in terms of their respective fingerprint vectors fG and fG′ , different kernels can
be used. The simplest approach is to look for the Hamming distance of the two vectors,
which leads to

kFPH(G,G′) =
1

N(n, k)

N(n,k)∑
i=1

κδ([fG]i, [fG′]i) , (4)

where [fG]i denotes the i-th entry in the vector fG, and κδ is the Dirac kernel (i.e.,
κδ(x, y) = 1 if x = y and = 0 if x 6= y). As a potential disadvantage of this approach,
note that it does not only reward the co-occurrence of a substructure in both graphs, but
also the simultaneous absence: If the i-th pattern neither occurs in G nor in G′, then
κδ([fG]i, [fG′]i) = κδ(0, 0) = 1, which may not be desirable. An alternative measure
avoiding this problem is the well-known Jaccard coefficient:

kFPJ(G,G′) =
∑N(n,k)
i=1 min([fG]i, [fG′]i)∑N(n,k)
i=1 max([fG]i, [fG′]i)

. (5)

Our current implementation of the fingerprint approach is a naive one, in which testing the
presence of a substructure in a graphG has complexityO(M3), withM = |V | the number
of nodes in G. Thus, the overall complexity of computing k(G,G′) is O(N(n, k) ·M3),
with M = max(|V |, |V ′|). Of course, more efficient implementations are possible, for
example based on the use of hashing techniques [WKHK04].

4 Experimental Evaluation

In our experiments, we compared the graph kernels discussed in the previous section,
namely the random walk kernel (RW) using (3) with a given by the maximum size of
the graphs in the data set (plus 1), the shortest path kernel (SP), and the fingerprint kernel
based on (4) and (5), respectively (FPH and FPJ). Moreover, to get an idea of their absolute
performance, we additionally included two state-of-the-art methods for comparing protein
binding sites in terms of their similarity. Both approaches are based on the concept of
a graph alignment that has recently been introduced in [WHKK07]. The first method
(GA) is the original algorithm proposed in the same paper, which is based on a heuristic
(greedy) optimization strategy. The second method (GAVEO) makes use of evolutionary
optimization techniques to compute a graph alignment [FMKH09]. Both methods need a
number of parameters, which we defined as recommended in [WHKK07]. For the kernel
methods, we set the parameter ε (tolerance for edge length comparison) to 0.2.

The assessment of a similarity measure for biomolecular structures, such as protein bind-
ing sites, is clearly a non-trivial problem. In particular, since the concept of similarity by
itself is rather vague and subjective, it is difficult to evaluate corresponding measures in an
objective way. To circumvent this problem, we propose to evaluate similarity measures in
an indirect way, namely by means of their performance in the context of nearest neighbor
(NN) classification. The underlying idea is that, the better a similarity measure is, the
better he predictive performance we expect from an NN classifier using this measure for
determining similar cases.

4.1 Data

We selected two classes of binding sites that bind, respectively, to NADH or ATP. This
gives rise to a binary classification problem: Given a protein binding site, predict whether
it binds NADH or ATP. More concretely, we compiled a set of 355 protein binding pockets
representing two classes of proteins that share, respectively, ATP and NADH as a cofactor.
To this end, we used CavBase to retrieve all known non-redundant ATP and NADH bind-
ing pockets that were co-crystallized with the respective ligand. Subsequently, we reduced
the set to one cavity per protein, thus representing the enzymes by a single binding pocket
to ensure that no identical binding pockets are present in our data set. As protein ligands
adopt different conformations due to their structural flexibility, it is likely that the ligands
in our data set are bound in completely different conformations, hence the corresponding
binding pockets do not necessarily share much structural similarity. To ensure a minimum
level of similarity, we therefore utilized the ligand information available for these binding
pockets, as these structures where all co-crystallized with the corresponding ligand. Using
the Kabsch algorithm [Kab76], we calculated the root mean squared deviation (RMSD) be-
tween pairs of ligand structures and combined all proteins whose ligands yielded a RMSD
value below a threshold of 0.4, thus ensuring that the ligands are roughly oriented in the
same way. This value was chosen as a trade-off between data set size and similarity. Even-
tually, we thus obtained a two-class data set comprising 214 NADH-binding proteins and

141 ATP-binding proteins.

4.2 Results

The performance of the different methods, using a simple k-nearest neighbor classifier
(k = 1, 3, 5, 7, 9) for prediction, is summarized in Table 1. More specifically, the table
shows the percentage of correct classifications in a leave-one-out cross validation: For
each structure, a class prediction is derived from its k nearest neighbors (in terms of the
respective similarity measure) by means of majority voting, and the prediction is compared
with the true class.

method RW SP FPH FPJ GA GAVEO
k = 1 0.597 0.606 0.828 0.842 0.766 0.789
k = 3 0.597 0.628 0.839 0.882 0.718 0.766
k = 5 0.597 0.634 0.839 0.873 0.724 0.780
k = 7 0.608 0.625 0.819 0.859 0.718 0.786
k = 9 0.608 0.634 0.814 0.836 0.713 0.766

Table 1: Classification rates of a k-nearest-neighbor classifier in a leave-one-out cross validation
using different values of k and different similarity measures: random walk kernel (RW), shortest
path kernel (SP), fingerprint kernel (FPH, FPJ), and graph alignment (GA, GAVEO).

Table 2 shows the average time complexity of the methods, namely the time needed for
a single pairwise comparison of two structures. These numbers have been determined by
averaging over 1000 comparisons with randomly chosen structures.

method RW SP FP GA GAVEO
runtime 65.51± 89.07 9.75± 97.77 2.05± 3.66 74.24± 85.61 > 5 min

Table 2: Average runtime (in seconds) of the different methods for a single pairwise comparison.

We investigated the behavior of the best approach FPJ more in detail. A critical parameter
of this approach is k, the number of distinct edge labels, that influence strongly the number
N(n, k) of graphs of size three. Obviously the runtime will decrease if k is becoming
smaller since there are less comparisons to perform. A remaining question is, if as a
consequence thereof the accuracy is also decreasing. To investigate this we varied the
granularity (discretized edge weights into bins of length δ) and measured the accuracy and
runtime for the whole leave-one-out procedure. As can be seen in figure 1 the runtime
is a strictly decreasing curve as already prognosticated. However, the benefit of a lower
runtime is redeemed by a lower accuracy. Nevertheless, the runtime decreases much faster
than the accuracy so that for a fast screening of a database higher δ values can be used.
We do not recommend to use smaller δ values since the runtime is growing exponentially
with decreasing δ.

1 1.5 2 2.5 3
0.78

0.8

0.82

0.84

0.86

ac
cu

ra
cy

1 1.5 2 2.5 3
0

20

40

60

80

granularity

ru
nt

im
e

[m
in

]

Figure 1: Runtime and accuracy w.r.t. δ; the dotted line illustrates the runtime, the solid line the
accuracy.

5 Discussion and Conclusion

The results convey are relatively clear picture: The fingerprint kernels perform best, the
random walk and shortest path kernel worst, and the graph alignment methods are in-
between. The overall best results are achieved by the Jaccard-variant of the fingerprint
kernel. In terms of efficiency, the fingerprint kernels are superior, too (despite the naive
implementation). Thus, this type of kernel is clearly of high interest in the context of
comparing protein binding sites.

The poor performance of the random walk and shortest path kernels can possibly be at-
tributed to their characteristics as R-convolution kernels. In general, the ‘all-against-all’
comparison of substructures performed by kernels of this type appears to be problematic
for diverse objects with a large number of substructures. In the random walk kernel, nodes
and edges can appear more than once in a random walk, a problem known as tottering.
This problem becomes especially severe in the presence of many cycles within a graph, a
property which, as mentioned earlier, our graph descriptors of protein binding sites will in-
evitably exhibit. The shortest path kernel avoids tottering but has another problem known
as halting: As it only looks at shortest paths, it tends to be dominated by a large number
of paths with very few nodes. As we consider graphs representing geometric constraints
within a binding pocket, this is likely to result in a loss of information.

The strong performance of the fingerprint kernel suggests to elaborate on this approach
in more detail. In fact, the approach presented in this paper is rather simple and can be
extended in different ways. First, substructures other than subgraphs of size 3 might be
considered, even though our experience so far has shown that this class of patterns is able
to capture considerable information while still being manageable in terms of complexity.
Second, the fingerprint vectors could be constructed (and compared) in a more sophisti-
cated way. For example, instead of just indicating the presence or absence of a pattern,
one may count its number of occurrences and then apply similarity measures for frequency
vectors. Besides, as mentioned earlier, the approach can be implemented in a much more
efficient way.

References

[BJ00] Horst Bunke and Xiaoyi Jiang. Graph matching and similarity. Intelligent
systems and interfaces, 15:281 – 304, 2000.

[BK05] K. M. Borgwardt and H. P. Kriegel. Shortest-path kernels on graphs. In In-
ternational Conference on Data Mining, pages 74–81, Houston, Texas, 2005.

[BL04] Johannes Berg and Michael Lässig. Local graph alignment and motif search
in biological networks. Proceedings of the National Academy of Sciences of
the United States of America, 101(41):14689–14694, 2004.

[Bor07] K. M. Borgwardt. Graph Kernels. PhD thesis, Ludwig-Maximilians-
Universität München, Germany, 2007.

[BOS+05] Karsten Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alex J. Smola, and Hans-Peter Kriegel. Protein function predic-
tion via graph kernels. Bioinformatics, 21(21):i47 – i56, 2005.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, , and P. E. Bourne. The protein data bank. Nucleic Acids
Research, 28:235–242, 2000.

[FHZ06] N. Fechner, G. Hinselmann, and A. Zell. Implicitly Defined Substructure Fin-
gerprints for Support Vector Machines. In German Conference on Chemoin-
formatics, 2006.

[Flo62] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

[FMKH09] Thomas Fober, Marco Mernberger, Gerhard Klebe, and Eyke Hüllermeier.
Evolutionary Construction of Multiple Graph Alignments for the Structural
Analysis of Biomolecules. Bioinformatics, 2009.

[Gär03] Thomas Gärtner. A survey of kernels for structured data. SIGKKD Explo-
rations, 5(1):49 – 58, 2003.

[GMB96] J. F. Gibrat, T. Madej, and S. H. Bryant. Surprising Similarities in Structure
Comparison. Current Opinion in Structural Biology, 6(3):377–385, 1996.

[HRB97] M. Hendlich, F. Rippmann, and G. Barnickel. LIGSITE: Automatic and effi-
cient detection of potential small molecule-binding sites in proteins. Journal
of Molecular Graphics and Modelling, 15:359–363, 1997.

[JIDG03] M. Jambon, A. Imberty, G. Deleage, and C. Geourjon. A New Bioinfor-
matic Approach to Detect Common 3 D Sites in Protein Structures. Proteins
Structure Function and Genetics, 52(2):137–145, 2003.

[Kab76] Wolfgang Kabsch. A solution of the best rotation to relate two sets of vectors.
Acta Crystallographica, 32:922–923, 1976.

[NB07] Michael Neuhaus and Horst Bunke. Briding the Gap between Graph Edit
Distance and Kernel Machines. World Scientific, New Jersey, 2007.

[RGW02] J.W. Raymond, E.J. Gardiner, and P. Willett. Heuristics for Similarity Search-
ing of Chemical Graphs Using a Maximum Common Edge Subgraph Algo-
rithm. Jorunal of Chemical Information and Computer Sciences, 42(2):305–
316, 2002.

[RW02] J. Raymond and P. Willett. Maximum common subgraph isomorphism algo-
rithms for the matching of chemical structures. Journal of Computer-Aided
Molecular Design, 16(7):521–533, 2002.

[SHK01] S. Schmitt, M. Hendlich, and G. Klebe. From Structure to Function: A New
Approach to Detect Functional Similarity among Proteins Independent from
Sequence and Fold Homology. Angewandte Chemie International Edition,
40(17):3141 – 3144, 2001.

[SKK02] S. Schmitt, D. Kuhn, and G. Klebe. A New Method to Detect Related Func-
tion Among Proteins Independent of Sequence and Fold Homology. Journal
of Molecular Biology, 323(2):387–406, 2002.

[WHKK07] N. Weskamp, E. Hüllermeier, D. Kuhn, and G. Klebe. Multiple Graph Align-
ment for the Structural Analysis of Protein Active Sites. IEEE Transactions
on Computational Biology and Bioinformatics, 4(2):310–320, 2007.

[WKHK04] N. Weskamp, D. Kuhn, E. Hüllermeier, and G. Klebe. Efficient Similarity
Search in Protein Structure Databases: Improving Clique-Detection through
Clique-Hashing. Bioinformatics, 20(10):1522–1526, 2004.

