
IBLStreams: A System for Instance-Based

Classification and Regression on Data Streams

Ammar Shaker and Eyke Hüllermeier
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Abstract

This paper presents an approach to learning on data streams called

IBLStreams. More specifically, we introduce the main methodological con-

cepts underlying this approach and discuss its implementation under the

MOA software framework. IBLStreams is an instance-based algorithm that

can be applied to classification and regression problems. In comparison

to model-based methods for learning on data streams, it is conceptually

simple. Moreover, as an algorithm for learning in dynamically evolving

environments, it has a number of desirable properties that are not, at

least not as a whole, shared by currently existing alternatives. Our exper-

imental validation provides evidence for its flexibility and ability to adapt

to changes of the environment quickly, a point of utmost importance in

the data stream context. At the same time, IBLStreams turns out to be

competitive to state-of-the-art methods in terms of prediction accuracy.

Moreover, due to its robustness, it is applicable to streams with different

characteristics.

Keywords: Data streams, classification, regression, instance-based learn-

ing, concept drift.
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1 Introduction

The idea of adaptive learning in dynamical environments has recently received

increasing attention in different research communities, including the database

and data mining community, in which it has been addressed under the notion of

“learning from data streams” [17, 18], and the computational intelligence commu-

nity, in which the notion of “evolving fuzzy systems” has been coined [5, 25, 4, 26].

Despite small differences regarding the basic assumptions and the technical set-

ting, the emphasis of goals and performance criteria, and the focus on specific

types of applications, the key motivation of these and related fields is the idea

of a system that learns incrementally, and maybe even in real-time, on a con-

tinuous stream of data, and which is able to properly adapt itself to changes of

environmental conditions or properties of the data-generating process. Systems

with these properties have been developed for different machine learning and data

mining problems, such as clustering [1], classification [21], and frequent pattern

mining [10].

Domingos and Hulten [15] list a number of properties that an ideal stream mining

system should exhibit, and suggest corresponding design decisions: the system

uses only a limited amount of memory; the time to process a single record is short

and ideally constant; the data is volatile and a single data record accessed only

once; the model produced in an incremental way is equivalent to the model that

would have been obtained through common batch learning (on all data records

so far); the learning algorithm should react to concept drift (i.e., any change of

the underlying data-generating process) in a proper way and maintain a model

that always reflects the current concept.

Given the existence of a number of sophisticated and partly quite complicated

methods for learning on data streams, it is surprising that one of the simplest

approaches to machine learning, namely the instance-based (case-based) learning

paradigm, has only received very little attention so far—all the more since the

nearest neighbor estimation principle, which constitutes the core of this paradigm,

is a standard method in machine learning, pattern recognition, and related fields.

In this paper, we elaborate on the potential of the instance-based approach to

supervised learning within the context of data streams and propose an efficient

instance-based learning algorithm for two important performance tasks, namely

classification and regression. To this end, we build on our previous work [6],

in which a basic version of our approach to classification was introduced. Be-

sides, the problem of regression has already been addressed in [31], but only in

a rather simple way (based on computing weighted averages). For the sake of
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self-containedness, parts of these papers will be reproduced here.

The remainder of the paper is organized as follows: The next section recalls the

basic ideas of instance-based learning, along with a short discussion of its pos-

sible advantages and disadvantages in a streaming context. Our approach to

instance-based learning on data streams, IBLStreams, is introduced in Section

3. In Section 4, we provide some information about the MOA (Massive Online

Analysis) framework for mining data streams, under which IBLStreams is imple-

mented. Experimental results are presented in Section 5, prior to concluding the

paper in Section 6.

2 Instance-Based Learning

The term instance-based learning (IBL) stands for a family of machine learn-

ing algorithms, including well-known variants such as memory-based learning,

exemplar-based learning and case-based learning [32, 30, 24]. As the term sug-

gests, in instance-based algorithms special importance is attached to the concept

of an instance [3]. An instance or exemplar can be thought of as a single experi-

ence, such as a pattern (along with its classification) in pattern recognition or a

problem (along with a solution) in case-based reasoning.

As opposed to model-based machine learning methods which induce a general

model (theory) from the data and use that model for further reasoning, IBL

algorithms simply store the data itself. They defer the processing of the data

until a prediction (or some other type of query) is actually requested, a property

which qualifies them as a lazy learning method [2]. Predictions are then derived

by combining the information provided by the stored examples.

Such a combination is typically accomplished by means of the nearest neighbor

(NN) estimation principle [11]. Consider the following setting: Let X denote the

instance space, where an instance corresponds to the description x of an object

(usually though not necessarily in attribute–value form). X is equipped with a

distance measure ∆(·), i.e., ∆(x, x′) is the distance between instances x, x′ ∈ X .

Y is the output space and 〈x, y〉 ∈ X × Y is called a labeled instance, a case,

or an example. In classification, Y is a finite (usually small) set comprised of m

classes {λ1, . . . , λm}, whereas Y = R in regression.

The current experience of the learning system is represented in terms of a set

D of examples 〈xi, yi〉, 1 ≤ i ≤ n = |D|. From a machine learning point of

view, D plays the role of the training set of the learner. More precisely, since not

all examples will necessarily be stored by an instance-based learner, D is only a

3



subset of the data seen so far. In case-based reasoning, it is also referred to as

the case base.

Finally, suppose a novel instance x0 ∈ X (a query) to be given. The NN prin-

ciple prescribes to estimate the corresponding output y0 by the output of the

nearest (most similar) sample instance. The k-nearest neighbor (k-NN) approach

is a slight generalization, which takes the k ≥ 1 nearest neighbors of x0 into

account. That is, an estimation yest0 of y0 is derived from the set Nk(x0) of the

k nearest neighbors of x0. This prediction is expressed as an aggregation of the

neighbors’ output values, where the type of aggregation function used strongly

depends on the type of prediction sought. In particular, the case of a discrete

output (classification) must be distinguished from the case of a numeric output

(regression).

2.1 Classification

In classification, a prediction is usually derived by means of a majority vote, i.e.,

yest0 = argmax
y∈Y

card{xi ∈ Nk(x0) | yi = y} . (1)

Noting that yest0 corresponds to the mode of the distribution on Y which is ob-

tained by counting the frequencies of class labels in the neighborhood of x0, this

prediction can be justified as an empirical risk minimizer of the standard 0/1 loss

function (`(y0, y
est
0 ) = 0 if y0 = yest0 and = 1 otherwise).

The estimation (1) can be generalized by weighting instances according to their

distance from x0:

yest0 = argmax
y∈Y

∑

xi∈Nk(x0) : yi=y

w(xi) , (2)

with

w(xi) =
f(∆(xi, x0))

∑

xj∈Nk(x0)
f(∆(xf , x0))

. (3)

Here, f(·) is a decreasing function R+ → R+, which means that the smaller

∆(xi, x0), the higher the weight of yi. Our implementation of IBL offers differ-

ent types of (kernel) functions of this type (constant, linear, inverse, Gaussian,

exponential), which can be selected by the user as a parameter of the system.

While the mode of a distribution is the minimizer of the expected 0/1 loss, it is

not the optimal prediction for the absolute error loss `(λi, λj) = |i − j|, which
is often used in the case of ordinal classification, where the classes are assumed

to have a natural order λ1 < λ2 < . . . < λm. Instead, the minimizer of this loss
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function is given by the median of the distribution. Again, this prediction can be

generalized by weighting each neighbor in accordance with its distance from x0.

2.2 Regression

A common loss function in regression is the squared error loss `(y0, y
est
0 ) = (y0 −

yest0 )2, which suggests the mean of the neighbors’ outputs as a prediction. More

generally, one typically uses the weighted average

yest0 =
∑

xi∈Nk(x0)

w(xi) · yi . (4)

Like in the case of classification, the basic assumption here is that the dependency

to be learned is locally (i.e., in the neighborhood of x0) constant, or can at least be

approximated sufficiently well by a constant function. Relaxing this assumption

from locally constant to locally linear gives rise to the idea of locally weighted

linear regression. Here, a linear model

f(x) = β0 +

m
∑

j=1

βj · x[j] = βT

[

1

x

]

, (5)

with x[j] the j-th entry of the vector x, is fitted in the neighborhood of x0. Thus,

the vector of coefficients β is estimated by

β̂ =
(

XTWX
)−1

XTWY , (6)

where the k × (m + 1) matrix X is composed of the k neighbors xi ∈ Nk(x0)

(plus the vector of ones modeling the intercept β0) and Y is the k × 1 vector

of corresponding output values yi. Moreover, W is a diagonal weight matrix

diag(w1, . . . , wk), which is determined by means of a kernel function f(·) cen-

tered at x0; thus, the weight wi of the neighbor xi ∈ Nk(x0) is of the form (3).

In case XTWX is singular and its inverse does not exist, the weighted average is

used for prediction instead. Situations of singularity or close-to-singularity, pro-

ducing problems with numerical instability, may also occur if the weight vector

diag(w1, . . . , wk) is strongly dominated by a single entry. To prevent such prob-

lems, we take care that the kernel width in exponential or Gaussian weighting

does never become too small.

Once (6) has been computed, the prediction yest0 is obtained by evaluating (5) with

x = x0 and β = β̂. The instance-based prediction strategy, both for classification

and regression, is summarized in pseudo-code in Fig. 1.
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It is worth mentioning that the learning (and combination) of locally linear models

is also quite common in the field of evolving fuzzy systems, especially in learning

so-called Takagi-Sugeno (TS) fuzzy models [33]; these are rule-based models in

which the rule antecedents specify fuzzy predicates on the input attributes, while

the rule consequents are linear functions of these attributes. From a modeling

point of view, an important difference is that, while a linear function is fitted

individually to each query x0 ∈ X in instance-based learning, such a function

refers to a larger part X ⊂ X of the input space (often identified through the

use of clustering algorithms) in TS models. Besides, following the paradigm of

lazy learning, the linear functions are only learned upon request in IBLStreams

and immediately forgotten after a prediction has been made. As opposed to this,

the combination of linear functions forms a global model in the case of TS fuzzy

systems. This comparison gives rise to an interesting question, namely whether

or not (lazy) instance-based learning might be preferable to (eager) model-based

learning in the setting of data streams.

2.3 Model-based versus Instance-based Learning

Recall the aforementioned key requirements for learning and data mining algo-

rithms on data streams: Above all, such algorithms must be incremental, highly

adaptive, and they must be able to deal with concepts that may change over time.

Is lazy, instance-based learning preferable to eager, model-based learning under

these conditions? Unfortunately, this question cannot be answered unequivocally.

Obviously, IBL algorithms are inherently incremental, since adaptation basically

comes down to adding or removing observed cases. Thus, incremental learning

and model adaptation is simple and cheap in the case of IBL. As opposed to

this, incremental learning is much more difficult to realize for most model-based

approaches. Even though incremental versions do exist for a number of well-

known learning methods, such as decision tree induction [34] and the learning of

TS fuzzy models [25, 5], the incremental update of a model is often quite complex

and in many cases assumes the storage of a considerable amount of additional

information.

The training efficiency of lazy learners does not come for free, however. Com-

pared with model-based approaches, IBL has higher computational costs when it

comes to answering new queries. In fact, the latter requires finding the k near-

est neighbors of the query, and even though this retrieval step can be supported

by efficient data and indexing structures, it remains costly in comparison with

deriving a model-based prediction.
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Consequently, IBL might be preferable in a data stream application if the number

of incoming data is large compared with the number of queries to be answered,

i.e., if model updating is the dominant factor. On the other hand, if queries

must be answered frequently and under tight time constraints, whereas a need

for updating the model due to newly observed examples rarely occurs, a model-

based method might be the better choice.

Regarding the handling of concept drift, a definite answer cannot be given either.

Appropriately reacting to concept drift requires, apart from its discovery, flexible

updating and adaptation strategies. In instance-based learning, model adaptation

basically comes down to editing the case base, that is, adding new and/or deleting

old examples. Whether or not this can be done more efficiently than adapting

another type of models, such as a classification tree or a fuzzy system, does of

course strongly depend on the particular model at hand. In any case, maintaining

an implicit concept description by storing observations, as done by IBL, facilitates

“forgetting” examples that seem to be outdated. In fact, such examples can

simply be removed, while retracting the influence of outdated examples is usually

more difficult in model-based approaches. In a neural network, for example, a

new observation causes an update of the network weights, and this influence on

the network cannot simply be cancelled later on; at the best, it can be reduced

gradually in the course of time.

3 Instance-Based Learning on Data Streams

This section introduces our approach to instance-based learning on data streams,

referred to as IBLStreams. Our learning scenario consists of a data stream that

permanently produces examples, potentially with a very high arrival rate, and a

second stream producing query instances to be classified. The key problem for

our learning system is to maintain an implicit concept description in the form

of a case base (memory). Before presenting details of IBLStreams, some general

aspects and requirements of concept adaptation (case base maintenance) in a

streaming context will be discussed.

3.1 Concept Adaptation

The simplest adaptive learners are those using sliding windows of fixed size. Since

the update is very simple, these learners are also very fast. On the other hand,

the assumption that the data which is currently relevant forms a fixed-sized win-
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dow, i.e., that it consists of a fixed number of consecutive observations, is quite

restrictive. In fact, by fixing the number of examples in advance, it is impossible

to optimally adapt the size of the case base to the complexity of the concept

to be learned, and to react to changes of this concept appropriately. Moreover,

being restricted to selecting a subset of successive observations in the form of a

window, it is impossible to disregard a portion of observations in the middle (e.g.

outliers) while retaining preceding and succeeding blocks of data.

To avoid both of the aforementioned drawbacks, non-window-based approaches

are needed that do not only adapt the size of the training data but also have the

liberty to select an arbitrary subset of examples from the data seen so far. Needless

to say, such flexibility does not come for free. Apart from higher computational

costs, additional problems such as avoiding an unlimited growth of the training

set and, more generally, trading off accuracy against efficiency, have to be solved.

Instance-based learning seems to be attractive in light of the above requirements,

mainly because of its inherently incremental nature and the simplicity of model

adaptation. In particular, since in IBL an example has only local influence, the

update triggered by a new example can be restricted to a local region around

that observation.

Regarding the updating (editing) of the case base in IBL, an example should

in principle be retained if it improves the predictive performance (classification

accuracy) of the classifier; otherwise, it should better be removed.1 Unfortunately,

this criterion cannot be used directly, since the (future) usefulness of an example

in this sense is simply not known. Instead, existing approaches fall back on

suitable indicators of usefulness:

• Temporal relevance: According to this indicator, recent observations are

considered as potentially more useful and, hence, are preferred to older

examples.

• Spatial relevance: The relevance of an example can also depend on its

position in the instance space. This is the case, for example, if a concept

drift only affects a part of the instance space. Besides, a more or less

uniform coverage of the instance space is usually desirable, especially for

local learning methods. In IBL, examples can be redundant in the sense

that they don’t change the nearest neighbor classification of any query.

More generally (and less stringently), one might consider a set of examples

redundant if they are closely neighbored in the instance space and, hence,

1Of course, this maxim disregards other criteria, such as the complexity of the method.
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have a similar region of influence. In other words, a new example in a

region of the instance space already occupied by many other examples is

considered less relevant than a new example in a sparsely covered region.

• Consistency: An example should be removed if it seems to be inconsistent

with the current concept, e.g., if its own output (strongly) differs from those

in its neighborhood.

Many algorithms use only one indicator, either temporal relevance (e.g. window-

based approaches), spatial relevance (e.g. Lightweight Frequency Counting, LWF

[29]), or consistency (e.g. Instance Based learning algorithm 3, IB3 [3]). A few

methods also use a second indicator, e.g., the approach of Klinkenberg (temporal

relevance and consistency) [23], but only the window-based system FLORA4

(Floating Rough Approximation) [35] uses all three aspects.

3.2 IBLStreams

In this section, we describe the main ideas of IBLStreams, our approach to IBL

on data streams, that not only takes all of the aforementioned three indicators

into account but also meets the efficiency requirements of the data stream setting.

IBLStreams optimizes the composition and size of the case base autonomously.

On arrival of a new example 〈x0, y0〉, this example is first added to the case base.

Moreover, it is checked whether other examples might be removed, either since

they have become redundant or since they are outliers (noisy data). To this end, a

set C of examples within a neighborhood of x0 are considered as candidates. This

neighborhood is given by the kcand nearest neighbors of x0, determined according

a distance measure ∆ (see Appendix A), and the candidate set C consists of

the examples within that neighborhood. The most recent examples are excluded

from removal due to the difficulty to distinguish potentially noisy data from

the beginning of a concept change. Even though unexpected observations will

be made in both cases, noise and concept change, these observations should be

removed only in the former but not in the latter case.

In the classification scenario, the most frequent class among the kcand youngest

examples in a larger test environment of size 2 ktest = (kcand)
2+kcand is determined.

If this class corresponds to the current class y0, those candidates in C are removed

that have a different class label and do not belong to kcand youngest examples in

2The size of the test environment is quadratic as it is intended to cover the similarity

environments of all examples in the similarity environment of x0.

9



the larger test environment. Furthermore, to guarantee an upper bound on the

size of the case base, the oldest element of the similarity environment is deleted,

regardless of its class, whenever the upper bound would be exceeded by adding

the new example.

In the regression scenario, the mode of the distribution is obviously unsuitable

as a characterization of the “normal” output. Instead, the kcand youngest ex-

amples in the neighborhood set C are used to determine a confidence interval

[ȳ − Zα
2

σ√
kcand

, ȳ + Zα
2

σ√
kcand

], where ȳ is the average target value for the con-

sidered examples and σ the standard deviation; α is the significance level and

chosen to be ≈ 0.001. A candidate case is then removed if it falls outside this

confidence interval and is not one of the kcand youngest instances in the larger

test environment.

Using this strategy, the algorithm is able to adapt to concept drift but will also

have a high accuracy for non-drifting data streams. Still, these two situations

– drifting and stable concept – are to some extent conflicting with regard to the

size of the case base: If the concept to be learned is stable, classification accuracy

will increase with the size of the case base. On the other hand, a large case base

turns out to be disadvantageous in situations where concept drift occurs, and

even more in the case of concept shift. In fact, the larger the case base is, the

more outdated examples will have to be removed and, hence, the more sluggish

the adaptation process will be.

For this reason, we try to detect an abrupt change of the concept using a statisti-

cal test as in [19, 20]. If a corresponding change has been detected, a large number

of examples will be removed instantaneously from the case base. In the classifica-

tion scenario, the test is performed as follows: We maintain the prediction error

p and standard deviation s =
√

p(1−p)
100

for the last 100 training instances. Let

pmin denote the smallest among these errors and smin the associated standard de-

viation. A change is detected if the current value of p is significantly higher than

pmin. Here, statistical significance is determined by testing the null hypothesis

H0 : p ≤ pmin against the alternative hypothesis H1 : p > pmin. This is accom-

plished by using a standard (one-sided) z-test, i.e., the condition to be tested is

p+ s > pmin + zαsmin, where α is the level of confidence (we use α = 0.999).

Finally, in case a change has been detected, we try to estimate its extent in order

to determine the number of examples that need to be removed. More specifically,

we delete pdif percent of the current examples, where pdif is the difference between

pmin and the classification error for the last 20 instances; the latter serves as an
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estimation of the current classification error.3 Examples to be removed are chosen

at random according to a distribution which is spatially uniform but temporally

skewed; see [6] for details.

In the regression scenario, the above test is conducted with the mean absolute

error instead of the classification rate, and the percentage of examples to be re-

moved is determined by the relative increase of this error. Fig. 2 and Fig. 3 depict

both algorithms dealing with concept drifts for the classification and regression

case.

3.3 Parameter Adaptation in IBLStreams

Although instance-based learning does not induce a global model, its performance

still depends on several parameters, such as the neighborhood size k. Thus,

given its application in an evolving environment, some sort of adaptivity would

clearly be desirable in this regard. In IBLStreams, two approaches for parameter

adaptation are implemented (see Fig. 4).

In the first approach, we adapt the size k of the neighborhood. To this end,

we continuously check whether it appears beneficial to increase or decrease the

current value by 1. In order to make this decision, we monitor the mean error on

a window formed by the last 100 instances, not only for the current IBLStreams

version with k neighbors but also the variants with k − 1 and k + 1 neighbors.

Whenever one of these two variants performs better in terms of the mean error,

the current k is adapted correspondingly (see lines 1-10 in the pseudo-code in

Fig. 4).

The second strategy controls the size of the neighborhood indirectly via the

weighting function or, more specifically, the corresponding kernel width; this

adaptation strategy can only be used in combination with the Gaussian or the

exponential kernel. Like in the previous case, three variants of IBLStreams are

compared in terms of their mean error on the last 100 instances, namely the cur-

rent variant, the variant with a kernel width increased by 5%, and the variant

with a kernel width decreased by 5% (see lines 11-21 in the pseudo-code in Fig. 4).

3Note that, if this error, p, is estimated from the last k instances, the variance of this

estimation is ≈ p(1−p)/k. Moreover, the estimate is unbiased, provided that the error remained

constant during the last k time steps. The value k = 20 provides a good trade-off between bias

and precision.
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4 MOA

IBLStreams is implemented under the MOA (Massive Online Analysis) frame-

work, an open source software for mining and analyzing large data sets in a

stream-like manner. MOA is written in Java and is closely related to WEKA

[36], the Waikato Environment for Knowledge Analysis, which is at present the

most commonly used machine learning software.

MOA supports the development of classifiers that can learn either in a purely

incremental mode, or in batch mode first (on an initial part of a data stream)

and incrementally afterward. The implementation of an evolving classifier is sup-

ported by a Java interface called UpdateableClassifier. This operation simulates

the case of online learning, which means that each instance is accessed only once.

A few incremental classifiers are already included in MOA, notably the Hoeffding

tree [21], a state-of-the-art classifier often used as a baseline in experimental stud-

ies. Some meta learning techniques are implemented, too, such as online bagging

and boosting both for static [28] and evolving streams [8].

4.1 Stream Generators

MOA supports the simulation of data streams by means of synthetic stream

generators. An example is the Hyperplane generator that was originally used

in [21]. It generates data for a binary classification problem, taking a random

hyperplane in d-dimensional Euclidean space as a decision boundary; a certain

percentage of instances is corrupted with noise.

Another important stream generator is the RandomTree generator. Its underlying

model is a decision tree for a desired number of attributes and classes. The tree

is built by splitting on randomly chosen attributes and then giving random class

labels to the leaf nodes. Instances are generated with uniformly distributed values

in the attributes while the class label is determined by the tree.

MOA offers the ConceptDriftStream procedure for simulating concept drift. The

idea underlying this procedure is to mix two pure distributions in a probabilistic

way, smoothly varying the corresponding probability degrees. In the beginning,

examples are taken from the first pure stream with probability 1, and this prob-

ability is decreased in favor of the second stream in the course of time. More

specifically, the probability is controlled by means of the sigmoid function

f(t) =
(

1 + e−4(t−t0)/w
)−1

.

This function has two parameters: t0 is the mid point of the change process, while
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w is the length of this process.

4.2 Model Evaluation

The evaluation of an evolving classifier is clearly a non-trivial issue. In fact, com-

pared to standard batch learning, simple one-dimensional performance measures

such as classification accuracy are not immediately applicable, or at least not able

to capture the time-varying behavior of a classifier in a proper way. MOA offers

different solutions for this problem.

The holdout procedure is a generalization of the cross-validation procedure com-

monly used in batch learning. Here, the training and the testing phase of a

classifier are interleaved as follows: the classifier is trained incrementally on a

block of M instances and then evaluated (but no longer adapted) on the next

N instances, then again trained on the next M and tested on the subsequent N

instances, and so forth. Thus, it becomes possible to monitor the performance of

the model as time progresses; this information can also be used as an indicator

of possible changes of the underlying concept [7, 9].

While the holdout procedure uses an instance either for training or for testing,

each instance is used for both in the prequential approach [12]: First, the model

is evaluated on the instance, and then a single incremental learning step is car-

ried out. The prequential error is advocated in [22], where it is also shown to

converge to the holdout measure when using a sliding window or a fading factor

(exponential weighting).

5 Experiments

In this section, we compare IBLStreams with state-of-the-art learners, namely

Hoeffding trees for classification [21] and the FLEXFIS approach for regression

[25], in terms of prediction performance and handling of concept drift. Hoeffding

trees is a decision tree approach suitable for learning classifiers on data streams.

For our experiments, we used the MOA implementation of Hoeffding trees in

the default parameter setting.4 For IBLStreams, we set kcand = 5, initial k =

16, initial kernel width (for exponential and Gaussian kernels) σ = 0.5 and the

maximum case base size=5000.

4gracePeriod g = 200, splitConfidence c = 10−7, tieThreshold t = 0.05, numericEstimator

n=GAUSS10
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FLEXFIS constructs and maintains a specific kind of fuzzy rule-based model,

namely a Takagi-Sugeno model [33]; apart from the original approach to regres-

sion, there is also a classification version of FLEXFIS [27], which can hence be

used for both types of experiments. FLEXFIS is implemented in Matlab and

offers a function for finding optimal parameter values. We used this function

to fix all parameters except the so-called “forgetting parameter”, for which we

manually found the value 0.999 to perform best. Finally, pruning was enabled.

Experiments are not only conducted with real data sets, but also with synthetic

data. As an important advantage of synthetic data, let us note that it allows

for conducting experiments in a controlled way and, therefore, to investigate the

performance of a method under specific conditions. In particular, synthetic data

is useful for simulating a concept drift.

The experiments are performed in the MOA framework, using the holdout proce-

dure for measuring predictive accuracy. The parametersM andN vary depending

on the size of the data set (we take M = 5000 and N = 1000 in the first two

experiments with synthetic data). For the experiments with real data, these pa-

rameters are adapted to the size of the respective data set. The real data sets are

standard benchmarks taken from the Statlib archive5 and the UCI repository [16].

Since they do not have an inherent temporal order, we average the performance

curves over 100 randomly shuffled versions of these data sets.

5.1 Classification

For the classification experiments, we use IBLStreams in three variants:

C1: equal weighting of neighbors, adaptation of neighborhood size k

C2: weighting with exponential kernel, adaptation of kernel width

C3: equal weighting of neighbors, no adaptation

All other parameters in IBLStreams are set to their default values.6

5.1.1 Synthetic Data

The first two experiments are based on synthetic data with different character-

istics (i.e., different types of decision boundaries). The first experiment uses

5http://lib.stat.cmu.edu/
6See the documentation of IBLStreams at http://moa.cs.waikato.ac.nz/

moa-extensions/
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data taken from the “hyperplane” generator. The ConceptDriftStream proce-

dure mixing streams produced by two different hyperplanes simulates a rotating

hyperplane. Using this procedure, we generated 12,000,000 examples connecting

two hyperplanes in 4-dimensional space, with t0 = 500, 000 and w = 100, 000.

As can be seen in Fig. 5, the different IBLStreams settings hardly differ in terms

of performance. Moreover, they outperform both Hoeffding trees and FLEXFIS,

with a very small decrease in performance when the drift occurs. IBLStreams

recognises and adapts to the concept drift quite early, recovering its original

performance as soon as the drift is over. The Hoeffding tree is more affected by

the concept drift; it shows a more pronounced “valley” in the performance curve

and also takes more time to recover. FLEXFIS is affected by the drift, too, with

about 5% decrease in performance.

In a second experiment, we use the “random tree” generator to produce examples.

This generator constructs a classification tree (by repeatedly choosing recursive

splits) at random and uses this tree to label instances. Obviously, it is favorable

for the Hoeffding tree. Again, the same ConceptDriftStream is used, but this

time mixing two random tree generators. As can be seen in Fig. 6, the Hoeffding

tree is now able to compete with IBLStreams in the first phase of the learning

process; in fact, reaching an accuracy of close to 100%, which is not unexpected

given that the Hoeffding tree is ideally tailored for this kind of data. Once

again, however, the Hoeffding tree is much more affected by the concept drift

than IBLStreams. The three variants of IBLStreams do not show any decrease in

terms of classification rate. In contrast, they continue to improve the performance

during the drift, whereas the Hoeffding tree loses about 40% of its accuracy, and

FLEXFIS loses about 10%. The relative performance of FLEXFIS is similar to

the case of the hyperplane data.

5.1.2 Real Data

In this experiment, we used the wine quality data, which is an ordinal classifica-

tion problem, in which a wine (characterized by 11 chemical properties) is put

into a discrete category ranging from 10 (best) to 0 (worst). We turned this prob-

lem into a binary classification task by grouping the top-5 and bottom-6 classes.

Actually, the data set consists of two subsets, one for white wine (4889 examples)

and one for red wine (1599 examples). For both data sets, the initial learning

is done on 300 instances. In all our experiments on the wine quality data, we

average the results over 100 randomly shuffled versions. For the evaluation on the

red wine data, we used M = 100 and N = 25, because this data set is relatively
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small; for white wine, we used M = 200 and N = 50. Fig. 7 and Fig. 8 show the

results of both experiments. As can be seen, IBLStreams in its different settings

is clearly superior to Hoeffding trees on these data sets.

The same data sets, only without grouping the output categories, were used

to evaluate the multi-class case. The IBLStreams settings were also the same

as for the binary case, with only one exception: Since the problem is now an

ordinal classification task, the weighted median was used instead of the mode

for prediction. As can be seen from Fig. 9 and Fig. 10, the performance of

both IBLStreams and Hoeffding trees is now lower than for the binary case, an

observation that is clearly expected. Still, IBLStreams remains superior on the

whole stream.

Table 1 shows the execution time for the training and evaluation of instances. On

both synthetic data sets for binary classification, IBLStreams is able to process

1000 instances in less than 1.5 seconds, and needs about 0.5 seconds for making

the same amount of predictions. Similar results are obtained for the multi-class

problems.

binary class. multi-class class.

hyperpl. rand. tree red white red white

C1
tt 1.18±0.19 1.14±0.19 1.28±0.36 3.15±1.46 0.80±0.14 1.26±0.43

st 0.41±0.09 0.40±0.09 0.61±0.16 1.52±0.67 0.36±0.06 0.58±0.19

C2
tt 1.19±0.19 1.19±0.18 1.43±0.40 3.59±1.71 1.14±0.22 1.84±0.65

st 0.46±0.09 0.47±0.10 0.68±0.19 1.77±0.80 0.54±0.09 0.88±0.30

C3
tt 1.24±0.20 1.32±0.27 1.53±0.44 3.82±1.80 0.80±0.14 1.27±0.44

st 0.48±0.09 0.52±0.15 6.12±1.76 1.88±0.86 0.37±0.08 0.60±0.21

Table 1: Average time (in seconds) for training (tt) and testing (ts) per 1000

instances.

5.2 Regression

In the regression case, we used IBLStreams in four different settings (while the

rest of the parameters were again set to their default values):

R1: weighted mean, equal weighting of neighbors, adaptation of neighborhood

size k

R2: weighted mean, weighting with exponential kernel, adaptation of kernel

width
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R3: local linear regression, equal weighting of neighbors, adaptation of neigh-

borhood size k

R4: local linear regression, weighting with exponential kernel, adaptation of

kernel width

5.2.1 Synthetic Data

For the case of regression, we modified the hyperplane generator in MOA as

follows: The output for an instance x is not determined by the sign of wTx,

where w is the normal vector of the hyperplane, but by the absolute value |wTx|.
In other words, the problem is to predict the distance to the hyperplane. As

an alternative, we also tried the squared distance (wTx)2 and the cubic distance

(wTx)3. Again, ConceptDriftStream was used for simulating a concept drift by

mixing two streams.

Fig. 11, 12 and 13 show the performance of IBLStreams and FLEXFIS, in terms of

the root mean squared error (RMSE), for the (piecewise) linear, the quadratic case

and the cubic case (and dimension d = 4), respectively. As can be seen, FLEXFIS

is significantly outperformed by the different versions of IBLStreams. In fact, the

RMSE is clearly lower for IBLStreams, not only under normal conditions but also

in cases of a concept drift.

Comparing the IBLStreams variants amongst each other, it seems that local lin-

ear regression tends to perform better than just using the weighted mean as an

estimator. This is clearly not unexpected, since the latter can be seen as a spe-

cial case of the former, which is more flexible and, therefore, able to adapt to the

data more easily. Yet, in the case of a concept drift, the simple weighted mean

seems to be affected less strongly. This result is completely in agreement with

the general observation that the more complex a model is, the more difficult it

becomes to react and adapt to changing environmental conditions.

5.2.2 Real Data

In this experiment, we used the UCI data set about relative location of CT

(computed tomography) slices on axial axis. This data set is extracted from

53500 images taken for 74 different patients (43 males and 31 females). Each

CT image is described in terms of of 384 features. The target attribute is the

relative location of the CT slice on the axial axis of the human body; this is a

numeric value in the range [0, 180], where 0 denotes the top of the head and 180

the soles of the feet. The data was ordered by the patient ID, which means that
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images from the same patient are grouped. We kept this order of patient-wise

blocks (since the transition from one patient to another one could be seen as a

concept shift) but randomly shuffled the data within each block, so as to avoid

a dependence of the order on the target value. Moreover, using a variant of the

forward selection method as proposed in [25], the number of features was reduced

to 9. Learning was started on an initial block of 1000 instances, and incremental

learning was done using M = 1000 and N = 500. The results in Fig. 14 show

that the different configurations of IBLStreams outperform FLEXFIS most of the

time. Again, there is no big difference between the variants themselves.

The second experiment uses the concrete compressive strength data [37]. In this

data set, a concrete is described in terms of its age and ingredients, giving rise to

9 attributes in total. The target attribute is the concrete compressive strength,

which lies in the range [2.33, 82.60]. Since this data set is relatively small (1030

examples), we set M = 50 and N = 10 and used only 100 examples for initial

learning. Fig. 15 shows that, on this data set, there is no clear winner. Again,

the IBLStreams variants perform more or less equal most of the time. Comparing

these variants with FLEXFIS, the latter is superior on some parts of the data

stream and the former on others.

6 Discussion and Conclusion

We have presented a lazy algorithm for learning on data streams, using instance-

based methods for tackling the tasks of classification and regression. This al-

gorithm, called IBLStreams, has a number of desirable properties that are not,

at least not as a whole, shared by existing alternative methods. In particular,

two specifically designed editing strategies are used in combination in order to

successfully deal with both gradual concept drift and abrupt concept shift.

The experiments presented in [6], complemented by those in this paper, suggest

that IBLStreams is very flexible and thus able to adapt to an evolving environ-

ment quickly, a point of utmost importance in the data stream context. Indeed,

the most important conclusions that can be drawn from our experiments are as

follows:

— Compared to the other methods used in the experiments, IBLStreams seems

to be less “inert” when a concept drift occurs and, moreover, recovers its

original performance more quickly when the drift comes to an end. This is

arguably due to the advantage of not having to adapt a possibly complex

model.
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— Besides, it seems that IBLStreams is relatively robust and produces good

results when being used in a default setting for its parameters. In fact, in

our experiments, IBLStreams was often better but never significantly worse

than its competitors, even is cases where the data generating process is

actually in favor of the latter.

IBLStreams is implemented in Java and can be downloaded, along with a docu-

mentation, from the Internet.7 This implementation is supposed to be used under

MOA8, an open source framework for mining and learning from data streams,

which is in the offing to be become a standard in this field [7].
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A Distance Function

The distance function used in IBLStreams is an incremental variant of SVDM

(Simple Value Difference Metric) which is a simplified version of the VDM (Value

Difference Metric) distance measure [32] and was successfully used in the clas-

sification algorithm RISE [13, 14]. Let an instance x be specified in terms of `

features F1 . . . F`, i.e., as a vector x = (f1 . . . f`) ∈ D1 × . . .×D`.

Numerical features Fi with domain Di = R are first normalized by the mapping

fi 7→ fi/(max − min), where max and min denote, respectively, the largest

and smallest value for Fi observed so far; these values are permanently updated.9

Then, δi(fi, f
′
i) is defined by the Euclidean distance between the normalized values

of fi and f ′
i .

9To make the transformation more robust toward outliers, it makes sense to replace max

and min by appropriate percentiles of the empirical distribution.
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For a discrete attribute Fj, the distance between two values fj and f ′
j is defined

by the following measure:

δi(fj, f
′
j) =

m
∑

k=1

∥

∥P (λk |Fj = fj)− P (λk |Fj = f ′
j)
∥

∥ ,

where m is the number of classes and P (λ |F = f) is the probability of the class

λ given the value f for attribute F . Finally, the distance between two instances

x and x′ is given by the mean squared distance

∆(x, x′) =
1

`

∑̀

i=1

δi(fi, f
′
i)

2
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Procedure Predict

Input: case base D, example e=〈x0, ?〉
k number of considered instances

σ variance, used in the case of Gaussian or exponential weighting

WM weighting method (equal, inverseDistance, linear, gaussianKernel, exponen-

tialKernel)

PM prediction method ( Local Lienar Solution, wKNN)

Output: λ̂x0

1: S = {k nearest neighbor of e in D}
2: if ∃xi ∈ S : xi = x0 then

3: return λxi

4: end if

5: W = getNormalizedWeightingVector(e,WM, k, σ)

6: if Classification then

7: C = [0]#classes

8: for all xi ∈ S do

9: C[λxi
] = C[λxi

] + wi

10: end for

11: if Ordered Classification then

12: λ̂x0
= median(C)

13: else

14: λ̂x0
= argmaxi {ci}

15: end if

16: else

17: {Regression}
18: if PM = wKNN then

19: {Solve it as wKNN}
20: λ̂x0

= W TY

21: else

22: X = [xi1]xi∈S
23: Y = [λxi

]xi∈S
24: β̂ = (XTWX)−1XTWY

25: λ̂x0
= [x01]β̂

26: end if

27: end if

28: {dist is the Euclidean distance}
29: return

Figure 1: Algorithm for predicting the target value of a new instance.24



Procedure ConceptDriftClassification

Input: case base D, example e=〈x0, λx0
〉

Output: updated case base D
1: c = class estimate for x0 derived from D
2: compare c and λx0

, update statistics for the last 100 examples (error p and

standard deviation s)

3: if (1− p) <= 1.0/classCount OR

p+ s > pmin + Zαsmin then

4: {and Warnings condition}
5: pdiff =(error of the last 20 training data) −pfirst
6: if pfirst > 0.2 then

7: delete min(|D|pdiff , |D| − ktest) cases from D
8: reset pmin, smin

9: end if

10: end if

11: {α = 0.999 ⇒ Zα = 4}
12: return

Figure 2: Algorithm for checking and Handling of Concept Drifts in classification

problems.

25



Procedure ConceptDriftRegression

Input: case base D, example e=〈x0, λx0
〉

Output: updated case base D
1: c = the estimated target value for x0 derived from D
2: compare c and λx0

, update statistics for the last 100 examples (error p and

standard deviation s)

3: if p+ s > pmin + Zαsmin then

4: {and Warnings condition}
5: τ = min(p−pmin

pmin
, 0.5)

6: delete min(τ |D|, |D| − ktest)) cases from D
7: reset pmin, smin

8: end if

9: {α = 0.999 ⇒ Zα = 4}
10: return

Figure 3: Algorithm for checking and Handling of Concept Drifts in classification

problems.
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Procedure UpdateClassifier

Input: case base D, example e=〈x0, λx0
〉

k number of considered instances

σ variance, used in the case of Gaussian or exponential weighting

WM weighting method (equal, inverseDistance, linear, gaussianKernel, expo-

nentialKernel)

PM prediction method ( Local Lienar Solution, wKNN)

Output: k, σ

Global Variables:
{

σ0 =
√
#Att./10, k0 = #Att. ∗ 4, δ = 0.05

}

1: if Different ks then

2: {p : mean error for the last 100 examples}
3: update p0 by Predict (e,WM, k − 1, σ)

4: update p1 by Predict (e,WM, k, σ)

5: update p2 by Predict (e,WM, k + 1, σ)

6: if p2 < p1 then

7: k = k + 1

8: else if p0 < p1 then

9: k = k − 1

10: end if

11: else if Different Segmas then

12: {p : the mean error for the last 100 examples }
13: update p0 by Predict (e,WM, k, σ(1− δ))

14: update p1 by Predict (e,WM, k, σ)

15: update p2 by Predict (e,WM, k, σ(1 + δ))

16: if p2 < p1 then

17: σ = σ(1 + δ)

18: else if p0 < p1 then

19: σ = σ(1− δ)

20: end if

21: end if

22: return

Figure 4: Algorithm for updating the parameters of the classifier.
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Figure 5: Classification rate on the hyperplane data (binary).
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Figure 6: Classification rate on the random tree data (binary).
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Figure 7: Classification rate on the red wine quality data set (binary).
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Figure 8: Classification rate on the white wine quality data set (binary).
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Figure 9: Classification rate on the red wine quality data set (multi-class).
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Figure 10: Classification rate on the white wine quality data set (multi-class).
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Figure 11: RMSE for the hyperplane data (regression, linear case).
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Figure 12: RMSE for the hyperplane data (regression, quadratic case).
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Figure 13: RMSE for the hyperplane data (regression, cubic case).
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Figure 14: RMSE for the relative location of CT slices on axial axis (regression).
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Figure 15: RMSE for the concrete compressive strength data (regression).
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