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Abstract

This paper presents an approach to learning on data streams called
IBLStreams. More specifically, we introduce the main methodological con-
cepts underlying this approach and discuss its implementation under the
MOA software framework. IBLStreams is an instance-based algorithm that
can be applied to classification and regression problems. In comparison
to model-based methods for learning on data streams, it is conceptually
simple. Moreover, as an algorithm for learning in dynamically evolving
environments, it has a number of desirable properties that are not, at
least not as a whole, shared by currently existing alternatives. Our exper-
imental validation provides evidence for its flexibility and ability to adapt
to changes of the environment quickly, a point of utmost importance in
the data stream context. At the same time, IBLStreams turns out to be
competitive to state-of-the-art methods in terms of prediction accuracy.
Moreover, due to its robustness, it is applicable to streams with different
characteristics.

Keywords: Data streams, classification, regression, instance-based learn-
ing, concept drift.



1 Introduction

The idea of adaptive learning in dynamical environments has recently received
increasing attention in different research communities, including the database
and data mining community, in which it has been addressed under the notion of
“learning from data streams” [17, 18], and the computational intelligence commu-
nity, in which the notion of “evolving fuzzy systems” has been coined [5, 25, 4, 26].
Despite small differences regarding the basic assumptions and the technical set-
ting, the emphasis of goals and performance criteria, and the focus on specific
types of applications, the key motivation of these and related fields is the idea
of a system that learns incrementally, and maybe even in real-time, on a con-
tinuous stream of data, and which is able to properly adapt itself to changes of
environmental conditions or properties of the data-generating process. Systems
with these properties have been developed for different machine learning and data
mining problems, such as clustering [1], classification [21], and frequent pattern
mining [10].

Domingos and Hulten [15] list a number of properties that an ideal stream mining
system should exhibit, and suggest corresponding design decisions: the system
uses only a limited amount of memory; the time to process a single record is short
and ideally constant; the data is volatile and a single data record accessed only
once; the model produced in an incremental way is equivalent to the model that
would have been obtained through common batch learning (on all data records
so far); the learning algorithm should react to concept drift (i.e., any change of
the underlying data-generating process) in a proper way and maintain a model
that always reflects the current concept.

Given the existence of a number of sophisticated and partly quite complicated
methods for learning on data streams, it is surprising that one of the simplest
approaches to machine learning, namely the instance-based (case-based) learning
paradigm, has only received very little attention so far—all the more since the
nearest neighbor estimation principle, which constitutes the core of this paradigm,
is a standard method in machine learning, pattern recognition, and related fields.

In this paper, we elaborate on the potential of the instance-based approach to
supervised learning within the context of data streams and propose an efficient
instance-based learning algorithm for two important performance tasks, namely
classification and regression. To this end, we build on our previous work [6],
in which a basic version of our approach to classification was introduced. Be-
sides, the problem of regression has already been addressed in [31], but only in
a rather simple way (based on computing weighted averages). For the sake of



self-containedness, parts of these papers will be reproduced here.

The remainder of the paper is organized as follows: The next section recalls the
basic ideas of instance-based learning, along with a short discussion of its pos-
sible advantages and disadvantages in a streaming context. Our approach to
instance-based learning on data streams, IBLStreams, is introduced in Section
3. In Section 4, we provide some information about the MOA (Massive Online
Analysis) framework for mining data streams, under which IBLStreams is imple-
mented. Experimental results are presented in Section 5, prior to concluding the
paper in Section 6.

2 Instance-Based Learning

The term instance-based learning (IBL) stands for a family of machine learn-
ing algorithms, including well-known variants such as memory-based learning,
exemplar-based learning and case-based learning [32, 30, 24]. As the term sug-
gests, in instance-based algorithms special importance is attached to the concept
of an instance [3]. An instance or exemplar can be thought of as a single experi-
ence, such as a pattern (along with its classification) in pattern recognition or a
problem (along with a solution) in case-based reasoning.

As opposed to model-based machine learning methods which induce a general
model (theory) from the data and use that model for further reasoning, IBL
algorithms simply store the data itself. They defer the processing of the data
until a prediction (or some other type of query) is actually requested, a property
which qualifies them as a lazy learning method [2]. Predictions are then derived
by combining the information provided by the stored examples.

Such a combination is typically accomplished by means of the nearest neighbor
(NN) estimation principle [11]. Consider the following setting: Let X denote the
instance space, where an instance corresponds to the description x of an object
(usually though not necessarily in attribute-value form). X is equipped with a
distance measure A(+), i.e., A(z,2’) is the distance between instances x,z’ € X.
Y is the output space and (x,y) € X x ) is called a labeled instance, a case,
or an example. In classification, ) is a finite (usually small) set comprised of m
classes {\1,..., Ay}, whereas Y = R in regression.

The current experience of the learning system is represented in terms of a set
D of examples (x;,y;), 1 < i < n = |D|. From a machine learning point of
view, D plays the role of the training set of the learner. More precisely, since not
all examples will necessarily be stored by an instance-based learner, D is only a



subset of the data seen so far. In case-based reasoning, it is also referred to as
the case base.

Finally, suppose a novel instance o € X (a query) to be given. The NN prin-
ciple prescribes to estimate the corresponding output yo by the output of the
nearest (most similar) sample instance. The k-nearest neighbor (k-NN) approach
is a slight generalization, which takes the k > 1 nearest neighbors of xy into
account. That is, an estimation y& of yq is derived from the set Ny(xg) of the
k nearest neighbors of xy. This prediction is expressed as an aggregation of the
neighbors’ output values, where the type of aggregation function used strongly
depends on the type of prediction sought. In particular, the case of a discrete
output (classification) must be distinguished from the case of a numeric output

(regression).

2.1 Classification

In classification, a prediction is usually derived by means of a majority vote, i.e.,

est

Yt = arg mea)gc card{z; € Ny(xo) |yi =y} . (1)
Y

est

Noting that ¥
tained by counting the frequencies of class labels in the neighborhood of g, this

corresponds to the mode of the distribution on ) which is ob-

prediction can be justified as an empirical risk minimizer of the standard 0/1 loss
est

function (£(yo, y5*) = 0 if yo = y&** and = 1 otherwise).

The estimation (1) can be generalized by weighting instances according to their
distance from xq:
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Here, f(-) is a decreasing function Ry — R,, which means that the smaller
A(x;, xo), the higher the weight of y;. Our implementation of IBL offers differ-

(3)

w(z;) =

ent types of (kernel) functions of this type (constant, linear, inverse, Gaussian,
exponential), which can be selected by the user as a parameter of the system.

While the mode of a distribution is the minimizer of the expected 0/1 loss, it is
not the optimal prediction for the absolute error loss ¢(\;, A;) = |i — j|, which
is often used in the case of ordinal classification, where the classes are assumed
to have a natural order A\; < \y < ... < \,,. Instead, the minimizer of this loss



function is given by the median of the distribution. Again, this prediction can be
generalized by weighting each neighbor in accordance with its distance from .

2.2 Regression

A common loss function in regression is the squared error loss £(yo, y5*) = (yo —
yeh)?, which suggests the mean of the neighbors’ outputs as a prediction. More

generally, one typically uses the weighted average

w'= ) wl@) (4)

x; €N (z0)

Like in the case of classification, the basic assumption here is that the dependency
to be learned is locally (i.e., in the neighborhood of x() constant, or can at least be
approximated sufficiently well by a constant function. Relaxing this assumption
from locally constant to locally linear gives rise to the idea of locally weighted
linear regression. Here, a linear model

f<x>=ﬂo+§ﬁj~xm:f[l} | (5)

T

with z[j] the j-th entry of the vector z, is fitted in the neighborhood of zy. Thus,
the vector of coefficients 3 is estimated by

f=(X"TWX)"XTWY | (6)

where the k x (m + 1) matrix X is composed of the k neighbors z; € N (o)
(plus the vector of ones modeling the intercept (5y) and Y is the k x 1 vector
of corresponding output values y;. Moreover, W is a diagonal weight matrix
diag(wy, ..., wy), which is determined by means of a kernel function f(-) cen-
tered at xo; thus, the weight w; of the neighbor x; € Ny (x¢) is of the form (3).
In case XTW X is singular and its inverse does not exist, the weighted average is
used for prediction instead. Situations of singularity or close-to-singularity, pro-
ducing problems with numerical instability, may also occur if the weight vector
diag(wy, ..., wy) is strongly dominated by a single entry. To prevent such prob-
lems, we take care that the kernel width in exponential or Gaussian weighting
does never become too small.

est

Once (6) has been computed, the prediction y§* is obtained by evaluating (5) with
x = x9 and 8 = (. The instance-based prediction strategy, both for classification
and regression, is summarized in pseudo-code in Fig. 1.



It is worth mentioning that the learning (and combination) of locally linear models
is also quite common in the field of evolving fuzzy systems, especially in learning
so-called Takagi-Sugeno (TS) fuzzy models [33]; these are rule-based models in
which the rule antecedents specify fuzzy predicates on the input attributes, while
the rule consequents are linear functions of these attributes. From a modeling
point of view, an important difference is that, while a linear function is fitted
individually to each query zy € X in instance-based learning, such a function
refers to a larger part X C X of the input space (often identified through the
use of clustering algorithms) in T'S models. Besides, following the paradigm of
lazy learning, the linear functions are only learned upon request in IBLStreams
and immediately forgotten after a prediction has been made. As opposed to this,
the combination of linear functions forms a global model in the case of TS fuzzy
systems. This comparison gives rise to an interesting question, namely whether
or not (lazy) instance-based learning might be preferable to (eager) model-based
learning in the setting of data streams.

2.3 Model-based versus Instance-based Learning

Recall the aforementioned key requirements for learning and data mining algo-
rithms on data streams: Above all, such algorithms must be incremental, highly
adaptive, and they must be able to deal with concepts that may change over time.
Is lazy, instance-based learning preferable to eager, model-based learning under
these conditions? Unfortunately, this question cannot be answered unequivocally.

Obviously, IBL algorithms are inherently incremental, since adaptation basically
comes down to adding or removing observed cases. Thus, incremental learning
and model adaptation is simple and cheap in the case of IBL. As opposed to
this, incremental learning is much more difficult to realize for most model-based
approaches. Even though incremental versions do exist for a number of well-
known learning methods, such as decision tree induction [34] and the learning of
TS fuzzy models [25, 5], the incremental update of a model is often quite complex
and in many cases assumes the storage of a considerable amount of additional
information.

The training efficiency of lazy learners does not come for free, however. Com-
pared with model-based approaches, IBL has higher computational costs when it
comes to answering new queries. In fact, the latter requires finding the k near-
est neighbors of the query, and even though this retrieval step can be supported
by efficient data and indexing structures, it remains costly in comparison with
deriving a model-based prediction.



Consequently, IBL might be preferable in a data stream application if the number
of incoming data is large compared with the number of queries to be answered,
i.e., if model updating is the dominant factor. On the other hand, if queries
must be answered frequently and under tight time constraints, whereas a need
for updating the model due to newly observed examples rarely occurs, a model-
based method might be the better choice.

Regarding the handling of concept drift, a definite answer cannot be given either.
Appropriately reacting to concept drift requires, apart from its discovery, flexible
updating and adaptation strategies. In instance-based learning, model adaptation
basically comes down to editing the case base, that is, adding new and/or deleting
old examples. Whether or not this can be done more efficiently than adapting
another type of models, such as a classification tree or a fuzzy system, does of
course strongly depend on the particular model at hand. In any case, maintaining
an implicit concept description by storing observations, as done by IBL, facilitates
“forgetting” examples that seem to be outdated. In fact, such examples can
simply be removed, while retracting the influence of outdated examples is usually
more difficult in model-based approaches. In a neural network, for example, a
new observation causes an update of the network weights, and this influence on
the network cannot simply be cancelled later on; at the best, it can be reduced
gradually in the course of time.

3 Instance-Based Learning on Data Streams

This section introduces our approach to instance-based learning on data streams,
referred to as IBLStreams. Our learning scenario consists of a data stream that
permanently produces examples, potentially with a very high arrival rate, and a
second stream producing query instances to be classified. The key problem for
our learning system is to maintain an implicit concept description in the form
of a case base (memory). Before presenting details of IBLStreams, some general
aspects and requirements of concept adaptation (case base maintenance) in a
streaming context will be discussed.

3.1 Concept Adaptation

The simplest adaptive learners are those using sliding windows of fixed size. Since
the update is very simple, these learners are also very fast. On the other hand,
the assumption that the data which is currently relevant forms a fixed-sized win-



dow, i.e., that it consists of a fized number of consecutive observations, is quite
restrictive. In fact, by fixing the number of examples in advance, it is impossible
to optimally adapt the size of the case base to the complexity of the concept
to be learned, and to react to changes of this concept appropriately. Moreover,
being restricted to selecting a subset of successive observations in the form of a
window, it is impossible to disregard a portion of observations in the middle (e.g.
outliers) while retaining preceding and succeeding blocks of data.

To avoid both of the aforementioned drawbacks, non-window-based approaches
are needed that do not only adapt the size of the training data but also have the
liberty to select an arbitrary subset of examples from the data seen so far. Needless
to say, such flexibility does not come for free. Apart from higher computational
costs, additional problems such as avoiding an unlimited growth of the training
set and, more generally, trading off accuracy against efficiency, have to be solved.

Instance-based learning seems to be attractive in light of the above requirements,
mainly because of its inherently incremental nature and the simplicity of model
adaptation. In particular, since in IBL an example has only local influence, the
update triggered by a new example can be restricted to a local region around
that observation.

Regarding the updating (editing) of the case base in IBL, an example should
in principle be retained if it improves the predictive performance (classification
accuracy) of the classifier; otherwise, it should better be removed.! Unfortunately,
this criterion cannot be used directly, since the (future) usefulness of an example
in this sense is simply not known. Instead, existing approaches fall back on
suitable indicators of usefulness:

e Temporal relevance: According to this indicator, recent observations are
considered as potentially more useful and, hence, are preferred to older
examples.

e Spatial relevance: The relevance of an example can also depend on its
position in the instance space. This is the case, for example, if a concept
drift only affects a part of the instance space. Besides, a more or less
uniform coverage of the instance space is usually desirable, especially for
local learning methods. In IBL, examples can be redundant in the sense
that they don’t change the nearest neighbor classification of any query.
More generally (and less stringently), one might consider a set of examples
redundant if they are closely neighbored in the instance space and, hence,

LOf course, this maxim disregards other criteria, such as the complexity of the method.



have a similar region of influence. In other words, a new example in a
region of the instance space already occupied by many other examples is
considered less relevant than a new example in a sparsely covered region.

e Consistency: An example should be removed if it seems to be inconsistent
with the current concept, e.g., if its own output (strongly) differs from those
in its neighborhood.

Many algorithms use only one indicator, either temporal relevance (e.g. window-
based approaches), spatial relevance (e.g. Lightweight Frequency Counting, LWF
[29]), or consistency (e.g. Instance Based learning algorithm 3, IB3 [3]). A few
methods also use a second indicator, e.g., the approach of Klinkenberg (temporal
relevance and consistency) [23], but only the window-based system FLORA4
(Floating Rough Approximation) [35] uses all three aspects.

3.2 IBLStreams

In this section, we describe the main ideas of IBLStreams, our approach to IBL
on data streams, that not only takes all of the aforementioned three indicators
into account but also meets the efficiency requirements of the data stream setting.

IBLStreams optimizes the composition and size of the case base autonomously.
On arrival of a new example (zg, o), this example is first added to the case base.
Moreover, it is checked whether other examples might be removed, either since
they have become redundant or since they are outliers (noisy data). To this end, a
set C' of examples within a neighborhood of xy are considered as candidates. This
neighborhood is given by the k.q.,q nearest neighbors of g, determined according
a distance measure A (see Appendix A), and the candidate set C' consists of
the examples within that neighborhood. The most recent examples are excluded
from removal due to the difficulty to distinguish potentially noisy data from
the beginning of a concept change. Even though unexpected observations will
be made in both cases, noise and concept change, these observations should be
removed only in the former but not in the latter case.

In the classification scenario, the most frequent class among the k..,q youngest
examples in a larger test environment of size 2 kyest = (Kcand)?+keana 18 determined.
If this class corresponds to the current class yg, those candidates in C' are removed
that have a different class label and do not belong to k..,q youngest examples in

2The size of the test environment is quadratic as it is intended to cover the similarity
environments of all examples in the similarity environment of xg.



the larger test environment. Furthermore, to guarantee an upper bound on the
size of the case base, the oldest element of the similarity environment is deleted,
regardless of its class, whenever the upper bound would be exceeded by adding
the new example.

In the regression scenario, the mode of the distribution is obviously unsuitable
as a characterization of the “normal” output. Instead, the k..,,q youngest ex-
amples in the neighborhood set C' are used to determine a confidence interval
7 — Za 7=y + Zg ﬁ], where 7 is the average target value for the con-
sidered examples and o the standard deviation; « is the significance level and
chosen to be ~ 0.001. A candidate case is then removed if it falls outside this
confidence interval and is not one of the k.,,q youngest instances in the larger

test environment.

Using this strategy, the algorithm is able to adapt to concept drift but will also
have a high accuracy for non-drifting data streams. Still, these two situations
—drifting and stable concept — are to some extent conflicting with regard to the
size of the case base: If the concept to be learned is stable, classification accuracy
will increase with the size of the case base. On the other hand, a large case base
turns out to be disadvantageous in situations where concept drift occurs, and
even more in the case of concept shift. In fact, the larger the case base is, the
more outdated examples will have to be removed and, hence, the more sluggish
the adaptation process will be.

For this reason, we try to detect an abrupt change of the concept using a statisti-
cal test as in [19, 20]. If a corresponding change has been detected, a large number
of examples will be removed instantaneously from the case base. In the classifica-
tion scenario, the test is performed as follows: We maintain the prediction error

p and standard deviation s = % for the last 100 training instances. Let

Pmin denote the smallest among these errors and s,,;, the associated standard de-
viation. A change is detected if the current value of p is significantly higher than
Pmin. Here, statistical significance is determined by testing the null hypothesis
Hy : p < pmin against the alternative hypothesis Hy : p > ppin. This is accom-
plished by using a standard (one-sided) z-test, i.e., the condition to be tested is
D+ S > Pmin + ZaSmin, Where a is the level of confidence (we use ov = 0.999).

Finally, in case a change has been detected, we try to estimate its extent in order
to determine the number of examples that need to be removed. More specifically,
we delete pg; s percent of the current examples, where pg; ¢ is the difference between
Pmin and the classification error for the last 20 instances; the latter serves as an

10



estimation of the current classification error.> Examples to be removed are chosen
at random according to a distribution which is spatially uniform but temporally
skewed; see [6] for details.

In the regression scenario, the above test is conducted with the mean absolute
error instead of the classification rate, and the percentage of examples to be re-
moved is determined by the relative increase of this error. Fig. 2 and Fig. 3 depict
both algorithms dealing with concept drifts for the classification and regression
case.

3.3 Parameter Adaptation in IBLStreams

Although instance-based learning does not induce a global model, its performance
still depends on several parameters, such as the neighborhood size k. Thus,
given its application in an evolving environment, some sort of adaptivity would
clearly be desirable in this regard. In IBLStreams, two approaches for parameter
adaptation are implemented (see Fig. 4).

In the first approach, we adapt the size k of the neighborhood. To this end,
we continuously check whether it appears beneficial to increase or decrease the
current value by 1. In order to make this decision, we monitor the mean error on
a window formed by the last 100 instances, not only for the current IBLStreams
version with £ neighbors but also the variants with £ — 1 and k& + 1 neighbors.
Whenever one of these two variants performs better in terms of the mean error,
the current k is adapted correspondingly (see lines 1-10 in the pseudo-code in
Fig. 4).

The second strategy controls the size of the neighborhood indirectly via the
weighting function or, more specifically, the corresponding kernel width; this
adaptation strategy can only be used in combination with the Gaussian or the
exponential kernel. Like in the previous case, three variants of IBLStreams are
compared in terms of their mean error on the last 100 instances, namely the cur-
rent variant, the variant with a kernel width increased by 5%, and the variant
with a kernel width decreased by 5% (see lines 11-21 in the pseudo-code in Fig. 4).

3Note that, if this error, p, is estimated from the last k instances, the variance of this
estimation is &~ p(1—p)/k. Moreover, the estimate is unbiased, provided that the error remained
constant during the last k£ time steps. The value k = 20 provides a good trade-off between bias
and precision.
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4 MOA

IBLStreams is implemented under the MOA (Massive Online Analysis) frame-
work, an open source software for mining and analyzing large data sets in a
stream-like manner. MOA is written in Java and is closely related to WEKA
[36], the Waikato Environment for Knowledge Analysis, which is at present the
most commonly used machine learning software.

MOA supports the development of classifiers that can learn either in a purely
incremental mode, or in batch mode first (on an initial part of a data stream)
and incrementally afterward. The implementation of an evolving classifier is sup-
ported by a Java interface called UpdateableClassifier. This operation simulates
the case of online learning, which means that each instance is accessed only once.
A few incremental classifiers are already included in MOA, notably the Hoeffding
tree [21], a state-of-the-art classifier often used as a baseline in experimental stud-
ies. Some meta learning techniques are implemented, too, such as online bagging
and boosting both for static [28] and evolving streams [8].

4.1 Stream Generators

MOA supports the simulation of data streams by means of synthetic stream
generators. An example is the Hyperplane generator that was originally used
in [21]. It generates data for a binary classification problem, taking a random
hyperplane in d-dimensional Euclidean space as a decision boundary; a certain
percentage of instances is corrupted with noise.

Another important stream generator is the RandomTree generator. Its underlying
model is a decision tree for a desired number of attributes and classes. The tree
is built by splitting on randomly chosen attributes and then giving random class
labels to the leaf nodes. Instances are generated with uniformly distributed values
in the attributes while the class label is determined by the tree.

MOA offers the ConceptDriftStream procedure for simulating concept drift. The
idea underlying this procedure is to mix two pure distributions in a probabilistic
way, smoothly varying the corresponding probability degrees. In the beginning,
examples are taken from the first pure stream with probability 1, and this prob-
ability is decreased in favor of the second stream in the course of time. More
specifically, the probability is controlled by means of the sigmoid function

F(t) = (14 e 40=t0/wy ™

This function has two parameters: t; is the mid point of the change process, while
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w is the length of this process.

4.2 Model Evaluation

The evaluation of an evolving classifier is clearly a non-trivial issue. In fact, com-
pared to standard batch learning, simple one-dimensional performance measures
such as classification accuracy are not immediately applicable, or at least not able
to capture the time-varying behavior of a classifier in a proper way. MOA offers
different solutions for this problem.

The holdout procedure is a generalization of the cross-validation procedure com-
monly used in batch learning. Here, the training and the testing phase of a
classifier are interleaved as follows: the classifier is trained incrementally on a
block of M instances and then evaluated (but no longer adapted) on the next
N instances, then again trained on the next M and tested on the subsequent N
instances, and so forth. Thus, it becomes possible to monitor the performance of
the model as time progresses; this information can also be used as an indicator
of possible changes of the underlying concept [7, 9].

While the holdout procedure uses an instance either for training or for testing,
each instance is used for both in the prequential approach [12]: First, the model
is evaluated on the instance, and then a single incremental learning step is car-
ried out. The prequential error is advocated in [22], where it is also shown to
converge to the holdout measure when using a sliding window or a fading factor
(exponential weighting).

5 Experiments

In this section, we compare IBLStreams with state-of-the-art learners, namely
Hoeffding trees for classification [21] and the FLEXFIS approach for regression
[25], in terms of prediction performance and handling of concept drift. Hoeffding
trees is a decision tree approach suitable for learning classifiers on data streams.
For our experiments, we used the MOA implementation of Hoeffding trees in
the default parameter setting.* For IBLStreams, we set keung = 5, initial k =
16, initial kernel width (for exponential and Gaussian kernels) o = 0.5 and the
maximum case base size=5000.

4gracePeriod g = 200, splitConfidence ¢ = 10~7, tieThreshold ¢ = 0.05, numericEstimator
n=GAUSS10
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FLEXFIS constructs and maintains a specific kind of fuzzy rule-based model,
namely a Takagi-Sugeno model [33]; apart from the original approach to regres-
sion, there is also a classification version of FLEXFIS [27], which can hence be
used for both types of experiments. FLEXFIS is implemented in Matlab and
offers a function for finding optimal parameter values. We used this function
to fix all parameters except the so-called “forgetting parameter”, for which we
manually found the value 0.999 to perform best. Finally, pruning was enabled.

Experiments are not only conducted with real data sets, but also with synthetic
data. As an important advantage of synthetic data, let us note that it allows
for conducting experiments in a controlled way and, therefore, to investigate the
performance of a method under specific conditions. In particular, synthetic data
is useful for simulating a concept drift.

The experiments are performed in the MOA framework, using the holdout proce-
dure for measuring predictive accuracy. The parameters M and N vary depending
on the size of the data set (we take M = 5000 and N = 1000 in the first two
experiments with synthetic data). For the experiments with real data, these pa-
rameters are adapted to the size of the respective data set. The real data sets are
standard benchmarks taken from the Statlib archive® and the UCI repository [16].
Since they do not have an inherent temporal order, we average the performance
curves over 100 randomly shuffled versions of these data sets.

5.1 Classification

For the classification experiments, we use IBLStreams in three variants:
C1: equal weighting of neighbors, adaptation of neighborhood size k
C2: weighting with exponential kernel, adaptation of kernel width
C3: equal weighting of neighbors, no adaptation

All other parameters in IBLStreams are set to their default values.

5.1.1 Synthetic Data

The first two experiments are based on synthetic data with different character-
istics (i.e., different types of decision boundaries). The first experiment uses

Shttp://1lib.stat.cmu.edu/
6See the documentation of IBLStreams at http://moa.cs.waikato.ac.nz/
moa-extensions/
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data taken from the “hyperplane” generator. The ConceptDriftStream proce-
dure mixing streams produced by two different hyperplanes simulates a rotating
hyperplane. Using this procedure, we generated 12,000,000 examples connecting
two hyperplanes in 4-dimensional space, with ¢y = 500,000 and w = 100, 000.

As can be seen in Fig. 5, the different IBLStreams settings hardly differ in terms
of performance. Moreover, they outperform both Hoeffding trees and FLEXFIS,
with a very small decrease in performance when the drift occurs. IBLStreams
recognises and adapts to the concept drift quite early, recovering its original
performance as soon as the drift is over. The Hoeffding tree is more affected by
the concept drift; it shows a more pronounced “valley” in the performance curve
and also takes more time to recover. FLEXFIS is affected by the drift, too, with
about 5% decrease in performance.

In a second experiment, we use the “random tree” generator to produce examples.
This generator constructs a classification tree (by repeatedly choosing recursive
splits) at random and uses this tree to label instances. Obviously, it is favorable
for the Hoeffding tree. Again, the same ConceptDriftStream is used, but this
time mixing two random tree generators. As can be seen in Fig. 6, the Hoeffding
tree is now able to compete with IBLStreams in the first phase of the learning
process; in fact, reaching an accuracy of close to 100%, which is not unexpected
given that the Hoeffding tree is ideally tailored for this kind of data. Omnce
again, however, the Hoeffding tree is much more affected by the concept drift
than IBLStreams. The three variants of IBLStreams do not show any decrease in
terms of classification rate. In contrast, they continue to improve the performance
during the drift, whereas the Hoeffding tree loses about 40% of its accuracy, and
FLEXFIS loses about 10%. The relative performance of FLEXFIS is similar to
the case of the hyperplane data.

5.1.2 Real Data

In this experiment, we used the wine quality data, which is an ordinal classifica-
tion problem, in which a wine (characterized by 11 chemical properties) is put
into a discrete category ranging from 10 (best) to 0 (worst). We turned this prob-
lem into a binary classification task by grouping the top-5 and bottom-6 classes.
Actually, the data set consists of two subsets, one for white wine (4889 examples)
and one for red wine (1599 examples). For both data sets, the initial learning
is done on 300 instances. In all our experiments on the wine quality data, we
average the results over 100 randomly shuffled versions. For the evaluation on the
red wine data, we used M = 100 and N = 25, because this data set is relatively
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small; for white wine, we used M = 200 and N = 50. Fig. 7 and Fig. 8 show the
results of both experiments. As can be seen, IBLStreams in its different settings
is clearly superior to Hoeffding trees on these data sets.

The same data sets, only without grouping the output categories, were used
to evaluate the multi-class case. The IBLStreams settings were also the same
as for the binary case, with only one exception: Since the problem is now an
ordinal classification task, the weighted median was used instead of the mode
for prediction. As can be seen from Fig. 9 and Fig. 10, the performance of
both IBLStreams and Hoeffding trees is now lower than for the binary case, an
observation that is clearly expected. Still, IBLStreams remains superior on the

whole stream.

Table 1 shows the execution time for the training and evaluation of instances. On
both synthetic data sets for binary classification, IBLStreams is able to process
1000 instances in less than 1.5 seconds, and needs about 0.5 seconds for making
the same amount of predictions. Similar results are obtained for the multi-class

problems.

binary class. multi-class class.

hyperpl. rand. tree red white red white
o1 tt | 1.1840.19 1.14+0.19 1.2840.36 3.15+1.46 | 0.80£0.14 1.26+0.43
st | 0.41£0.09 0.404+0.09 0.61£0.16 1.5240.67 | 0.36+0.06 0.58%0.19
9 tt | 1.1940.19 1.19+0.18 1.434+0.40 3.594+1.71 | 1.14+0.22 1.84+0.65
st | 0.46+0.09 0.474+0.10 0.68£0.19 1.77£0.80 | 0.544+0.09 0.88%0.30
o3 tt | 1.2440.20 1.32+0.27 1.534+0.44 3.82+1.80 | 0.80+£0.14 1.27£0.44
st | 0.4840.09 0.524+0.15 6.12+£1.76 1.884+0.86 | 0.37+0.08 0.60+0.21

Table 1: Average time (in seconds) for training (tt) and testing (ts) per 1000
Instances.

5.2 Regression

In the regression case, we used IBLStreams in four different settings (while the
rest of the parameters were again set to their default values):

R1: weighted mean, equal weighting of neighbors, adaptation of neighborhood
size k

R2: weighted mean, weighting with exponential kernel, adaptation of kernel
width
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R3: local linear regression, equal weighting of neighbors, adaptation of neigh-
borhood size k

R4: local linear regression, weighting with exponential kernel, adaptation of
kernel width

5.2.1 Synthetic Data

For the case of regression, we modified the hyperplane generator in MOA as
follows: The output for an instance z is not determined by the sign of w’a,
where w is the normal vector of the hyperplane, but by the absolute value |w”z|.
In other words, the problem is to predict the distance to the hyperplane. As
an alternative, we also tried the squared distance (w?z)? and the cubic distance
(wTz)®. Again, ConceptDriftStream was used for simulating a concept drift by

mixing two streams.

Fig. 11, 12 and 13 show the performance of IBLStreams and FLEXFIS, in terms of
the root mean squared error (RMSE), for the (piecewise) linear, the quadratic case
and the cubic case (and dimension d = 4), respectively. As can be seen, FLEXFIS
is significantly outperformed by the different versions of IBLStreams. In fact, the
RMSE is clearly lower for IBLStreams, not only under normal conditions but also
in cases of a concept drift.

Comparing the IBLStreams variants amongst each other, it seems that local lin-
ear regression tends to perform better than just using the weighted mean as an
estimator. This is clearly not unexpected, since the latter can be seen as a spe-
cial case of the former, which is more flexible and, therefore, able to adapt to the
data more easily. Yet, in the case of a concept drift, the simple weighted mean
seems to be affected less strongly. This result is completely in agreement with
the general observation that the more complex a model is, the more difficult it
becomes to react and adapt to changing environmental conditions.

5.2.2 Real Data

In this experiment, we used the UCI data set about relative location of CT
(computed tomography) slices on axial axis. This data set is extracted from
53500 images taken for 74 different patients (43 males and 31 females). Each
CT image is described in terms of of 384 features. The target attribute is the
relative location of the CT slice on the axial axis of the human body; this is a
numeric value in the range [0, 180], where 0 denotes the top of the head and 180
the soles of the feet. The data was ordered by the patient ID, which means that
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images from the same patient are grouped. We kept this order of patient-wise
blocks (since the transition from one patient to another one could be seen as a
concept shift) but randomly shuffled the data within each block, so as to avoid
a dependence of the order on the target value. Moreover, using a variant of the
forward selection method as proposed in [25], the number of features was reduced
to 9. Learning was started on an initial block of 1000 instances, and incremental
learning was done using M = 1000 and N = 500. The results in Fig. 14 show
that the different configurations of IBLStreams outperform FLEXFIS most of the
time. Again, there is no big difference between the variants themselves.

The second experiment uses the concrete compressive strength data [37]. In this
data set, a concrete is described in terms of its age and ingredients, giving rise to
9 attributes in total. The target attribute is the concrete compressive strength,
which lies in the range [2.33,82.60]. Since this data set is relatively small (1030
examples), we set M = 50 and N = 10 and used only 100 examples for initial
learning. Fig. 15 shows that, on this data set, there is no clear winner. Again,
the IBLStreams variants perform more or less equal most of the time. Comparing
these variants with FLEXFIS, the latter is superior on some parts of the data
stream and the former on others.

6 Discussion and Conclusion

We have presented a lazy algorithm for learning on data streams, using instance-
based methods for tackling the tasks of classification and regression. This al-
gorithm, called IBLStreams, has a number of desirable properties that are not,
at least not as a whole, shared by existing alternative methods. In particular,
two specifically designed editing strategies are used in combination in order to
successfully deal with both gradual concept drift and abrupt concept shift.

The experiments presented in [6], complemented by those in this paper, suggest
that IBLStreams is very flexible and thus able to adapt to an evolving environ-
ment quickly, a point of utmost importance in the data stream context. Indeed,
the most important conclusions that can be drawn from our experiments are as
follows:

— Compared to the other methods used in the experiments, IBLStreams seems
to be less “inert” when a concept drift occurs and, moreover, recovers its
original performance more quickly when the drift comes to an end. This is
arguably due to the advantage of not having to adapt a possibly complex
model.
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— Besides, it seems that IBLStreams is relatively robust and produces good

results when being used in a default setting for its parameters. In fact, in
our experiments, IBLStreams was often better but never significantly worse
than its competitors, even is cases where the data generating process is
actually in favor of the latter.

IBLStreams is implemented in Java and can be downloaded, along with a docu-
mentation, from the Internet.” This implementation is supposed to be used under

MOAS, an open source framework for mining and learning from data streams,
which is in the offing to be become a standard in this field [7].
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A Distance Function

The distance function used in IBLStreams is an incremental variant of SVDM
(Simple Value Difference Metric) which is a simplified version of the VDM (Value
Difference Metric) distance measure [32] and was successfully used in the clas-
sification algorithm RISE [13, 14]. Let an instance z be specified in terms of ¢
features F ... Fy, i.e., as a vector x = (f1... fy) € Dy X ... X Djy.

Numerical features F; with domain D; = R are first normalized by the mapping
fi = fi/(max — min), where max and min denote, respectively, the largest
and smallest value for F; observed so far; these values are permanently updated.’
Then, 6;(f;, f/) is defined by the Euclidean distance between the normalized values
of f; and f/.

9To make the transformation more robust toward outliers, it makes sense to replace max
and min by appropriate percentiles of the empirical distribution.
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For a discrete attribute F}, the distance between two values f; and f] is defined
by the following measure:

f]’ j ZHP )\k‘F fJ) ()‘k‘FJ:fJ/)

where m is the number of classes and P(\| F' = f) is the probability of the class
A given the value f for attribute F'. Finally, the distance between two instances
x and 2’ is given by the mean squared distance

0
Z (fi, 11)?

mlr—‘
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Procedure Predict

Input: case base D, example e=(zg, ?)
k number of considered instances
o variance, used in the case of Gaussian or exponential weighting
W M weighting method (equal, inverseDistance, linear, gaussianKernel, exponen-
tialKernel)
PM prediction method ( Local_Lienar_Solution, wKNN)
Output: 5\%
S = {k nearest neighbor of e in D}
if dz; € S : x; = 29 then

return A\,
end if
W = getNormalized WeightingVector(e, WM, k, o)
if Classification then

C = [0] sctasses

for all z; € S do

O] = Cl] +
end for
if Ordered Classification then
Aoy = median(C)
else

—_ = = =
Wy P2

~

14: Azo = argmaz; {c; }
15:  end if

16: else

17:  {Regression}

18: if PM = wKNN then

19: {Solve it as wKNN}

20: Aoy = WTY

21:  else

22: X = [zil]ses

23: Y = [A]uies

24: B=(XTWX) ' XTWY
25 Aoy = [201]

26:  end if

27: end if

28: {dist is the Euclidean distance}
29: return

Figure 1: Algorithm for predictingfhe target value of a new instance.



Procedure ConceptDriftClassification

Input: case base D, example e=(zg, Ay, )
Output: updated case base D
1: ¢ = class estimate for zy derived from D
2: compare ¢ and \,,, update statistics for the last 100 examples (error p and
standard deviation s)
3. if (1 — p) <= 1.0/classCount OR
D+ S > DPmin + ZaSmin then
{and Warnings condition}
paifs =(error of the last 20 training data) —p i s
if prirst > 0.2 then
delete min(|D|paifs, |D| — ktest) cases from D
reset Pmins Smin
end if
10: end if
11: {a=0.999 = Z, =4}
12: return

Figure 2: Algorithm for checking and Handling of Concept Drifts in classification
problems.
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Procedure ConceptDriftRegression

Input: case base D, example e=(z, Az, )
Output: updated case base D
1: ¢ = the estimated target value for xy derived from D
2: compare ¢ and \,,, update statistics for the last 100 examples (error p and
standard deviation s)

3: if p4+ 5 > Pmin + ZaSmin then

4:  {and Warnings condition}

5 7 =mn(EEee 0.5)

6:  delete min(7|D|, |D| — kiest)) cases from D
7: reset Poin, Smin

8: end if

0: {o = 0.999 = 7, = 4}

10: return

Figure 3: Algorithm for checking and Handling of Concept Drifts in classification
problems.
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Procedure UpdateClassifier

Input: case base D, example e=(z, Az, )

k number of considered instances

o variance, used in the case of Gaussian or exponential weighting

WM weighting method (equal, inverseDistance, linear, gaussianKernel, expo-
nentialKernel)

PM prediction method ( Local_Lienar_Solution, wKNN)

Output: k, o

Global Variables:

{o0 = VF#AL. /10, ko = #Att. 4,6 = 0.05}

1: if Different_ks then

2:  {p : mean error for the last 100 examples}
3:  update py by Predict (e, WM,k —1,0)

4:  update p; by Predict (e, WM, k, o)

5. update py by Predict (e, WM,k +1,0)

6: if ps < p; then

7 k=k+1

8: else if py < p; then

9: k=k—1

10: end if

11: else if Different_Segmas then

12:  {p : the mean error for the last 100 examples }
13:  update py by Predict (e, WM, k,o(1 —9))
14:  update p; by Predict (e, WM, k, o)

15:  update py by Predict (e, WM, k,o(1+9))
16:  if py < p; then

17: o=oc(l+9)

18:  else if py < p; then

19: o=o0(l—-90)

20:  end if

21: end if

22: return

Figure 4: Algorithm for updating the parameters of the classifier.
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Figure 5: Classification rate on the hyperplane data (binary).
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Figure 6: Classification rate on the random tree data (binary).
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Figure 7: Classification rate on the red wine quality data set (binary).
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Figure 8: Classification rate on the white wine quality data set (binary).
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Figure 9: Classification rate on the red wine quality data set (multi-class).
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Figure 10: Classification rate on the white wine quality data set (multi-class).
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Figure 11: RMSE for the hyperplane data (regression, linear case).

o FLEXFIS =—=—IBLStreams—-R1 ——IBLStreams—-R2 = = = IBLStreams—R3 ——|BLStreams—-R4

1 2 3 4 5 6 7 8 9 10
examples processed % 10*

Figure 12: RMSE for the hyperplane data (regression, quadratic case).
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Figure 13: RMSE for the hyperplane data (regression, cubic case).
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Figure 14: RMSE for the relative location of CT slices on axial axis (regression).
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Figure 15: RMSE for the concrete compressive strength data (regression).
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