
Preference-Based CBR: First Steps Toward a

Methodological Framework

Eyke Hüllermeier and Patrice Schlegel

Department of Mathematics and Computer Science
Marburg University, Germany

{eyke,schlegel}@mathematik.uni-marburg.de

Abstract. Building on recent research on preference handling in artifi-
cial intelligence and related fields, our general goal is to develop a coher-
ent and universally applicable methodological framework for CBR on the
basis of formal concepts and methods for knowledge representation and
reasoning with preferences. A preference-based approach to CBR appears
to be appealing for several reasons, notably because case-based experi-
ences naturally lend themselves to representations in terms of preference
relations, even when not dealing with preference information in a literal
sense. Moreover, the flexibility and expressiveness of a preference-based
formalism well accommodate the uncertain and approximate nature of
case-based problem solving. In this paper, we make a first step toward a
preference-based formalization of CBR. Apart from providing a general
outline of the framework as a whole, we specifically address the step of
case-based inference. The latter consists of inferring preferences for can-
didate solutions in the context of a new problem, given such preferences
in similar situations. Our case-based approach to predicting preference
models is concretely realized for a scenario in which solutions are repre-
sented in the form of subsets of a reference set. First experimental results
are presented to demonstrate the effectiveness of this approach.

1 Introduction

Despite its great practical success, work on the theoretical foundations of CBR
is still under way, and a coherent and universally applicable methodological
framework is yet missing. The CBR cycle proposed by Aamodt and Plaza [1] is
a commonly accepted process model, which nicely illustrates the main aspects
of the case-based problem solving paradigm. Likewise, the metaphor of knowl-
edge containers, introduced by Richter [2], provides a general framework for the
structuring of knowledge in CBR. However, both are high-levels models and still
rather far from the conceptual realization and implementation of a case-based
problem solver. On the other extreme, many CBR systems have been designed
for solving concrete problems. These, however, are mostly tailored for a specific
purpose and not easily applicable to a wider range of problems.

In-between these two extremes, there is arguably space for developing CBR
methodologies [3]. On the one hand, a CBR methodology should be sufficiently

general and abstract, so as to allow for the development of generic algorithms,
for analyzing formal properties, proving theorems, etc. On the other hand, it
should also be sufficiently concrete, so as to support the development of specific
applications. To make this idea more tangible, consider as an analogy the for-
malism of graphical models, by now an established methodology for the design of
probabilistic expert systems [4]. This class of models disposes of a formal theory
and generic algorithms, but also tools for supporting the design of models for
concrete applications.

In [5], a general constraint-based framework of CBR has been developed.
Roughly speaking, the core assumption of CBR, suggesting that similar problems
have similar solutions, is formally interpreted as a constraint: given a new query
problem to be solved in conjunction with previous experience in the form of a
solution to a similar problem, it restricts the set of candidate solutions of the
query. Starting with the classical view of a constraint as a subset of feasible
elements of a relation, more flexible variants of this approach have later been
developed on the basis of different frameworks of approximate reasoning and
reasoning under uncertainty. Taking such models as a point of departure, case-
based reasoning can be realized, respectively, as constraint-based, probabilistic,
or fuzzy logic-based reasoning in a formally sound way.

In this paper, we make a first step toward an alternative methodological
framework for case-based reasoning on the basis of formal concepts and meth-
ods for knowledge representation and problem solving with preferences. The
topic of preferences has recently attracted considerable attention in artificial
intelligence (AI) research and plays an increasingly important role in several
AI-related fields, including, e.g., agents, constraint satisfaction, decision theory,
planning, machine learning, and argumentation [6–8]. Preference-based meth-
ods are especially appealing from an AI perspective, notably as they allow one
to specify desires in a declarative way, to combine qualitative and quantitative
modes of reasoning and to deal with inconsistencies and exceptions in a quite
flexible manner. Indeed, a preference can be considered as a relaxed constraint,
which, if necessary, can be violated to some degree.

The important advantage of an increased flexibility of a preference-based
problem solving paradigm is nicely explained in [9]: “Early work in AI focused
on the notion of a goal—an explicit target that must be achieved—and this
paradigm is still dominant in AI problem solving. But as application domains
become more complex and realistic, it is apparent that the dichotomic notion of
a goal, while adequate for certain puzzles, is too crude in general. The problem is
that in many contemporary application domains ... the user has little knowledge
about the set of possible solutions or feasible items, and what she typically seeks
is the best that’s out there. But since the user does not know what is the best
achievable plan or the best available document or product, she typically cannot
characterize it or its properties specifically. As a result, she will end up either
asking for an unachievable goal, getting no solution in response, or asking for
too little, obtaining a solution that can be substantially improved.”

Our claim is that the above insights do not only apply to AI in general but
to CBR in particular. In fact, as will be argued in more detail below, case-based
experience can be modeled in terms of preference information in a quite con-
venient way and, moreover, case-based inference can be realized quite elegantly
in the form of preference processing. As pointed out in the above quotation, a
key advantage in comparison to a constraint-based approach, as developed in
[5], is an increased flexibility and expressiveness, which appears to be especially
advantageous for CBR. To some extent, these points were already put forward
in [10], albeit within a much more narrow scope.

The remainder of the paper is organized as follows: In the next section,
the main ideas of our approach to preference-based CBR are outlined in an
informal way. A formal model of a core part of preference-based CBR, namely the
inference step responsible for predicting a “contextualized” preference relation
on the solution space, is then introduced in Section 3. Section 4 is devoted to an
experimental study, in which we seek to demonstrate the general feasibility of
case-based learning on the basis of preference information. The paper ends with
some concluding remarks and an outlook on future work in Section 5.

2 Main Ideas and Basic Setting

Even though several generalizations have been proposed in recent years, expe-
rience in CBR is most commonly represented in the form of problem/solution
tuples (x,y) ∈ X×Y, where x is an element from a problem space X, and y an
element from a solution space Y. Despite its apparent simplicity, this represen-
tation is quite expressive, especially since X and Y can be arbitrarily complex
spaces. Yet, upon closer examination, it also exhibits some disadvantages and
principle limitations, both from a knowledge acquisition and reuse point of view.

– Existence of correct solutions : First, the representation assumes the existence
of a “correct” solution for each problem, and implicitly even its uniqueness.
In many application domains, this assumption is not tenable. Take the cook-
ing domain as an example: If the problem is to prepare a vegetarian pasta
meal for two persons, there is definitely not a single “correct” recipe. Instead,
there will be many possible alternatives, maybe more or less preferred by the
user.

– Verification of optimality: Even if the existence of a single correct solution
for each problem could be assured, it will generally be impossible to verify
the optimality of the solution that has been produced by a CBR system.
Consequently, a solution y may only be a suboptimal solution to a problem
x, so that storing and later on reusing the case (x,y) can be misleading.
This problem is less critical, though does not dissolve, if only “acceptable”
instead of optimal solutions are required.

– Loss of information: Storing only a single solution y for a problem x, even
if it can be guaranteed to be optimal, may come along with a potential loss
of information. In fact, during a problem solving episode, one typically tries
or at least compares several candidate solutions. Retaining a single one then

captures the information that it was the best candidate. The potentially
useful piece of experience that, for example, a second candidate y′, despite
being worse than y, was still better than a third alternative y′′ is lost,
however. On the other hand, if a problem solving process was canceled before
a provably optimal solution could be found, there is in principle no case to be
stored in the case base. Again, however, retaining the piece of knowledge that
a candidate y was not acceptable, or that a candidate y′, even if suboptimal,
was at least better than y′′, could be useful.

– Limited guidance: From a reuse point of view, a retrieved case (x,y) only
suggests a single solution, namely y, for a query problem x0. Thus, it does
not imply a possible course of action in the case where the suggestion fails:
If y is not a good point of departure, for example since it cannot be adapted
to solve x0, there is no concrete recommendation on how to continue.

2.1 Preference-based Knowledge Representation

To avoid these problems, we propose a preference-based approach to representing
and processing experiences in CBR. The basic idea is to replace experiences of
the form “solution y (optimally) solves problem x” by information of the form
“y is better (more preferred) than y′ as a solution for x”. More specifically, the
basic “chunk of information” we consider is symbolized in the form y �x y′

and suggests that, for the problem x, the solution y is at least as good as
the solution y′. This type of knowledge representation obviously overcomes the
problems discussed above. As soon as two candidate solutions y and y′ have been
tried as solutions for a problem x, these two alternatives can be compared and,
correspondingly, a strict preference in favor of one of them or an indifference can
be expressed (recall that, from a weak preference relation �, a strict preference
� and an indifference ∼ are derived as follows: y � y′ iff y � y′ and y′ �� y, and
y ∼ y′ iff y � y′ and y′ � y). To this end, it is by no means required that one
of these solutions is optimal. It is worth mentioning, however, that knowledge
about the optimality of a solution y∗, if available, can be handled, too, as it
simply means that y∗ � y for all y �= y∗. In this sense, the conventional CBR
setting can be considered as a special case of preference-based CBR.

The above idea of a preference-based approach to knowledge representation
in CBR also suggests a natural extension of the case retrieval and inference steps,
that is, the recommendation of solutions for a new query problem: Instead of
just proposing a single solution, it would be desirable to predict a ranking of
several (or even all) candidate solutions, ordered by their (estimated) degree of
preference:

y1 �x y2 �x y3 �x . . . �x yn (1)

This is indeed comparable to an information retrieval scenario, such as web
search, where normally not only a single solution is shown to the user, but
instead a complete list of potential matches. Thus, the last problem mentioned
above, namely the lack of guidance in the case of a failure, can be overcome.

As a side remark, we note that a kind of ranking of solutions can in principle
also be obtained in the classical approach to CBR, namely by ordering the

Table 1. Exemplary preferences of different persons regarding four coffee drinks.

Anne: Cappuccino � Espresso � Latte � Americano
Lisa: Cappuccino � Latte � Espresso � Americano
Peter: Americano � Latte � Espresso � Cappuccino
Paul: Latte � Americano � Espresso � Cappuccino

solutions associated with the k cases in the case base which are most similar to
the query problem. However, apart from lacking a formal foundation, there is a
very important difference to our approach. In fact, our fundamental assumption
is that, with each problem, one can (at least theoretically) associate a preference
order over the set of potential solutions, instead of just a single (correct) solution.
Needless to say, this order will normally not coincide with the ordering obtained
by sorting the presumably best solutions (top-choices) for similar problems.

As an illustration, consider the simple example in Table 1, where four persons
are listed in decreasing order of their similarity to the query person, say, Mary.
For each person, the preferences regarding four types of coffee drinks are given
in terms of a total order. To predict Mary’s preferences on the four alternatives,
one could, for example, simply adopt the preference relation of the most similar
person, which is Anne, or aggregate the preference relations of all persons (e.g.,
by a simple Borda count, which yields Latte � Cappuccino � Espresso ∼ Ameri-
cano). In any case, the result will be different from the order obtained by sorting
the top-choices of the four people (Cappuccino, Cappuccino, Americano, Latte).
In fact, the example also shows that this approach will normally not even lead
to a proper ranking: While some alternatives may never occur, since they are
never ranked first (like Espresso), others may occur multiple times (Cappuccino
appears on the first two positions). In any case, the example makes clear that
sorting solutions in the classical CBR setting does in general not yield a proper
preference relation (ranking) on the set of all candidate solutions.

2.2 Important Issues in Preference-Based CBR

The approach outlined so far is overly simplistic and needs to be refined in several
respects. Important problems to be addressed include the following:

– How to represent, organize and maintain case-based experiences, given in
the form of preferences referring to a specific context, in an efficient and
effective way?

– How to select and access the experiences which are most relevant in a new
problem solving situation?

– How to combine these experiences and exploit them to infer a solution or,
more generally, a preference order on a set of candidate solutions, for the
problem at hand?

Regarding the notion of a “problem”, we like to mention that the problem
description in CBR can be quite general. In particular, in addition to proper-
ties of the actual problem itself, it may contain further information, for example
about a user, so that the term “context” would perhaps be even more appro-
priate. From a preference point of view, this is very important, since different
users, e.g., members of a web community, may have different preferences. For
instance, it makes a great difference whether a culinary preference is expressed
by a vegetarian or by a non-vegetarian. In general, we assume the problem to be
specified by a finite number of attributes. The domain of an attribute can simply
be an unordered or totally ordered set (e.g., categorical or numeric attribute),
but can also have a hierarchical structure. In the cooking domain, for example,
attribute values are often organized in the form of taxonomies (allowing for the
specification of values at different levels of abstraction).

2.3 Structure of the Solution Space

A solution in CBR can be as simple as a single value (like in CBR for classification
and regression tasks [11, 12]) but may also appear as a complex object assembled
from a number of basic components. Needless to say, the concrete structure
of the solution space will be important from a methodological point of view,
because different types of problem solving will call for different methods. The
following (non-exhaustive) list of problem types and related solution spaces may
be envisioned in increasing order of complexity.

– A solution space Y is specified by the conventional attribute-value repre-
sentation, i.e., the description of a solution in terms of a fixed number of
attribute values (numerical, categorical, etc.). This type of representation is
natural, commonly used, and even relevant for structured representations,
which can often be mapped to flat feature vectors in a reasonable way. For
example, if the nutritional value of a dish is of main interest, a recipe can
be mapped to an amount of protein, vitamins, etc.

– Spaces of the form Y = 2C , where C is a finite set of labels. Thus, a solution
is a subset of C. Despite its simplicity, this specific structure is quite general
and indeed relevant for many applications. For example, in its most basic
form, a cooking recipe is simply represented by a set of ingredients, that is,
by a subset of the set C of all potential ingredients (perhaps on different
levels of abstraction as specified by an underlying taxonomy).

– A combination of the two previous scenarios is of the form Y = 2D, where
D is a set of objects characterized in terms of an attribute-value represen-
tation. For example, instead of just knowing the name of an ingredient, it
is now possible to capture some of its properties. Thus, each solution is a
subset of objects, where each object is in turn a feature vector. This type of
representation of alternatives has recently been advocated in [13], especially
from a preference handling point of view.

– Another generalization of the first scenario is a solution space Y based on
a representation in terms of a feature vector with set-valued attributes, i.e.,

in which each attribute can assume several values of an underlying domain
simultaneously instead of only a single one. For example, a recipe could
be described, amongst others, by an attribute SideDish with underlying
domain {potatoes, rice, ...}. Most recipes will include exactly one side dish,
but dishes with no side dish or more than one do of course exist.

– Solution spaces Y in the form of a specific class of graphs, another generic
data structure that can be used for modeling purposes in a rather flexible
way. In particular, in addition to the components themselves, it allows one to
capture relationships between them. This type of solution space has recently
been considered in CBR in connection with workflows [14].

It is worth mentioning that the “construction” of a solution in the first four
scenarios can in principle be reduced to solving a fixed number of “prediction”
problems, namely assigning a value to each attribute (in the case of multi-valued
attributes, prediction comes down to solving a multi-label classification problem
[15]). However, it is also important to recognize that these problems are not
independent of each other, due to interactions and interdependencies between
the attributes, so this simplistic approach is likely to produce suboptimal results.

Finally, let use note that the actual output space on which a preference-based
CBR system is operating, at least implicitly, is not given by a solution space Y
itself, but instead by P(Y), namely the class of all preference structures on Y.
These spaces may become extremely complex, and will therefore not be dealt
with in an explicit way.

3 Case-Based Inference

Leaving questions of problem representation, case base organization, case re-
trieval, etc. (essentially raised by the first two items in Section 2.2) aside, our
focus in this paper is on case-based inference (the third item). Given a new
query problem x0, standard case-based inference starts by retrieving a subset
of (presumably) most relevant cases from the case base, and then proceeds by
combining, in one way or another, the solutions of these problems into a can-
didate solution for x0. The type of aggregation procedure which is applied to
this end strongly depends on the structure and representation of solutions, and
on the type of preference relation defined on the solution space. In this regard,
recall the main scenarios (types of solution spaces) distinguished above.

It is important to recall that problems are not associated with single solutions
but rather with preferences over solutions, that is, with elements from P(Y).
Consequently, we have to consider the problem of combining the preferences
associated with the nearest neighbors of the query x0 into a preference relation
on candidate solutions. Ideally, such a relation is given in the form of a total
order (1), though depending on the completeness of the information at hand,
this will of course not always be possible. Roughly, the problem can be stated
as follows: Given a set of preferences on candidate solutions coming from a set
of relevant problems (associated with corresponding similarity degrees), find a

global preference relation on these candidates which is as consistent with these
preferences as possible.

3.1 Case-based Inference as Probability Estimation

To solve this problem in a theoretically sound way, we approach it as a statistical
estimation problem. Recall that P(Y) denotes the set of preference structures
on the solution space Y, for example the set of all total orders (rankings) of
the solutions y ∈ Y. Since the true preference model Rx0

∈ P(Y) associated
with the query x0 is not known, we consider it as a random variable Z with
distribution P(· |x0), where P(· |x0) is a distribution Pθ(·) parametrized by θ =
θ(x0) ∈ Θ. Thus, Pθ(Rx0

) is the probability that Z = Rx0
. The problem, then,

is to estimate this distribution or, equivalently, θ on the basis of the information
available. This information consists of the preferences y �x y′ between solutions
observed for the neighbors x of x0; let D denote the complete set of observed
preferences collected from the nearest neighbors of x0.

The basic assumption underlying nearest neighbor estimation is that the con-
ditional probability distribution of the output given the input is (approximately)
locally constant, that is, P(· |x0) ≈ P(· |x) for x close to x0. This assumption
justifies considering the preferences D observed for the neighbors of x0 as a rep-
resentative sample of Pθ(·) and, hence, estimating θ via maximum likelihood
(ML) by

θML = argmax
θ∈Θ

Pθ(D) . (2)

An important prerequisite for putting this approach into practice is a suitable
data generating process, i.e., a process generating preferences in a stochastic way.
Moreover, efficient (and probably approximate) inference procedures are needed
to estimate the parameters of this process.

3.2 A Discrete Choice Model

Our data generating process is based on the idea of a discrete choice model as
used in choice and decision theory [16]. More specifically, we assume that the
(absolute) preference for a solution y ∈ Y depends on its distance Δ(y,y∗) ≥ 0
to an “ideal” solution y∗. The distance measure Δ depends on the application
and is supposed to model background knowledge regarding the suitability of
solutions. Roughly speaking,Δ(y,y∗) can be seen as a “degree of suboptimality”
of y: The larger Δ(y,y∗), the less suitable is y as a substitute of the solution
y∗. For example, one may think of Δ as a kind of edit distance measuring the
cost of an adaptation, i.e., the cost of transforming y into y∗.

Suppose the latent utility of y is of the form

U(y) = −β Δ(y,y∗) + ε ,

with β ≥ 0 and an error term ε having an extreme value distribution. In conjunc-
tion with the assumption of independence between the error terms of different

solutions, this leads to the logit model of discrete choice:

P(y � y′) =
1

1 + exp (−β(Δ(y′,y∗)−Δ(y,y∗))
(3)

Thus, the probability of observing the (revealed) preference y � y′ depends on
the degree of suboptimality of y and y′, namely their respective distances to
the ideal solution, Δ(y,y∗) and Δ(y′,y∗): The larger the difference Δ(y′,y∗)−
Δ(y,y∗), i.e., the less optimal y′ in comparison to y, the larger the probability
to observe y � y′; if Δ(y′,y∗) = Δ(y,y∗), then P(y � y′) = 1/2.

The coefficient β can be seen as a measure of precision of the agent’s decisions.
For large β, the probability (3) converges toward 0 if Δ(y′,y∗) < Δ(y,y∗) and
toward 1 if Δ(y′,y∗) > Δ(y,y∗); this corresponds to a deterministic (error-
free) decision. The other extreme case, namely β = 0, models an agent making
decisions completely at random.

3.3 Maximum Likelihood Estimation

The probabilistic model outlined above is specified by two parameters: the ideal
solution y∗ and the (true) precision parameter β∗. Consider the problem of
estimating these parameters, i.e., the parameter vector θ∗ = (y∗, β∗), from a
given set D = {y(i) � z(i)}Ni=1 of observed preferences. In our case, D is given
by the set of preferences collected from the query’s nearest neighbors.

To solve this problem, we refer to the maximum likelihood (ML) estimation
principle. Assuming independence of the preferences, the likelihood of θ = (y, β)
is given by

L(θ) = L(y, β) = P(D | θ) =
N∏
i=1

1

1 + exp
(−β(Δ(z(i),y)−Δ(y(i),y)

) . (4)

Numerically, it is more convenient to deal with the log-likelihood

�(θ) = �(y, β) = −
N∑
i=1

log
(
1 + exp

(
−β(Δ(z(i),y)−Δ(y(i),y)

))
. (5)

The maximum likelihood estimation (MLE) θML = (yML, βML) of θ∗ is given
by the maximizer of (5) (and hence the maximizer of (4)). Noting that, if Y is
a discrete solution space, y is a discrete parameter while β is a continuous one,
we tackle the corresponding optimization problem in two steps.

For a fixed y, (5) becomes a one-dimensional function of β. The optimum
of this function cannot be found analytically, however, since it is differentiable,
an optimal β can easily be found by means of standard numerical optimization
techniques like the Newton method. In other words, an optimal β, which we
denote βML(y), can easily be determined as a function of y.

Assuming a discrete solution space Y, the optimization of y can be imple-
mented by means of any general purpose search method. The perhaps simplest

approach is hill climbing: Starting with an initial solution y, one determines

y′ = arg max
y∈N (y)

�(y, βML(y)) , (6)

where N (y) ⊂ Y is the neighborhood of y. The current solution y is then re-
placed by y′, and this process is continued until y = y′. Upon termination of this
process, the MLE θML is given by the currently optimal solution (y, βML(y)).

Since hill climbing is prone to local optima, it is important to find a good
initial solution. To this end, we make use of the concept of a generalized median.
Recall that the generalized median of a set of elements {y(1), . . . ,y(N)} ⊂ Y is
given by

ymed = arg min
y∈Y

N∑
i=1

Δ(y,y(i)) . (7)

To verbalize, the generalized median is the element that minimizes the sum of
distances to the y(i). Now, suppose a set of preferences {y(i) � z(i)}Ni=1 (instead
of a set of single elements) to be given. As an extension of (7), we propose to
look for

ymed = argmin
y∈Y

(
N∑
i=1

Δ(y,y(i))−
N∑
i=1

Δ(y, z(i))

)
, (8)

that is, for a solution which is as close as possible to the preferred solutions y(i)

and, at the same time, as distant as possible from the non-preferred solutions
z(i). This solution is then taken as a starting point of the hill climbing procedure.

Note that a MLE (yML, βML) induces a ranking (with ties) of the complete
solution space Y: For all y, z ∈ Y,

y � z iff Δ(y,yML) ≤ Δ(z,yML) . (9)

Also note that the MLE yML is the unique top-element of this ranking (at least
provided that Δ(y,y′) = 0 implies y = y′).

3.4 The Subset Solution Space

As a concrete example, that we shall return to in Section 4 below, consider
the special case of the “subset solution space”, that is, the case where Y =
2C , with C being a finite set of labels or items (note that the subset-relation
defines a complete lattice structure on Y). Alternatively, exploiting a one-to-one
correspondence between subsets (of a finite reference set) and binary vectors (of
fixed length), we let Y = {0, 1}M , where M = |C|. Thus, solutions are vectors
y = (y1, . . . , yM) ∈ {0, 1}M , with yi = 1 if the i-th item is contained in the
corresponding set and yi = 0 otherwise.

There are several commonly used distance measures for subsets (binary vec-
tors), including the Hamming distance

ΔH(y,y′) =
1

M

M∑
i=1

|yi − y′i|

and the Jaccard distance

ΔJ (y,y
′) =

∑M
i=1 min(yi, y

′
i)∑M

i=1 max(yi, y′i)
.

Given a measure of this kind, a reasonable definition of the neighborhood in
(6) is N (y) = {y′ ∈ Y |Δ(y,y′) = 1}, i.e., y′ is a neighbor of y if these two
vectors differ by exactly one entry. For the Hamming loss, the determination of
the initial solution (8) becomes especially simple. In fact, it is easily verified that
a solution ymed is given by

ymed
j =

{
1 if

∑N
i=1 I(y

(i)
j = 0) + I(z

(i)
j = 1) < N

0 otherwise
,

where I is the indicator function, i.e., I(P) = 1 if the predicate P is true and
= 0 if P is false.

4 Experiments

We conducted a number of experiments which are meant to provide a first vali-
dation of our approach. The main goal of these experiments is to show that, in
principle, preference-based CBR is feasible. More specifically, we seek to show
that a CBR agent can indeed learn from indirect feedback in the form of prefer-
ences. Moreover, we compare this kind of learning with the standard approach
in which direct supervision is available.

4.1 Problem Solving Scenario

In agreement with the motivation underlying preference-based CBR, we consider
a scenario in which the supervision is limited in the sense that, despite the
possibility to compare candidate solutions, it is difficult or even impossible to
determine an optimal or correct solution. Again, one may think of applications
like cooking as an example: Two recipes can be compared, e.g., by cooking the
meals and then testing which of them has a better taste, but there is usually
no way to figure out the optimal solution. As explained earlier, the standard
problem/solution representation becomes arguable in this setting.

As an alternative, we implement the following CBR procedure simulating
a problem solving agent, which, roughly speaking, has the ability to compare
candidate solutions and to “guess” new solutions, but not to verify the optimality
of a solution. The agent proceeds from an initial case base, in which a case is
a problem x together with a set of p pairwise preferences of the form y �x z.
The agent then solves a sequence of problems in turn, and each problem solving
episode consists of the following steps:

(i) Retrieval: Given a new query problem x0, the agent retrieves the preferences
associated with the k nearest neighbors of x0 in the current case base. Thus,
the agent gathers a set D of preferences, consisting of k · p comparisons in
total.

(ii) Prediction: Based on this set of preferences, the agent derives a new solu-
tion for x0. More specifically, using our discrete choice model, it derives the
ranking (9) and takes the top-ranked element yML as a prediction.

(iii) Evaluation: To measure the performance of the agent’s solution, this solution
is compared with the truly optimal solution y0 (which is not known to the
agent). More specifically, we define the performance in terms of the Hamming
distance ΔH(y0,y

ML).

(iv) Indirect supervision: The agent is given feedback in the form of comparisons
of its solution with p alternative solutions y(1), . . . ,y(p). Thus, a set of p
pairwise preferences of the form yML � y(i) or y(i) � yML is produced.
These pairwise preferences are stored together with x0 as a new case in the
case base.

The alternative solutions y(1), . . . ,y(p) in step (iv) may originate from dif-
ferent sources. For example, the agent itself may try different solutions. To this
end, it may sample suboptimal alternatives from the ranking (9), e.g., using
sampling methods like tournament selection [17]. One may also imagine that
the agent participates in a competition, in which its solution yML is compared
with the solutions of other participants. In our experiments, we simply gener-
ated the y(i) at random (i.e., by sampling from a uniform distribution on Y).
Each comparison (yML vs. y(i)) is implemented by means of our discrete choice
model (3); recall that this model allows for erroneous comparisons, and that the
corresponding level of noise is determined by the precision parameter β.

4.2 Problem Solving Domain

As an application domain, we consider the problem of multi-label classification
(MLC), an extension of the standard classification problem that has received
increasing attention in machine learning in recent years [18]. There are mainly
two reasons for this choice. First, the output to be predicted in MLC is a subset
of labels relevant for the query instance and, therefore, exactly matches the
assumptions of the subset solution space. Second, there are benchmark data set
available for the MLC problem.1

As a concrete example, we consider the emotions data that was created from a
selection of songs from 233 musical albums [19]. From each song, a sequence of 30
seconds after the initial 30 seconds was extracted. The resulting sound clips were
stored and converted into wave files of 22050 Hz sampling rate, 16-bit per sample
and mono. From each wave file, 72 numerical features have been extracted, falling
into two categories: rhythmic and timbre. Then, in the emotion labeling process,
6 main emotional clusters are retained corresponding to the Tellegen-Watson-
Clark model of mood: amazed-surprised, happy-pleased, relaxing-calm, quiet-
still, sad-lonely and angry-aggressive. The task is to predict the subset of labels
that apply to each individual song.

1 http://mlkd.csd.auth.gr/multilabel.html

4.3 Results

We implemented the scenario described in Section 4.1 with different values for
the parameters p (number of pairwise comparisons per case) and β (precision of
the comparisons); the number of retrieved cases was fixed to k = 3. As a baseline,
we compared with “standard” CBR, in which the supervision is direct : Instead
of the indirect supervision in step (iv) of our problem solving scenario, the true
solution y0 is shown to the agent (and stored in the case base). Given a new
query problem x0, the agent retrieves the solutions of its k nearest neighbors
and derives the generalized median (7) as a prediction. As a distance measure
on the problem space X, we always used the simple Euclidean distance.

In Fig. 1, the performance is shown for the emotions data in terms of a curve
t �→ P (t), where P (t) is the average performance in the first t problem solving
episodes (i.e., the average distance ΔH(y0,y

ML)). Since this curve depends on
the order in which problems are encountered, it was “smoothed” by averaging
over several random permutations of a data set. The initial case base always
comprised the first k cases, for which pairwise comparisons between randomly
generated solutions (or, in the case of the baseline, the true solutions) were
added.

As can be seen, standard k-NN performs slightly stronger than preference-
based CBR. This, of course, was to be expected: While k-NN is fully super-
vised, having access to the true solutions of the cases stored in the case base,
preference-based CBR is only guided through indirect hints in the form of pair-
wise comparisons (which are perhaps even noisy). Seen from this point of view,
it still performs rather well, and the difference between the methods becomes
smaller with an increasing number of preferences per case. Moreover, the learn-
ing effects due to an extension of the case base are quite comparable. Similar
results, which are omitted here due to space restrictions, were obtained for other
MLC data sets

5 Concluding Remarks

Our project agenda envisions a methodological framework of preference-based
CBR, which disposes of a sound theoretical basis and, at the same time, ac-
commodates a wide spectrum of potential applications. Ideally, a user can easily
“parametrize” this framework, e.g., by choosing the type of output space and
the distance measure defined on this space, whereas the methods themselves are
completely generic and essentially independent of the concrete application at
hand. In this regard, as already remarked in the introduction, we are to some
extent guided by AI methodologies like probabilistic graphical models and con-
straint satisfaction.

Needless to say, this paper is only a first step toward this goal. First, by fo-
cusing on the case-based inference part, we only considered one aspect of CBR,
albeit an important one. Apart from this, there are of course a number of further
issues that need to be addressed, such as case-base organization and mainte-
nance. Second, as already noticed earlier, the methods used for implementing

Fig. 1. Performance curves for the emotions data: Standard 3-NN as a baseline (dashed
curve) and preference-based CBR (solid) with 7 (upper), 15 (middle) and 30 (lower)
preferences per case and precision values of β = 5, 10 and 20, respectively.

preference-based CBR strongly depend on the type and structure of the solution
space. Although the formal approach outlined in Section 3 is quite general, we
later on focused on the subset solution space. Thus, similar methods have to be
developed and validated for other types of solution spaces, too.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. AI Communications, 7(1):39–59, 1994.

2. M.M. Richter. The knowledge contained in similarity measrues. In-
vited talk at ICCBR-95. wwwagr.informatik.uni-kl.de/˜lsa/cbr/
richtericcbr95remarks.html, 1995.

3. I. Watson. Case-based reasoning is a methodology not a technology. In R. Mile,
M. Moulton, and M. Bramer, editors, Research and Development in Expert Systems
XV, pages 213–223. London, 1998.

4. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge, Massachusetts, 2009.

5. E. Hüllermeier. Case-Based Approximate Reasoning, volume 44 of Theory and
Decision Library, Series B: Mathematical and Statistical Methods. Springer-Verlag,
Heidelberg, Berlin, 2007. 370 pages.

6. J. Doyle. Prospects for preferences. Comput. Intell., 20(2):111–136, 2004.
7. J. Goldsmith and U. Junker. Special issue on preference handling for Artificial

Intelligence. 29(4), 2008.
8. C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade. Preferences in AI: An

overview. Artificial Intelligence. To appear.
9. R.I. Brafman and C. Domshlak. Preference handling–an introductory tutorial. AI

Magazine, 30(1), 2009.
10. K. Brinker and E. Hüllermeier. Label ranking in case-based reasoning. In

M. Richter and R. Weber, editors, Proceedings ICCBR–2007, 7th International
Conference on Case-Based Reasoning, number 4626 in LNAI, pages 77–91, Belfast,
Northern Ireland, 2007. Springer-Verlag.

11. D. Kibler, D.W. Aha, and MK. Albert. Instance-based prediction of real-valued
attributes. Computational Intelligence, 5:51–57, 1989.

12. D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Ma-
chine Learning, 6(1):37–66, 1991.

13. M. Binshtok, R.I. Brafman, C. Domshlak, and S.E. Shiomony. Generic prefer-
ences over subsets of structured objects. Journal of Artificial Intelligence Research,
34:133–164, 2009.

14. M. Minor, R. Bergmann, S. Görg, and K. Walter. Towards case-based adaptation
of workflows. In Proc. ICCBR–2010, pages 421–435, Alessandria, Italy, 2010.

15. W. Cheng and E. E. Hüllermeier. Combining instance-based learning and logistic
regression for multilabel classification. Machine Learning, 76(2–3):211–225, 2009.

16. M. Peterson. An Introduction to Decision Theory. Cambridge Univ. Press, 2009.
17. M. Butz, K. Sastry, and D.E. Goldberg. Tournament selection: Stable fitness

pressure in XCS. In Proc. GECCO-03, Genetic and Evolutionary Computation
Conference, Part II, pages 1857–1869, Chicago, IL, 2003. Springer.

18. G. Tsoumakas and I. Katakis. Multi-label classification: An overview. Int. J. of
Data Warehousing and Mining, 3(3):1–13, 2007.

19. K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification
of music into emotions. In Proc. Int. Conf. Music Information Retrieval, 2008.

