
Preference-based CBR: A Search-based Problem
Solving Framework

Amira Abdel-Aziz, Weiwei Cheng, Marc Strickert, Eyke Hüllermeier

Department of Mathematics and Computer Science
Marburg University, Germany

{amira,cheng,strickert,eyke}@mathematik.uni-marburg.de

Abstract. Preference-based CBR is conceived as a case-based reasoning
methodology in which problem solving experience is mainly represented
in the form of contextualized preferences, namely preferences for can-
didate solutions in the context of a target problem to be solved. This
paper is a continuation of recent work on a formalization of preference-
based CBR that was focused on an essential part of the methodology:
a method to predict a most plausible candidate solution given a set of
preferences on other solutions, deemed relevant for the problem at hand.
Here, we go one step further by embedding this method in a more general
search-based problem solving framework. In this framework, case-based
problem solving is formalized as a search process, in which a solution
space is traversed through the application of adaptation operators, and
the choice of these operators is guided by case-based preferences. The
effectiveness of this approach is illustrated in two case studies, one from
the field of bioinformatics and the other one related to the computer
cooking domain.

1 Introduction

A preference-based approach to case-based reasoning (CBR) has recently been
advocated in [1]. Building on general ideas and concepts for preference handling
in artificial intelligence (AI), which have already been applied successfully in
other fields [2–4], the goal of preference-based CBR, or Pref-CBR for short, is
to develop a coherent and universally applicable methodological framework for
CBR on the basis of formal concepts and methods for knowledge representation
and reasoning with preferences.

In fact, as argued in [1], a preference-based approach to CBR appears to
be appealing for several reasons, notably because case-based experiences lend
themselves to representations in terms of preference relations quite naturally.
Moreover, the flexibility and expressiveness of a preference-based formalism well
accommodate the uncertain and approximate nature of case-based problem solv-
ing. In this sense, the advantages of a preference-based problem solving paradigm
in comparison to the classical (constraint-based) one, which have already been
observed for AI in general, seem to apply to CBR in particular. These advan-
tages are nicely explained in [5]: “Early work in AI focused on the notion of a

goal—an explicit target that must be achieved—and this paradigm is still dom-
inant in AI problem solving. But as application domains become more complex
and realistic, it is apparent that the dichotomic notion of a goal, while adequate
for certain puzzles, is too crude in general. The problem is that in many con-
temporary application domains [...] the user has little knowledge about the set
of possible solutions or feasible items, and what she typically seeks is the best
that’s out there. But since the user does not know what is the best achievable
plan or the best available document or product, she typically cannot character-
ize it or its properties specifically. As a result, she will end up either asking for
an unachievable goal, getting no solution in response, or asking for too little,
obtaining a solution that can be substantially improved.”

In [1], we made a first step toward preference-based CBR by addressing the
important part of case-based inference, which is responsible for predicting a
“contextualized” preference relation on the solution space. More specifically, the
latter consists of inferring preferences for candidate solutions in the context of
a new problem, given knowledge about such preferences in similar situations. In
this paper, we go one step further by embedding this inference procedure in a
more general, search-based problem solving framework. In this framework, case-
based problem solving is formalized as a search process, in which a solution space
is traversed through the application of adaptation operators, and the choice of
these operators is guided by case-based preferences.

The remainder of the paper is organized as follows. By way of background,
Section 2 recapitulates the main ideas of Pref-CBR, and Section 3 briefly recalls
the case-based inference procedure of [1]. Although these two sections are to
some extent redundant, they are included here to increase readability of the
paper and to make it more self-contained. In Section 4, we introduce and detail
our search-based problem solving framework. In Section 5, two case studies are
presented to illustrate the effectiveness of this approach, one from the field of
bioinformatics (molecular docking, drug discovery) and the other one related to
the computer cooking domain. The paper ends with some concluding remarks
and an outlook on future work in Section 5.

2 Preference-based CBR

2.1 Conventional CBR

Experience in CBR is most commonly (though not exclusively) represented in
the form of problem/solution tuples (x,y) ∈ X × Y, where x is an element
from a problem space X, and y an element from a solution space Y. Despite
its generality and expressiveness, this representation exhibits some limitations,
both from a knowledge acquisition and reuse point of view.

– Existence of correct solutions: It assumes the existence of a “correct” solution
for each problem, and implicitly even its uniqueness. This assumption is
often not tenable. In the cooking domain, for example, there is definitely not
a single “correct” recipe for a vegetarian pasta meal. Instead, there will be
many possible alternatives, maybe more or less preferred by the user.

– Verification of optimality : Even if the existence of a single correct solution
for each problem could be assured, it will generally be impossible to verify
the optimality of the solution that has been produced by a CBR system.
However, storing and later on reusing a suboptimal solution y as if it were
optimal for a problem x can be misleading. This problem is less critical,
though does not dissolve, if only “acceptable” instead of optimal solutions
are required.

– Loss of information: Storing only a single solution y for a problem x, even
if it can be guaranteed to be optimal, may come along with a potential loss
of information. In fact, during a problem solving episode, one typically tries
or at least compares several candidate solutions, and even if these solutions
are suboptimal, preferences between them may provide useful information.

– Limited guidance: From a reuse point of view, a retrieved case (x,y) only
suggests a single solution, namely y, for a query problem x0. Thus, it does
not imply a possible course of action in the case where the suggestion fails:
If y is not a good point of departure, for example since it cannot be adapted
to solve x0, there is no concrete recommendation on how to continue.

Table 1. Notations

notation meaning

X, x problem space, problem
Y, y solution space, solution
CB case base (storing problems with preferences on solutions)
SX , ∆X similarity/distance measure on X
SY , ∆Y similarity/distance measure on Y
N (y) neighborhood of a solution y
P(Y) class of preference structures on Y
P(x) set of (pairwise) preferences associated with a problem
CBI case-based inference using ML estimation (see equation (4))

2.2 Preference-based Knowledge Representation

To avoid these problems, preference-based CBR replaces experiences of the form
“solution y (optimally) solves problem x” by information of the form “y is better
(more preferred) than z as a solution for x”. More specifically, the basic “chunk
of information” we consider is symbolized in the form y �x z and suggests that,
for the problem x, the solution y is supposedly at least as good as z.

This type of knowledge representation obviously overcomes the problems dis-
cussed above. As soon as two candidate solutions y and z have been tried as
solutions for a problem x, these two alternatives can be compared and, corre-
spondingly, a strict preference in favor of one of them or an indifference can be
expressed. To this end, it is by no means required that one of these solutions is

optimal. It is worth mentioning, however, that knowledge about the optimality
of a solution y∗, if available, can be handled, too, as it simply means that y∗ � y
for all y 6= y∗. In this sense, the conventional CBR setting can be considered as
a special case of Pref-CBR.

The above idea of a preference-based approach to knowledge representation
in CBR also suggests a natural extension of the case retrieval and inference steps,
that is, the recommendation of solutions for a new query problem: Instead of
just proposing a single solution, it would be desirable to predict a ranking of
several (or even all) candidate solutions, ordered by their (estimated) degree of
preference:

y1 �x y2 �x y3 �x . . . �x yn (1)

Obviously, the last problem mentioned above, namely the lack of guidance in
the case of a failure, can thus be overcome.

In order to realize an approach of that kind, a number of important questions
need to be addressed, including the following: How to represent, organize and
maintain case-based experiences, given in the form of preferences referring to a
specific context, in an efficient way? How to select and access the experiences
which are most relevant in a new problem solving situation? How to combine
these experiences and exploit them to infer a solution or, more generally, a
preference order on a set of candidate solutions, for the problem at hand?

2.3 Formal Setting and Notation

In the following, we assume the problem space X to be equipped with a similarity
measure SX : X×X→ R+ or, equivalently, with a (reciprocal) distance measure
∆X : X× X→ R+. Thus, for any pair of problems x,x′ ∈ X, their similarity is
denoted by SX(x,x′) and their distance by ∆X(x,x′). Likewise, we assume that
the solution space Y to be equipped with a similarity measure SY or, equivalently,
with a (reciprocal) distance measure ∆Y . While the assumption of a similarity
measure on problems is common in CBR, the existence of such a measure on the
solution space is often not required. However, the latter is neither less natural
than the former nor more difficult to define. In general, ∆Y (y,y′) can be thought
of as a kind of adaptation cost, i.e., the (minimum) cost that needs to be invested
to transform the solution y into y′.

In Pref-CBR, problems x ∈ X are not associated with single solutions but
rather with preferences over solutions, that is, with elements from a class of pref-
erence structures P(Y) over the solution space Y. Here, we make the assumption
that P(Y) is given by the class of all weak order relations � on Y, and we denote
the relation associated with a problem x by �x; recall that, from a weak order
�, a strict preference � and an indifference ∼ are derived as follows: y � y′ iff
y � y′ and y′ 6� y, and y ∼ y′ iff y � y′ and y′ � y.

More precisely, we assume that �x has a specific form, which is defined by an
“ideal” solution y∗ ∈ Y and the distance measure ∆Y : The closer a solution y to
y∗ = y∗(x), the more it is preferred; thus, y �x y′ iff ∆Y (y,y∗) ≤ ∆Y (y′,y∗).
Please note that, when starting from an order relation �x, then the existence of

an “ideal” solution is in principle no additional assumption (since a weak order
has a maximal element, at least if the underlying space is topologically closed).
Instead, the additional assumption we make is that the order relations �x and
�x′ associated with different problems x and x′ have a common structure, which
is determined by the distance measure ∆Y . In conjunction with the regularity
assumption that is commonly made in CBR, namely that similar problems tend
to have similar (ideal) solutions, this property legitimates a preference-based ver-
sion of this assumption: Similar problems are likely to induce similar preferences
over solutions.

3 Case-based Inference

The key idea of Pref-CBR is to exploit experience in the form of previously
observed preferences, deemed relevant for the problem at hand, in order to sup-
port the current problem solving episode; like in standard CBR, the relevance
of a preference will typically be decided on the basis of problem similarity, i.e.,
those preferences will be deemed relevant that pertain to similar problems. An
important question that needs to be answered in this connection is the following:
Given a set of observed preferences on solutions, considered representative for
a problem x0, what is the underlying preference structure �x or, equivalently,
what is the most likely “ideal” solution y∗ for x0?

3.1 Case-based Inference as Probability Estimation

We approach this problem from a statistical perspective, considering the true
preference model �x0∈ P(Y) associated with the query x0 as a random variable
Z with distribution P(· |x0), where P(· |x0) is a distribution Pθ(·) parametrized
by θ = θ(x0) ∈ Θ. The problem is then to estimate this distribution or, equiva-
lently, the parameter θ on the basis of the information available. This information
consists of a set D of preferences of the form y � z between solutions.

The basic assumption underlying nearest neighbor estimation is that the con-
ditional probability distribution of the output given the input is (approximately)
locally constant, that is, P(· |x0) ≈ P(· |x) for x close to x0. Thus, if the above
preferences are coming from problems x similar to x0 (namely from the near-
est neighbors of x0 in the case base), then this assumption justifies considering
D as a representative sample of Pθ(·) and, hence, estimating θ via maximum
likelihood (ML) by

θML = arg max
θ∈Θ

Pθ(D) . (2)

An important prerequisite for putting this approach into practice is a suitable
data generating process, i.e., a process generating preferences in a stochastic
way.

3.2 A Discrete Choice Model

Our data generating process is based on the idea of a discrete choice model as
used in choice and decision theory [6]. Recall that the (absolute) preference for a
solution y ∈ Y supposedly depends on its distance ∆Y (y,y∗) ≥ 0 to an “ideal”
solution y∗, where ∆(y,y∗) can be seen as a “degree of suboptimality” of y.
As explained in [1], more specific assumptions on an underlying (latent) utility
function on solutions justify the logit model of discrete choice:

P(y � z) =
(

1 + exp
(
− β(∆Y (z,y∗)−∆Y (y,y∗))

))−1
(3)

Thus, the probability of observing the (revealed) preference y � z depends on
the degree of suboptimality of y and z, namely their respective distances to the
ideal solution, ∆Y (y,y∗) and ∆Y (z,y∗): The larger the difference ∆Y (z,y∗)−
∆Y (y,y∗), i.e., the less optimal z in comparison to y, the larger the probabil-
ity to observe y � z; if ∆Y (z,y∗) = ∆Y (y,y∗), then P(y � z) = 1/2. The
coefficient β can be seen as a measure of precision of the preference feedback.
For large β, the probability (3) converges toward 0 if ∆Y (z,y∗) < ∆Y (y,y∗)
and toward 1 if ∆Y (y′,y∗) > ∆Y (y,y∗); this corresponds to a deterministic
(error-free) information source. The other extreme case, namely β = 0, models
a completely unreliable source reporting preferences at random.

3.3 Maximum Likelihood Estimation

The probabilistic model outlined above is specified by two parameters: the ideal
solution y∗ and the (true) precision parameter β∗ ∈ R+. Depending on the
context in which these parameters are sought, the ideal solution might be unre-
stricted (i.e., any element of Y is an eligible candidate), or it might be restricted
to a certain subset Y0 ⊆ Y of candidates.

Now, to estimate the parameter vector θ∗ = (y∗, β∗) ∈ Y0 × R∗ from a
given set D = {y(i) � z(i)}Ni=1 of observed preferences, we refer to the maximum
likelihood (ML) estimation principle. Assuming independence of the preferences,
the log-likelihood of θ = (y, β) is given by

`(θ) = `(y, β) = −
N∑
i=1

log
(

1 + exp
(
− β(∆(z(i),y)−∆(y(i),y))

))
. (4)

The maximum likelihood estimation (MLE) θML = (yML, βML) of θ∗ is given
by the maximizer of (4):

θML =
(
yML, βML

)
= arg max

y∈Y0, β∈R+

`(y, β)

The problem of finding this estimation in an efficient way is discussed in [1].

4 CBR as Preference-guided Search

Case-based reasoning and (heuristic) search can be connected in various ways.
One idea is to exploit CBR in order to enhance heuristic search, which essentially
comes down to using case-based experience to guide the search behavior [7–9].
The other way around, the CBR process itself can be formalized as a search
process, namely a traversal of the space of potential solutions [10]. This idea is
quite appealing: On the one side, it is close to practical, human-like problem
solving, which is indeed often realized as a kind of trial-and-error process, in
which a candidate solution is successively modified and improved until a sat-
isfactory solution is found. On the other side, this idea is also amenable to a
proper formalization and automation, since searching is what computers are re-
ally good at; besides, heuristic search is one of the best developed subfields of
AI.

Needless to say, both directions (enhancing search through CBR and for-
malizing CBR as search) are not mutually exclusive and can be combined with
each other. In our approach, this is accomplished by implementing case-based
problem solving as a search process that is guided by preference information
collected in previous problem solving episodes. The type of application we have
in mind is characterized by two important properties:

– The evaluation of candidate solutions is expensive. Therefore, only relatively
few candidates can be considered in a problem solving episode before a se-
lection is made. Typical examples include cases where an evaluation requires
time-consuming simulation studies or human intervention. In the cooking
domain, for example, the evaluation of a recipe may require its preparation
and tasting. Needless to say, this can only be done for a limited number of
variations.

– The quality of candidate solutions is difficult to quantify. Therefore, instead
of asking for numerical utility degrees, we make a much weaker assumption:
Feedback is only provided in the form of pairwise comparisons, informing
about which of two candidate solutions is preferred (for example, which of
two meals tastes better). Formally, we assume the existence of an “oracle”
(for example, a user or a computer program) which, given a problem x0 and
two solutions y and z as input, returns a preference y � z or z � y (or
perhaps also an indifference y ∼ z) as output.

We assume the solution space Y to be equipped with a topology that is defined
through a neighborhood structure: For each y ∈ Y, we denote by N (y) ⊆ Y
the neighborhood of this candidate solution. The neighborhood is thought of as
those solutions that can be produced through a single modification of y, i.e., by
applying one of the available adaptation operators to y (for example, adding or
removing a single ingredient in a recipe). Since these operators are application-
dependent, we are not going to specify them further here.

Our case base CB stores problems xi together with a set of preferences
P(xi) that have been observed for these problems. Thus, each P(xi) is a set

of preferences of the form y �xi
z. As will be explained further below, these

preferences are collected while searching for a good solution to xi.
We conceive preference-based CBR as an iterative process in which problems

are solved one by one; our current implementation of this process is described in
pseudo-code in Algorithm 1. In each problem solving episode, a good solution for
a new query problem is sought, and new experiences in the form of preferences
are collected. In what follows, we give a high-level description of a single problem
solving episode (lines 5–23 of the algorithm):

– Given a new query problem x0, the K nearest neighbors1 x1, . . . ,xK of
this problem (i.e., those with smallest distance in the sense of ∆X) are re-
trieved from the case base CB, together with their preference information
P(x1), . . . ,P(xK).

– This information is collected in a single set of preferences P, which is consid-
ered representative for the problem x0 and used to guide the search process
(line 8).

– The search for a solution starts with a initial candidate y∗ ∈ Y chosen at
random (line 9) and iterates L times. Restricting the number of iterations by
an upper bound L reflects our assumption that an evaluation of a candidate
solution is costly.

– In each iteration, a new candidate yquery is determined and given as a query
to the oracle (line 15), i.e., the oracle is asked to compare yquery with the
current best solution y∗ (line 16). The preference reported by the oracle is
memorized by adding it to the preference set P0 = P(x0) associated with
x0 (line 17), as well as to the set P of preferences used for guiding the
search process. Moreover, the better solution is retained as the current best
candidate (line 18).

– When the search stops, the current best solution y∗ is returned, and the case
(x0,P0) is added to the case base.

The preference-based guidance of the search process is realized in lines 9
and 14–15. Here, the case-based inference method (referred to as CBI in the
pseudo-code) described in Section 3 is used to find the most promising candidate
among the neighborhood of the current solution y∗ (excluding those solutions
that have already been tried). By providing information about which of these
candidates will most likely constitute a good solution for x0, it (hopefully) points
the search into the most promising direction. Please note that in line 15, case-
based inference is not applied to the whole set of preferences P collected so far,
but only to a subset of the J preferences Pnn that are closest (and hence most
relevant) to the current search state y∗; here, the distance between a preference
y � z and a solution y∗ is defined as

∆ (y∗,y � z) = min {∆Y (y∗,y) , ∆Y (y∗, z)} , (5)

i.e., the preference is considered relevant if either y is close to y∗ or z is close to
y∗. This is done in order to allow for controlling the locality of the search: The

1 As long as the case base contains less than K cases, all these cases are taken.

Algorithm 1 Pref-CBR Search(K, L, J)

Require: K = number of nearest neighbors collected in the case base
L = total number of queries to the oracle
J = number of preferences used to guide the search process

1: X0 ← list of problems to be solved B a subset of X

2: Q← [·] B empty list of performance degrees

3: CB← ∅ B initialize empty case base

4: while X0 not empty do
5: x0 ← pop first element from X0 B new problem to be solved

6: {x1, . . . ,xK} ← nearest neighbors of x0 in CB (according to ∆X)
7: {P(x1), . . . ,P(xK)} ← preferences associated with nearest neighbors
8: P ← P(x1) ∪ P(x2) ∪ . . . ∪ P(xk) B combine neighbor preferences

9: y∗ ← CBI(P,Y) B select an initial candidate solution

10: Yvis ← {y∗} B candidates already visited

11: P0 ← ∅ B initialize new preferences

12: for i = 1 to L do
13: Pnn = {y(j) � z(j)}Jj=1 ← J preferences in P ∪ P0 closest to y∗

14: Ynn ← neighborhood N (y∗) of y∗ in Y \ Yvis
15: yquery ← CBI(Pnn,Ynn) B find next candidate

16: [y � z]← Oracle(x0,y
query,y∗) B check if new candidate is better

17: P0 ← P0 ∪ {y � z} B memorize preference

18: y∗ ← y B adopt the current best solution

19: Yvis ← Yvis ∪ {yquery}
20: end for
21: q ← performance of solution y∗ for problem x0

22: Q← [Q, q] B store the performance

23: CB← CB ∪ {(x0,P0)} B memorize new experience

24: end while
25: return list Q of performance degrees

smaller J , the less preferences are used, i.e., the more local the determination
of the direction of the search process2 becomes (by definition, CBI returns a
random element from Ynn if Pnn = ∅, i.e., if J = 0). Note that, if J = 1, then
only the preference that has been added in the last step is looked at (since this
preference involves y∗, and therefore its distance according to (5) is 0). Thus,
search will move ahead in the same direction if the last modification has led to an
improvement, and otherwise reverse its direction. In general, a larger J increases
the bias of the search process and makes it more “inert”. This is advantageous if
the preferences coming from the neighbors of x0 are indeed representative and,
therefore, are pointing in the right direction. Otherwise, of course, too much
reliance on these preferences may prevent one from searching in other regions of
the solution space that might be more appropriate for x0.

Although we did not implement this alternative so far, let us mention that a
stochastic component can be added to our search procedure in a quite natural
way. To this end, the case-based inference procedure CBI simply returns one of
the candidate solutions y ∈ Ycand with a probability that is proportional to the
corresponding likelihood degrees of these solutions (instead of deterministically
choosing the solution with the highest likelihood).

5 Case Studies

5.1 Drug Discovery

The function of a protein in a living organism can be modulated by ligand
molecules that specifically bind to the protein surface and thereby block or en-
hance its biochemical activity. This is how a drug becomes effective: By docking
to a protein and changing its activity, it (hopefully) interrupts a cascade of
reactions that might be responsible for a disease.

The identification and selection of ligands targeting a specific protein is of
high interest for de-novo drug development, and is nowadays supported by com-
putational tools and molecular modeling techniques. Molecular docking is an in
silico technique to screen large molecule databases for potential ligands. Using
the spatial (three-dimensional) structure and physicochemical properties of pro-
teins, it tries to identify novel ligands by estimating the binding affinity between
small molecules and proteins. However, since docking results are not very reli-
able, they need to be controlled by human experts. This is typically done through
visual inspection, i.e., by looking at the docking poses predicted by the software
tool and judging whether or not a molecule is indeed a promising candidate.
Needless to say, this kind of human intervention is costly. Besides, a human will
normally not be able to score a docking pose in terms of a numerical (affinity)
degree, whereas a comparison of two such poses can be accomplished without
much difficulties. Therefore, the search for a ligand that well interacts with a
target protein is a nice example of the kind of problem we have in mind.

2 The term “direction” is used figuratively here; if Y is not a metric space, there is
not necessarily a direction in a strictly mathematical sense.

0 50 100 150
1

1.5

2

2.5

3

3.5

4

4.5

5

problem solving episode

a
v
e
ra

g
e
 p

o
s
it
io

n

random search

preference−based CBR

Fig. 1. Average performance of Pref-CBR and random search on the drug discovery
problem in the first 150 problem solving episodes.

We conducted experiments with a data set consisting of 588 proteins, which
constitute the problem space X, and 38 molecules, which correspond to the so-
lution space Y; this data set is an extension of the data used in [11]. For each
protein/molecule pair, the data contains an affinity score (pairwise binding en-
ergy) computed by a docking tool. We make use of these scores in order to mimic
a human expert, i.e., to realize our oracle: Given a protein and two candidate
molecules, the oracle can provide a preference by looking at the corresponding
affinity scores. As a similarity SX on problems (proteins), we used the measure
that is computed by the CavBase database; this measure compares proteins in
terms of the spatial and physicochemical properties of their respective binding
sites [12]. For the solutions (ligands), a similarity SY was determined based on
molecular fingerprints derived from the SMILES code using a molecular operat-
ing environment. These fingerprints were used to create a graph representation
of the molecules, for which the Tanimoto similarity was determined [13]. Both
similarities SX and SY were normalized to the unit interval, and corresponding
distances ∆X and ∆Y were defined as 1− SX and 1− SY , respectively.

We applied Algorithm 1 with X0 as a random order of the complete problem
space X. Since the solution space is quite small, we used a global neighborhood
structure, i.e., we defined the neighborhood of a solution y as N (y) = Y \ {y}.
As a performance q of a proposed solution y∗ for a problem x0 (line 21), we
computed the position of this solution in the complete list of |Y| = 38 ligands
ranked by affinity to x0 (i.e., 1 would be the optimal performance). To stabilize
the results and make trends more visible, the corresponding sequence of |X| =
588 performance degrees produced by a single run of Algorithm 1 was averaged
over 1000 such runs.

As a baseline to compare with, we used a search strategy in which the
preference-guided selection of the next candidate solution in line 15 of Algo-
rithm 1 is replaced by a random selection (i.e., an element from Ynn is selected
uniformly at random). Although this is a very simple strategy, it is suitable to
isolate the effect of guiding the search behavior on the basis of preference in-
formation. Fig. 1 shows the results for parameters K = 3, L = 5, J = 15 in
Algorithm 1 (other settings let to qualitatively similar results). As can be seen,
our preference-based CBR approach shows a clear trend toward improvement
from episode to episode, thanks to the accumulation and exploitation of prob-
lem solving experience. As expected, such an improvement is not visible for the
random variant of the search algorithm.

5.2 The Set Completion Problem

In a second experiment, we considered a set completion problem that is similar
to the problem solved by the Bayesian set algorithm proposed in [14]. Given a
(small) subset of items as a seed, the task is to extend this seed by successively
adding (or potentially also removing) items, so as to end up with a “good” set of
items. As a concrete example, imagine that items are ingredients, and itemsets
correspond to (simplified) representations of cooking recipes. Then, the problem
is to extend a seed like {noodles, chicken}, suggesting that a user wants a meal
including noodles and chicken, to a complete and tasty recipe.

More formally, both the problem space and the solution space are now given
by X = Y = 2I , where I = {ι1, . . . , ιN} is a finite set of items; thus, both
problems and solutions are itemsets. We define the distance measures ∆X and
∆Y in terms of the size of the symmetric difference ∆, i.e.,

∆X(x,x′) = |x∆x′| = |x \ x′|+ |x′ \ x| .

Let Y∗ ⊂ Y be a set of reference solutions (e.g., recipes of tasty meals). For a
y ∈ Y, define the distance to Y∗ as

d(y) = min
y∗∈Y∗

|y∆y∗| .

Moreover, for a problem x ∈ X, we define a preference relation on Y as follows:
y � z if either c(y |x) < c(z |x) or c(y |x) = c(z |x) and |y| < |z|, where

c(y |x) =

{
d(y) if y ⊇ x
∞ otherwise

Thus, the worst solutions are those that do not fully contain the original seed.
Among the proper extensions of the seed, those being closer to the reference
solutions Y∗ are preferred; if two solutions are equally close, the one with less
items (i.e., the less expensive one) is preferred to the larger one. For a candidate
solution y, we define the neighborhood as the set of those itemsets that can be
produced by adding or removing a single item:

Ynn = {y′ |∆Y (y,y′) = 1 } .

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

problem solving episode

a
v
e
ra

g
e
 c

o
s
t

random search

preference−based CBR

Fig. 2. Average performance of Pref-CBR and random search on the set completion
problem in the first 100 problem solving episodes.

Finally, for a given problem x0, we define the performance of a found solution
y∗ in terms of c(y∗ |x0).

We applied this setting to a database of pizzas extracted from the website
allrecipes.com, each one characterized by a number of toppings (typically be-
tween 6 and 10). Seeds (problems) were produced at random by picking a pizza
and removing all except three toppings. The task is then to complete this seed
by adding toppings, so as to produce a tasty pizza (preferably one of those in
the database, which plays the role of the reference set Y∗). Again, we compared
Algorithm 1 with the random search variant as a baseline. The results for pa-
rameters K = 5, L = 10, J = 50, shown in Fig. 2, which are qualitatively similar
to those of the previous study.

6 Conclusion

In this paper, we have presented a general framework for CBR in which experi-
ence is represented in the form of contextualized preferences, and these prefer-
ences are used to direct an adaptive problem solving process that is formalized
as a search procedure. This kind of preference-based CBR is an interesting al-
ternative to conventional CBR whenever solution quality is a matter of degree
and feedback is only provided in an indirect or qualitative way. The effectiveness
of our generic framework has been illustrated in two concrete case studies.

For future work, we plan to extend and generalize our framework in various
directions. First, the search procedure presented here can essentially be seen
as a preference-based variant of a simple hill-climbing method. Needless to say,

the idea of using preferences for guiding the search process can be applied to
other, more sophisticated search methods (including population-based stochastic
search algorithms) in a quite similar way. Second, since the number of prefer-
ences collected in the course of time may become rather large, effective methods
for case base maintenance ought to be developed. Third, as already mentioned,
the similarity (distance) measure in the solution space has an important in-
fluence on the preference relations �x associated with problems x ∈ X and
essentially determines the structure of these relations (cf. Section 2.3). There-
fore, a proper specification of this measure is a prerequisite for the effectiveness
of our preference-guided search procedure. It would hence be desirable to allow
for a data-driven adaptation of this measure, that is, to enable the CBR system
to adapt this measure whenever it does not seem to be optimal. The method for
learning similarity measures from qualitative feedback proposed in [15] appears
to be ideally suited for this purpose.

Acknowledgments

This work has been supported by the German Research Foundation (DFG). We
are grateful to Peter Kolb and Denis Schmidt for providing us the data used for
in the drug discovery experiment.

References

1. E. Hüllermeier and P. Schlegel. Preference-based CBR: First steps toward a
methodological framework. In A. Ram and N. Wiratunga, editors, Proceedings
ICCBR–2011, 19th International Conference on Case-Based Reasoning, pages 77–
91. Springer-Verlag, 2011.

2. J. Doyle. Prospects for preferences. Comput. Intell., 20(2):111–136, 2004.
3. J. Goldsmith and U. Junker. Special issue on preference handling for Artificial

Intelligence. Computational Intelligence, 29(4), 2008.
4. C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade. Preferences in AI: An

overview. Artificial Intelligence, 2011.
5. R.I. Brafman and C. Domshlak. Preference handling–an introductory tutorial. AI

Magazine, 30(1), 2009.
6. M. Peterson. An Introduction to Decision Theory. Cambridge Univ. Press, 2009.
7. D.R. Kraay and P.T. Harker. Case-based reasoning for repetitive combinatorial

optimization problems, part I: Framework. Journal of Heuristics, 2:55–85, 1996.
8. S. Grolimund and J.G. Ganascia. Driving tabu search with case-based reasoning.

European Journal of Operational Research, 103(2):326–338, 1997.
9. E. Hüllermeier. Focusing search by using problem solving experience. In W. Horn,

editor, Proceedings ECAI–2000, 14th European Conference on Artificial Intelli-
gence, pages 55–59, Berlin, Germany, 2000. IOS Press.

10. R. Bergmann and W. Wilke. Towards a new formal model of transformational
adaptation in case-based reasoning. In H. Prade, editor, ECAI-98, 13th European
Conference on Artificial Intelligence, pages 53–57, 1998.

11. M.W. Karaman et al. A quantitative analysis of kinase inhibitor selectivity. Nature
Biotechnology, 26:127–132, 2008.

12. S. Schmitt, D. Kuhn, and G. Klebe. A new method to detect related function
among proteins independent of sequence and fold homology. Journal of Molecular
Biology, 323(2):387–406, 2002.

13. M. Stock. Learning pairwise relations in bioinformatics: Three case studies. Mas-
ter’s thesis, University of Ghent, 2012.

14. Z. Ghahramani and K.A. Heller. Bayesian sets. In Proceedings NIPS–2005, 2005.
15. W. Cheng and E. Hüllermeier. Learning similarity functions from qualitative feed-

back. In K.D. Althoff, R. Bergmann, M. Minor, and A. Hanft, editors, Proceedings
ECCBR–2008, 9th European Conference on Case-Based Reasoning, number 5239
in LNAI, pages 120–134, Trier, Germany, 2008. Springer-Verlag.

