A Proof of Theorem 1

Lemma 1: Let s_i , i = 1 ... m, be real numbers such that $0 \le s_1 \le s_2 ... \le s_m$. Then, for all permutations $\tau \in \mathcal{S}_m$,

$$\sum_{i=1}^{m} (i - s_i)^2 \le \sum_{i=1}^{m} (i - s_{\tau(i)})^2$$
(11)

Proof: We have

$$\sum_{i=1}^{m} (i - s_{\tau(i)})^2 = \sum_{i=1}^{m} (i - s_i + s_i - s_{\tau(i)})^2$$

$$= \sum_{i=1}^{m} (i - s_i)^2 + 2\sum_{i=1}^{m} (i - s_i)(s_i - s_{\tau(i)}) + \sum_{i=1}^{m} (s_i - s_{\tau(i)})^2.$$

Expanding the last equation and exploiting that $\sum_{i=1}^m s_i^2 = \sum_{i=1}^m s_{\tau(i)}^2$ yields

$$\sum_{i=1}^{m} (i - s_{\tau(i)})^2 = \sum_{i=1}^{m} (i - s_i)^2 + 2\sum_{i=1}^{m} i \, s_i - 2\sum_{i=1}^{m} i \, s_{\tau(i)}.$$

On the right-hand side of the last equation, only the last term $\sum_{i=1}^{m} i \, s_{\tau(i)}$ depends on τ . Since $s_i \leq s_j$ for i < j, this term becomes maximal for $\tau(i) = i$. Therefore, the right-hand side is larger than or equal to $\sum_{i=1}^{m} (i-s_i)^2$, which proves the lemma.

Lemma 2: Let $\Pr(\cdot \mid x)$ be a probability distribution over \mathcal{S}_m and let $p(\tau) \stackrel{\text{df}}{=} \Pr(\tau \mid x)$. Moreover, let

$$s_{i} \stackrel{\text{df}}{=} m - \sum_{j \neq i} \Pr(\lambda_{i} \succ_{x} \lambda_{j}) \tag{12}$$

with

$$\Pr(\lambda_i \succ_x \lambda_j) = \sum_{\tau : \tau(j) < \tau(i)} \Pr(\tau \mid x). \tag{13}$$

Then, $s_i = \sum_{j \neq i} p(\tau) \tau(i)$.

Proof: We have

$$\begin{split} s_i &= m - \sum_{j \neq i} \Pr(\lambda_i \succ_x \lambda_j) \\ &= 1 + \sum_{j \neq i} (1 - \Pr(\lambda_i \succ_x \lambda_j)) \\ &= 1 + \sum_{j \neq i} \Pr(\lambda_j \succ_x \lambda_i) \\ &= 1 + \sum_{j \neq i} \sum_{\tau : \tau(j) < \tau(i)} p(\tau) \\ &= 1 + \sum_{\tau} p(\tau) \sum_{j \neq i} \begin{cases} 1 & \text{if } \tau(i) > \tau(j) \\ 0 & \text{if } \tau(i) < \tau(j) \end{cases} \\ &= 1 + \sum_{\tau} p(\tau) (\tau(i) - 1) \\ &= \sum_{\tau} p(\tau) \tau(i) \end{split}$$

Under the assumption that the base learners' estimates correspond exactly to the probabilities of pairwise preference, i.e.,

$$\mathcal{R}_x(\lambda_i, \lambda_j) = \mathcal{M}_{ij}(x) = \Pr(\lambda_i \succ_x \lambda_j), \tag{14}$$

 $s_i \leq s_j$ is equivalent to $S(\lambda_i) \geq S(\lambda_j)$. Thus, ranking the alternatives according to $S(\lambda_i)$ (in decreasing order) is equivalent to ranking them according to s_i (in increasing order).

Theorem 1: The expected distance

$$E(\tau') = \sum_{\tau} p(\tau) \cdot D(\tau', \tau) = \sum_{\tau} p(\tau) \sum_{i=1}^{m} (\tau'(i) - \tau(i))^2$$

becomes minimal by choosing τ' such that $\tau'(i) \leq \tau'(j)$ whenever $s_i \leq s_j$, with s_i given by (12).

Proof: We have

$$E(\tau'_{x}) = \sum_{\tau} p(\tau) \sum_{i=1}^{m} (\tau'_{x}(i) - \tau(i))^{2}$$

$$= \sum_{i=1}^{m} \sum_{\tau} p(\tau) (\tau'_{x}(i) - \tau(i))^{2}$$

$$= \sum_{i=1}^{m} \sum_{\tau} p(\tau) (\tau'_{x}(i) - s_{i} + s_{i} - \tau(i))^{2}$$

$$= \sum_{i=1}^{m} \sum_{\tau} p(\tau) \left[(\tau(i) - s_{i})^{2} - 2(\tau(i) - s_{i})(s_{i} - \tau'(i)) + (s_{i} - \tau'(i))^{2} \right]$$

$$= \sum_{i=1}^{m} \left[\sum_{\tau} p(\tau) (\tau(i) - s_{i})^{2} - 2(s_{i} - \tau'(i)) \cdot \sum_{\tau} p(\tau) (\tau(i) - s_{i}) + \sum_{\tau} p(\tau)(s_{i} - \tau'(i))^{2} \right]$$

In the last equation, the mid-term on the right-hand side becomes 0 according to Lemma 2. Moreover, the last term obviously simplifies to $(s_i - \tau'(i))$, and the first term is a constant $c = \sum_{\tau} p(\tau)(\tau(i) - s_i)^2$ that does not depend on τ' . Thus, we obtain $E(\tau'_x) = c + \sum_{i=1}^m (s_i - \tau'(i))^2$ and the theorem follows from Lemma 1.