
Learning Label Preferences:

Ranking Error versus Position Error

Eyke Hüllermeier1 and Johannes Fürnkranz2

1 Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg, Germany

eyke.huellermeier@iti.cs.uni-magdeburg.de
2 Fachbereich Informatik
TU Darmstadt, Germany

juffi@ke.informatik.tu-darmstadt.de

Abstract. We consider the problem of learning a ranking function, that
is a mapping from instances to rankings over a finite number of la-
bels. Our learning method, referred to as ranking by pairwise comparison
(RPC), first induces pairwise order relations from suitable training data,
using a natural extension of so-called pairwise classification. A ranking
is then derived from a set of such relations by means of a ranking proce-
dure. This paper elaborates on a key advantage of such a decomposition,
namely the fact that our learner can be adapted to different loss func-
tions by using different ranking procedures on the same underlying order
relations. In particular, the Spearman rank correlation is minimized by
using a simple weighted voting procedure. Moreover, we discuss a loss
function suitable for settings where candidate labels must be tested suc-
cessively until a target label is found, and propose a ranking procedure
for minimizing the corresponding risk.

1 Introduction

Prediction problems involving complex outputs and structured output spaces
have recently received a great deal of attention within the machine learning
literature (e.g., [11]). Problems of that kind are particularly challenging, since the
prediction of complex structures such as, say, graphs or trees, is more demanding
than the prediction of single values as in classification and regression.

A common problem of this type is preference learning, the learning with or
from preferences.3 In the literature, we can identify two different learning sce-
narios for preference learning [8]: (i) learning from object preferences, where the
task is to order a set of objects according to training information that specifies
the preference relations between a set of training objects (see, e.g., [2]), and
(ii) learning from label preferences, where the task is to learn a mapping from
instances to rankings (total orders) over a finite number of class labels [7]. A
3 Space restrictions prevent a thorough review of related work in this paper, but we

refer to [6] and recent workshops in this area, e.g., those at NIPS-02, KI-03, SIGIR-
03, NIPS-04, and GfKl-05 (the second and fifth organized by the authors).

corresponding ranking function can be seen as an extension of a standard clas-
sification function that maps instances to single class labels. In this paper, we
focus on the second scenario, but our results can be carried over to the first
scenario as well.

In [7], we have introduced a method for learning label preferences that
we shall subsequently refer to as ranking by pairwise comparison (RPC). This
method works in two phases. First, pairwise order relations (preferences) are
learned from suitable training data, using a natural extension of so-called pair-
wise classification. Then, a ranking is derived from a set of such orders (prefer-
ences) by means of a ranking procedure.

The goal of this paper is to show that by using suitable ranking functions,
our approach can easily be customized to different performance tasks, that is,
to different loss functions for rankings. In fact, the need for a ranking of class
labels may arise in different learning scenarios. In this work, we are particularly
interested in two types of practically motivated learning problems, one in which
the complete ranking is relevant and one in which the predicted ranking has the
purpose of reducing the search effort for finding the single target label.

The remainder of the paper is organized as follows: The problem of preference
learning is formally introduced in Section 2, and our pairwise approach is pre-
sented in Section 3. In Section 4, the aforementioned types of learning problems
are discussed and compared in more detail. The ranking procedures suitable for
the two types of problems are then discussed in Sections 5 and 6, respectively.

2 Learning from Label Preferences

We consider the following learning problem [8]:

Given:
– a set of labels L = {λı | ı = 1 . . .m }
– a set of examples S = { xk | k = 1 . . . n }
– for each training example (instance) xk:

• a set of preferences Pk ⊆ L × L, where (λı, λj) ∈ Pk indicates that
label λı is preferred over label λj for instance xk.

Find: a function that orders the labels λ ∈ L for any given example.

We will abbreviate (λı, λj) ∈ Pk with λı �xk
λj or simply λı � λj if the

particular example xk doesn’t matter or is clear from the context.
The above setting has recently been introduced as constraint classification

in [9]. As shown in that paper, it is a generalization of several common learning
settings, in particular

– ranking: Each training example is associated with a total order of the labels.
– classification: A single class label λx is assigned to each example x; implicitly,

this defines the set of preferences {λx � λ |λ ∈ L \ {λx} }.

– multi-label classification: Each example x is associated with a subset Lx ⊆ L
of labels; implicitly, this defines the preferences {λ � λ′ |λ ∈ Lx, λ′ ∈ L\Lx}.

As mentioned above, we are mostly interested in the first problem, that is in
predicting a ranking (complete, transitive, asymmetric relation) of the labels.
The ranking �x of an instance x can be expressed in terms of a permutation τx

of {1 . . .m} such that

λτx(1) �x λτx(2) �x . . . �x λτx(m). (1)

Note that we make the simplifying assumption that all preferences are strict,
i.e., we do not consider the case of indifference between labels.

An appealing property of this learning framework is that its input, consisting
of comparative preference information of the form λı �x λj (x prefers λı to λj),
is often easier to obtain than absolute ratings of single alternatives in terms
of utility degrees. In this connection, note that knowledge about the complete
ranking (1) can be expanded into m(m − 1)/2 comparative preferences λτx(ı) �
λτx(j), 1 ≤ ı < j ≤ m.

3 Learning Pairwise Preferences

The idea of pairwise learning is well-known in the context of classification [5],
where it allows one to transform a multi-class classification problem, i.e., a prob-
lem involving m > 2 classes L = {λ1 . . . λm}, into a number of binary problems.
To this end, a separate model (base learner) Mıj is trained for each pair of
labels (λı, λj) ∈ L, 1 ≤ ı < j ≤ m; thus, a total number of m(m−1)/2 models is
needed. Mıj is intended to separate the objects with label λı from those having
label λj.

At classification time, a query x is submitted to all learners, and each predic-
tion Mıj(x) is interpreted as a vote for a label. If classifier Mıj predicts λı, this
is counted as a vote for λı. Conversely, the prediction λj would be considered as
a vote for λj. The label with the highest number of votes is then proposed as a
prediction.

The above procedure can be extended to the case of preference learning in
a natural way [7]. A preference information of the form λı �x λj is turned
into a training example (x, y) for the learner Mab, where a = min(ı, j) and
b = max(ı, j). Moreover, y = 1 if ı < j and y = 0 otherwise. Thus, Mab is
intended to learn the mapping that outputs 1 if λa �x λb and 0 if λb �x λa:

x �→
{

1 if λa �x λb

0 if λb �x λa
. (2)

The mapping (2) can be realized by any binary classifier. Alternatively, one
might of course employ a classifier that maps into the unit interval [0, 1] instead
of {0, 1}. The output of such a “soft” binary classifier can usually be interpreted
as a probability or, more generally, a kind of confidence in the classification.

Thus, the closer the output of Mab to 1, the stronger the preference λa �x λb

is supported.
A preference learner composed of an ensemble of soft binary classifiers (which

can be constructed on the basis of training data in the form of instances with
associated partial preferences) assigns a valued preference relation Rx to any
(query) instance x ∈ X :

Rx(λı, λj) =
{ Mıj(x) if ı < j

1 −Mıj(x) if ı > j

for all λı �= λj ∈ L.
Given a preference relation Rx for an instance x, the next question is how

to derive an associated ranking τx. This question is non-trivial, since a relation
Rx does not always suggest a unique ranking in an unequivocal way. In fact, the
problem of inducing a ranking from a (valued) preference relation has received a
lot of attention in several research fields, e.g., in fuzzy preference modeling and
(multi-attribute) decision making [4]. Besides, in the context of our application,
it turned out that the ranking procedure used to transform a relation Rx into a
ranking τx is closely related to the definition of the quality of a prediction and,
hence, to the intended purpose of a ranking. In other words, risk minimization
with respect to different loss functions might call for different ranking procedures.

4 Ranking Error versus Position Error

In Section 2, we introduced the problem of predicting a ranking of class labels in
a formal way, but did not discuss the semantics of a predicted ranking. In fact,
one should realize that such a ranking can serve different purposes. Needless to
say, this point is of major importance for the evaluation of a predicted ranking.

In this paper, we are especially interested in two types of practically moti-
vated performance tasks. In the first setting, which is probably the most obvious
one, the complete ranking is relevant, i.e., the positions assigned to all of the
labels. As an example, consider the problem to order the questions in a ques-
tionnaire. Here, the goal is to maximize a particular respondents’ motivation
to complete the questionnaire. Another example is learning to predict the best
order in which to supply a certain set of stores (route of a truck), depending on
external conditions like traffic, weather, purchase order quantities, etc.

In case the complete ranking is relevant, the quality of a prediction should
be quantified in terms of a distance measure between the predicted and the true
ranking. We shall refer to any deviation of the predicted ranking from the true
one as a ranking error.

To motivate the second setting, consider a fault detection problem which
consists of identifying the cause for the malfunctioning of a technical system.
If it turned out that a predicted cause is not correct, an alternative candidate
must be tried. A ranking then suggests a simple (trial and error) search process,
which successively tests the candidates, one by one, until the correct cause is
found [1]. In this scenario, where labels correspond to causes, the existence of a

single target label (instead of a target ranking) is assumed. Hence, an obvious
measure of the quality of a predicted ranking is the number of futile trials made
before that label is found. A deviation of the predicted target label’s position
from the top-rank will subsequently be called a position error.

The main difference between the two types of error is that an evaluation of
a full ranking (ranking error) attends to all positions. For example, if the two
highest ranks of the true ranking are swapped in the predicted ranking, this is
as bad as the swapping of the two lowest ranks.

Note that the position error is closely related to the conventional (classifica-
tion) error, i.e., the incorrect prediction of the top label. In both cases, we are
eventually concerned with predictions for the top rank. In our setting, however,
we not only try to maximize the number of correct predictions. Instead, in the
case of a misclassification, we also look at the position of the target label. The
higher this position, the better the prediction. In other words, we differentiate
between “bad” predictions in a more subtle way.

Even though we shall not deepen this point in the current paper, we note
that the idea of a position error can of course be generalized to multi-label
(classification) problems which assume several instead of a single target label for
each instance. There are different options for such a generalization. For example,
it makes a great difference whether one is interested in having at least one of
the targets on a top rank (e.g., since one solution is enough), or whether all of
them should have high positions (resp. none of them should be ranked low). An
application of the latter type has recently been studied in [3].

5 Minimizing the Ranking Error

The quality of a model M (induced by a learning algorithm) is commonly ex-
pressed in terms of its expected loss or risk

E (D(y,M(x))) , (3)

where D(·) is a loss or distance function, M(x) denotes the prediction made
by the learning algorithm for the instance x, and y is the true outcome. The
expectation E is taken over X ×Y, where Y is the output space (e.g., the set L
of classes in classification).4

The simplest loss function, commonly employed in classification, is the 0/1–
loss: D(y, ŷ) = 0 for y = ŷ and = 1 otherwise. Given this loss function, the
optimal (Bayes) prediction for a specific instance x is simply the most probable
outcome y. In the classification setting, for example, where Y = L, this estimate
is the class with maximum posterior probability P(λı |x).

A straightforward generalization of this principle to the ranking setting,
where Y is the class of rankings over L, leads to the prediction

τ̂x = arg max
τ∈Sm

P(τ |x),

4 The existence of a probability measure over X × Y must of course be assumed.

where P(τ |x) is the conditional probability of a ranking (permutation) given an
instance x, and Sm denotes the class of all permutations of {1 . . .m}.

Obviously, the simple 0/1–distance function is a rather crude evaluation mea-
sure for rankings, because it assigns the same loss to all rankings that differ from
the correct ranking, and does not take into account that different rankings can
have different degrees of similarity. For this reason, a number of more sophisti-
cated distance measures for rankings have been proposed in literature.

In general, if D(τ, τ ′) is a measure of the distance between two rankings τ
and τ ′, the risk minimizing prediction is

τ̂x = arg min
τ∈Sk

∑
τ∈Sm

D(τ, τ ′) · P(τ ′ |x). (4)

A frequently used distance measure is the sum of squared rank distances

D(τ ′, τ) df=
m∑

ı=1

(τ ′(ı) − τ(ı))2 (5)

which is equivalent to the Spearman rank correlation5

1 − 6D(τ, τ ′)
m(m2 − 1)

∈ [−1, 1].

RPC can yield a risk minimizing prediction for this loss function, if the predic-
tions of the binary classifiers are combined by weighted voting, i.e., the alterna-
tives λı are evaluated by means of the sum of weighted votes

S(λı) =
∑

λj �=λı

Rx(λı, λj) (6)

and ranked according to these evaluations:

λτx(1) �x λτx(2) �x . . . �x λτx(m) (7)

with τx satisfying S(λτx(ı)) ≥ S(λτx(ı+1)), ı = 1 . . .m − 1.6 This is a particular
type of “ranking by scoring” strategy; here, the scoring function is given by (6).

Formally, we can show the following result, which provides a theoretical jus-
tification for the voting procedure (6). The proof of this theorem can be found
in Appendix A.

Theorem 1. Using the “ranking by scoring” procedure outlined above, RPC is
a risk minimizer with respect to (5) as a loss function. More precisely, with

Mıj(x) = P(λı �x λj) =
∑

τ : τ(j)<τ(ı)

P(τ |x),

5 This is, of course, a similarity rather than a distance measure.
6 Ties can be broken arbitrarily.

the expected distance

E(τ ′) =
∑

τ

p(τ) · D(τ ′, τ) =
∑

τ

p(τ)
m∑

ı=1

(τ ′(ı) − τ(ı))2

becomes minimal by choosing τ ′ such that τ ′(ı) ≤ τ ′(j) whenever S(λı) ≥ S(λj),
where S(λı) is given by (6).

6 Minimizing the Position Error

Despite the fact that (5) is a reasonable loss function for rankings, it is not always
appropriate. In particular, it assumes that the complete ranking is relevant for
the quality of a prediction, which is not the case in connection with the fault
detection scenario outlined in the introduction. Here, only the prefix of a ranking
τx is considered, up to the position of the target label λx, while the rest of the
prediction is of no importance (since the search procedure stops if λx has been
found). In this case, the loss function only depends on the rank of λx.

More specifically, we define the position error as τ−1
x (λx), i.e., by the position

of the target label λx in the ranking τx. To compare the quality of rankings of
different problems, it is useful to normalize the position error for the number of
labels. This normalized position error is defined as

τ−1
x (λx) − 1

m − 1
∈ {0, 1/(m− 1) . . . 1}, (8)

What kind of ranking procedure should be used in order to minimize the
risk of a predicted ranking with respect to the position error as a loss function?
Intuitively, the candidate labels λ should now be ordered according to their
probability P(λ = λx) of being the target label. Especially, the top-rank (first
position) should be given to the label λ� for which this probability is maximal.
Regarding the second rank, recall the fault detection metaphor, where the second
hypothesis for the cause of the fault is only tested in case the first one turned
out to be wrong. In this setting, the second rank should not simply be given to
the label with the second highest probability according to the measure P1(·) =
P(·). Instead, it must be assigned to the label that maximizes the conditional
probability P2(·) = P(· |λx �= λ�), i.e., the probability of being the target label
given that the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) might appear meaningless from
a ranking point of view, since standard probabilistic conditioning (dividing all
probabilities by 1 − P(λ�) and setting P(λ�) = 0) does not change the order of
the remaining labels. One should realize, however, that standard conditioning
is not an incontestable updating procedure in our context, simply because P1(·)
is not a “true” measure over the class labels. Rather, it is only an estimated
measure coming from a learning algorithm. Thus, it seems sensible to perform
“conditioning” not on the measure itself, but rather on the learner that pro-
duced the measure. By this we mean retraining the learner on the original data

without the λ�-examples, something that could be paraphrased as “empirical
conditioning”. To emphasize that this type of conditioning depends on the data
D and the model assumptions (hypothesis space) H and, moreover, that it con-
cerns an estimated (“hat”) probability, the conditional measure P2(·) could be
written more explicitly as

P2(·) = P̂(· |λx �= λ�,D,M).

To motivate the idea of empirical conditioning, suppose that the estimated prob-
abilities come from a classification tree. Of course, the original tree trained with
the complete data will be highly influenced by λ�-examples, and the proba-
bilities assigned by that tree to the alternatives λ �= λ� might be inaccurate.
Retraining a classification tree on a reduced set of data might then lead to more
accurate probabilities for the remaining labels, especially since the multi-class
problem to be solved has now become simpler (as it involves fewer classes).

A problem of the above “ranking through iterated choice” procedure, that
is, the successive selection of alternatives by estimating top-labels from (con-
ditional) probability measures P1(·), P2(·) . . . Pm(·), concerns its computational
complexity. In fact, realizing empirical conditioning by retraining a standard
multi-class classifier comes down to training such a classifier for (potentially)
each subset of the label set L. Fortunately, empirical conditioning can be imple-
mented much more efficiently by our pairwise approach, as will now be shown.

6.1 Implementing “ranking through iterated choice” by RPC

What kind of aggregation procedure is suitable for deriving an estimated proba-
bility distribution from pairwise classifications resp. valued preference R(λı, λj)?
Let Eı denote the event that λı = λx, i.e., that λı is the target label, and let
Eıj = Eı ∨ Ej (either λı or λj is the target). Then,

(m − 1)P(Eı) =
∑
j �=ı

P(Eı) =
∑
j �=ı

P(Eı |Eıj)P(Eıj), (9)

where m is the number of labels. Considering the (pairwise) estimates R(λı, λj)
as conditional probabilities P(Eı |Eıj), we obtain a system of linear equations
for the (unconditional) probabilities P(Eı):

P(Eı) =
1

m − 1

∑
j �=ı

R(λı, λj)P(Eıj)

=
1

m − 1

∑
j �=ı

R(λı, λj)(P(Eı) + P(Ej)) (10)

In conjunction with the constraint
∑m

ı=1 P(Eı) = 1, this system has a unique
solution provided that R(λı, λj) > 0 for all 1 ≤ ı, j ≤ m [12].

Based on this result, the “ranking through iterated choice” procedure sug-
gested above can be realized as follows: First, the system of linear equations

(10) is solved and the label λı with maximal probability P(Eı) is chosen as the
top-label λ�. This label is then removed, i.e., the corresponding row and column
of the relation R is deleted. To find the second best label, the same procedure
is then applied to the reduced relation, i.e., by solving a system of m − 1 linear
equations. This process is iterated until a full ranking has been constructed.

Lemma 1. In each iteration of the above “ranking through iterated choice” pro-
cedure, the correct conditional probabilities are derived.

Proof. Without loss of generality, assume that λm has obtained the highest rank
in the first iteration. The information that this label is incorrect, λm �= λx, is
equivalent to P(Em) = 0, P(Em |Ejm) = 0, and P(Ej |Ejm) = 1 for all j �= m.
Incorporating these probabilities in (10) yields, for all ı < m,

(m − 1)P(Eı) =
∑

j=1...m,j �=ı

P(Eı |Eıj)P(Eıj)

=
∑

j=1..m−1,j �=ı

P(Eı |Eıj)P(Eıj) + 1P(Eım)

and as P(Eım) = P(Eı) + P(Em) = P(Eı),

(m − 2)P(Eı) =
∑

j=1..m−1,j �=ı

P(Eı |Eıj)P(Eıj).

Obviously, the last equation is equivalent to (10) for a system with m−1 labels,
namely the system obtained by removing the m-th row and column of R. �

As can be seen, the pairwise approach is particularly well-suited for the “rank-
ing through iterated choice” procedure, as it allows for an easy incorporation of
the information coming from futile trials. One just has to solve the system of
linear equations (10) once more, with some of the pairwise probabilities set to 0
resp. 1 (or, equivalently, solve a smaller system of equations). No retraining of
any classifier is required!

Theorem 2. By ranking the alternative labels according to their (conditional)
probabilities of being the top-label, RPC becomes a risk minimizer with respect
to the position error (8) as a loss function. That is, the expected loss

E(τ) =
1

m − 1

m∑
ı=1

(ı − 1) · P (
λτ(ı) = λx

)
becomes minimal for the ranking predicted by RPC.

Proof. This result follows almost by definition. In fact, note that we have

E(τ) ∝
m∑

ı=1

P
(
λx �∈ {λτ(1) . . . λτ(ı)}

)
,

and that, for each position ı, the probability to excess this position when search-
ing for the target λx is obviously minimized when ordering the labels according
to their (conditional) probabilities. �

7 Concluding Remarks

By showing that RPC is a risk minimizer with respect to particular loss func-
tions for rankings, this paper provides a sound theoretical foundation for our
method of ranking by pairwise comparison. The interesting point is that RPC
can easily be customized to different performance tasks, simply by changing the
ranking procedure employed in the second step of the method. By modifying
this procedure, the goal of RPC can be changed from minimizing the expected
distance between the predicted and the true ranking to minimizing the expected
number of futile trials in searching a target label. This can be done without
retraining of the classifier ensemble.

Apart from these theoretical results, the practical validation of our method
is of course an important issue. Regarding the ranking error, RPC has already
been investigated empirically in [7, 10], whereas empirical studies concerning
the position error constitute a topic of still ongoing work. In this context, it is
particularly interesting to compare the results obtained by the “ranking through
iterated choice” procedure with predictions from standard (“non-iterated”) prob-
abilistic classification.

References

1. C. Alonso, JJ. Rodŕıguez, and B. Pulido. Enhancing consistency based diagnosis
with machine learning techniques. In Current Topics in AI, vol. 3040 of LNAI,
312–321. Springer, 2004.

2. W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

3. K. Crammer and Y. Singer. A family of additive online algorithms for category
ranking. Journal of Machine Learning Research, 3:1025–1058, 2003.

4. J. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision
Support. Kluwer, 1994.

5. J. Fürnkranz. Round robin classification. Journal of Machine Learning Research,
2:721–747, 2002.

6. J. Fürnkranz and E. Hüllermeier. Pairwise preference learning and ranking. Tech-
nical Report TR-2003-14, Österr. Forschungsinst. für Artif. Intell. Wien, 2003.

7. J. Fürnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In
Proc. ECML-03, Cavtat-Dubrovnik, Croatia, September 2003. Springer-Verlag.

8. J. Fürnkranz and E. Hüllermeier. Preference learning. Künstliche Intelligenz,
1/05:60–61, 2005.

9. S. Har-Peled, D. Roth, and D. Zimak. Constraint classification: a new approach to
multiclass classification. In Proc. ALT-02, pp. 365–379, Lübeck, 2002. Springer.

10. E. Hüllermeier and J. Fürnkranz. Comparison of ranking procedures in pairwise
preference learning. In Proc. 10th Int. Conf. Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (IPMU-04), Perugia, 2004.

11. I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In Proc. 21st Int. Conf.
on Machine Learning (ICML–2004), pp. 823–830, Banff, Alberta, Canada, 2004.

12. T.F. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classifi-
cation by pairwise coupling. J. of Machine Learning Research, 5:975–1005, 2004.

A Proof of Theorem 1

Lemma 1: Let sı, ı = 1 . . .m, be real numbers such that 0 ≤ s1 ≤ s2 . . . ≤ sm.
Then, for all permutations τ ∈ Sm,

m∑
ı=1

(ı − sı)2 ≤
m∑

ı=1

(ı − sτ(ı))2 (11)

Proof. We have
m∑

ı=1

(ı − sτ(ı))2 =
m∑

ı=1

(ı − sı + sı − sτ(ı))2

=
m∑

ı=1

(ı − sı)2 + 2
m∑

ı=1

(ı − sı)(sı − sτ(ı)) +
m∑

ı=1

(sı − sτ(ı))2.

Expanding the last equation and exploiting that
∑m

ı=1 s2
ı =

∑m
ı=1 s2

τ(ı) yields

m∑
ı=1

(ı − sτ(ı))2 =
m∑

ı=1

(ı − sı)2 + 2
m∑

ı=1

ı sı − 2
m∑

ı=1

ı sτ(ı).

On the right-hand side of the last equation, only the last term
∑m

ı=1 ı sτ(ı) de-
pends on τ . Since sı ≤ sj for ı < j, this term becomes maximal for τ(ı) = ı.
Therefore, the right-hand side is larger than or equal to

∑m
ı=1(ı − sı)2, which

proves the lemma. �

Lemma 2. Let P(· |x) be a probability distribution over Sm and let p(τ) df=
P(τ |x). Moreover, let

sı
df= m −

∑
j �=ı

P(λı �x λj) (12)

with

P(λı �x λj) =
∑

τ : τ(j)<τ(ı)

P(τ |x). (13)

Then, sı =
∑

j �=ı p(τ) τ(ı).

Proof. We have

sı = m −
∑
j �=ı

P(λı �x λj) = 1 +
∑
j �=ı

(1 − P(λı �x λj))

= 1 +
∑
j �=ı

P(λj �x λı) = 1 +
∑
j �=ı

∑
τ : τ(j)<τ(ı)

p(τ)

= 1 +
∑

τ

p(τ)
∑
j �=ı

{
1 if τ(ı) > τ(j)
0 if τ(ı) < τ(j)

= 1 +
∑

τ

p(τ)(τ(ı) − 1) =
∑

τ

p(τ) τ(ı)

Under the assumption that the base learners’ estimates correspond exactly
to the probabilities of pairwise preference, i.e.,

Rx(λı, λj) = Mıj(x) = P(λı �x λj), (14)

sı ≤ sj is equivalent to S(λı) ≥ S(λj). Thus, ranking the alternatives according
to S(λı) (in decreasing order) is equivalent to ranking them according to sı (in
increasing order).

Theorem 1. The expected distance

E(τ ′) =
∑

τ

p(τ) · D(τ ′, τ) =
∑

τ

p(τ)
m∑

ı=1

(τ ′(ı) − τ(ı))2

becomes minimal by choosing τ ′ such that τ ′(ı) ≤ τ ′(j) whenever sı ≤ sj, with
sı given by (12).

Proof. We have

E(τ ′
x) =

∑
τ

p(τ)
m∑

ı=1

(τ ′
x(ı) − τ(ı))2

=
m∑

ı=1

∑
τ

p(τ)(τ ′
x(ı) − τ(ı))2

=
m∑

ı=1

∑
τ

p(τ)(τ ′
x(ı) − sı + sı − τ(ı))2

=
m∑

ı=1

∑
τ

p(τ)
[
(τ(ı) − sı)2 − 2(τ(ı) − sı)(sı − τ ′(ı))

+(sı − τ ′(ı))2
]

=
m∑

ı=1

[∑
τ

p(τ)(τ(ı) − sı)2 − 2(sı − τ ′(ı)) ·

·
∑

τ

p(τ)(τ(ı) − sı) +
∑

τ

p(τ)(sı − τ ′(ı))2
]

In the last equation, the mid-term on the right-hand side becomes 0 according
to Lemma 2. Moreover, the last term obviously simplifies to (sı − τ ′(ı)), and
the first term is a constant c =

∑
τ p(τ)(τ(ı) − sı)2 that does not depend on τ ′.

Thus, we obtain E(τ ′
x) = c +

∑m
ı=1(sı − τ ′(ı))2 and the theorem follows from

Lemma 1. �

