
Learning from Ambiguously Labeled Examples

Eyke Hüllermeier and Jürgen Beringer

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg, Germany

eyke.huellermeier@iti.cs.uni-magdeburg.de

Abstract. Inducing a classification function from a set of examples in
the form of labeled instances is a standard problem in supervised machine
learning. In this paper, we are concerned with ambiguous label classifica-
tion (ALC), an extension of this setting in which several candidate labels
may be assigned to a single example. By extending three concrete clas-
sification methods to the ALC setting and evaluating their performance
on benchmark data sets, we show that appropriately designed learning
algorithms can successfully exploit the information contained in ambigu-
ously labeled examples. Our results indicate that the fundamental idea
of the extended methods, namely to disambiguate the label information
by means of the inductive bias underlying (heuristic) machine learning
methods, works well in practice.

1 Introduction

One of the standard problems in (supervised) machine learning is inducing a
classification function from a set of training data. The latter usually consists of
a set of labeled examples, i.e., a set of objects (instances) whose correct classifi-
cation is known. Over the last years, however, several variants of the standard
classification setting have been considered. For example, in multi-label classifi-
cation a single object can have several labels (belong to several classes), that is,
the labels (classes) are not mutually exclusive [14]. In semi-supervised learning,
only a part of the objects in the training set is labeled [1]. In multiple-instance
learning, a positive or negative label is assigned to a so-called bag rather than to
an object directly [7]. A bag, which is a collection of several instances, is labeled
positive iff if contains at least one positive example. Given a set of labeled bags,
the task is to induce a model that will label unseen bags and instances correctly.

In this paper, we are concerned with another extension of the standard clas-
sification setting that has recently been introduced in [11, 13], and that we shall
subsequently refer to as ambiguous label classification (ALC). In this setting, an
example might be labeled in a non-unique way by a subset of classes, just like in
multi-label classification. In ALC, however, the existence of a (unique) correct
classification is assumed, and the labels are simply considered as candidates.

In [11, 13], the authors rely on probabilistic methods in order to learn a clas-
sifier in the ALC setting. The approach presented in this paper can be seen as
an alternative strategy which is more in line with standard (heuristic) machine

learning methods. Our idea is to exploit the inductive bias underlying these
methods in order to disambiguate label information. This idea, as well as the
relation between the two approaches, is discussed in more detail in Section 3.
Before, the problem of ALC is introduced in a more formal way (Section 2). In
Section 4, three concrete methods for ALC are proposed, namely extensions of
nearest neighbor classification, decision tree learning, and rule induction. Exper-
imental results are finally presented in Section 5.

2 Ambiguous Label Classification

Let X denote an instance space, where an instance corresponds to the attribute–
value description x of an object: X = X1×X2× . . .×X�, with Xı the domain of
the ı-th attribute. Thus, an instance is represented as a vector x = (x1 . . . x�) ∈
X . Moreover, let L = {λ1 . . . λm} be a set of labels (classes). Training data
shall be given in the form of a set D of examples (xı, Lxı), ı = 1 . . . n, where
xı = (x1

ı . . . x�
ı) ∈ X and Lxı ⊆ L is a set of candidate labels associated with

instance xı. Lxı is assumed to contain the true label λxı , and xı is called an
ambiguous example if |Lxı | > 1. Note that this includes the special case of a
completely unknown label (Lx = L), as considered in semi-supervised learning.
Here, however, we usually have the case in mind where 1 ≤ |Lx| < |L|. For
example, in molecular biology the functional category of a protein is often not
exactly known, even though some alternatives can definitely be excluded [2].

The learning task is to select, on the basis of D, an optimal model (hypoth-
esis) h : X → L from a hypothesis space H. Such a model assigns a (unique)
label λ = h(x) to any instance x ∈ X . Optimality usually refers to predictive
accuracy, i.e., an optimal model is one that minimizes the expected loss (risk)
with respect to a given loss function L × L → R.

3 Learning from Ambiguous Examples

Ambiguous data may comprise important information. In fact, the benefit of this
information might be especially high if it is considered, not as an isolated piece
of knowledge, but in conjunction with the other data and the model assumptions
underlying the hypothesis space H. To illustrate this important point, consider
a simple example in which the true label λxı of an instance xı is known to be
either λ1 or λ2. Moreover, we seek to fit a classification tree to the data, which
basically amounts to assuming that X can be partitioned by axis-parallel decision
boundaries. Now, by setting λxı = λ2 we might find a very simple classification
tree for the complete data, while λxı = λ1 requires a comparatively complex
model (see Fig.1). Relying on the simplicity heuristic underlying most machine
learning methods [8], this finding clearly suggests that λxı = λ2. Thus, looking at
the original information λxı ∈ {λ1, λ2} with a view that is “biased” by the model
assumptions, the benefit of this information has highly increased. As can be seen,
the inductive bias underlying the learning process can help to disambiguate the
label information given. This suggests that ambiguous label information might

indeed be useful and, in particular, that it might be easier for learning methods
with a strong inductive bias to exploit such information than for methods with a
weak bias. Both these conjectures will be supported by our experimental results
in Section 5.

?

Fig. 1. Classification problem with three
labels: black (λ1), grey (λ2), light (λ3).
The instance with a question mark is ei-
ther black or grey. Assigning label grey al-
lows one to fit a very simple decision tree
(as represented by the axis-parallel deci-
sion boundaries). Note that this hypothet-
ical labeling also provides important infor-
mation on the decision boundary between
the grey and light class.

The above example has shown that candidate labels can appear more or less
likely against the background of the underlying model assumptions. In fact, the
insight that fitting a model to the data might change the likelihood of candidate
labels can be formalized more rigorously in a probabilistic context. Assuming a
parameterized model Mθ, the goal can roughly be stated as finding the parameter

θ∗ = arg max
θ

n∏

ı=1

Pr(λxı ∈ Lxı |xı, θ).

This approach gives rise to an EM (expectation-maximization) approach in
which model adaptation and modification of label information are performed
alternately: Starting with a uniform distribution over each label set Lxı , an
optimal parameter θ∗ is determined. Using this parameter resp. the associated
model Mθ∗ , the probabilities of the labels λ ∈ Lxı are then re-estimated. This
process of estimating parameters and adjusting probabilities is iterated until
convergence is eventually achieved [11, 13].

On the one hand, this approach is rather elegant and first empirical evidence
has been gathered for its practical effectiveness [11, 13]. On the other hand,
the assumption of a parameterized model basically restricts its applicability to
statistical classification methods. Moreover, model optimization by means of EM
can of course become quite costly from a computational point of view. Our idea
of disambiguating label information by implementing a simplicity bias can be
seen as an alternative strategy. As heuristic machine learning in general, this
approach is of course theoretically not as well-founded as probabilistic methods.
Still, heuristic methods have been shown to be often more effective and efficient
in practical applications.

Unfortunately, standard classification methods generally cannot exploit the
information provided by ambiguous data, simply because they cannot handle

such data. This is one motivation underlying the development of methods for
ALC (as will be done in Section 4). Note that a straightforward strategy for
realizing ALC is a reduction to standard classification: Let the class of selections,
F(D), of a set D of ambiguous data be given by the class of standard samples

S = {(x1, αx1), (x2, αx2), . . . , (xn, αxn)} (1)

such that αxı ∈ Lxı for all 1 ≤ ı ≤ n. In principle, a standard learning method
could be applied to all samples S ∈ F(D), and an apparently most favorable
model could be selected among the models thus obtained. However, since the
number of selections, |F(D)| =

∏n
ı=1 |Lxı |, will usually be huge, this strategy is

of course not practicable.

4 Methods for ALC

In this section, we present three relatively simple extensions of standard learning
algorithms to the ALC setting, namely k-nearest neighbor classification, decision
tree learning, and rule induction.

4.1 Nearest Neighbor Classification

In k-nearest neighbor (k-NN) classification [6], the label λest
x0

hypothetically as-
signed to a query x0 is given by the label that is most frequent among x0’s k
nearest neighbors, where nearness is measured in terms of a similarity or dis-
tance function. In weighted k-NN, the neighbors are moreover weighted by their
distance:

λest
x0

df= arg max
λ∈L

k∑

ı=1

ωı I(λ = λxı), (2)

where xı is the ı-th nearest neighbor; λxı and ωı are, respectively, the label
and the weight of xı, and I(·) is the standard {true, false} → {0, 1} mapping. A
simple definition of the weights is ωı = 1− dı · (

∑k
j=1 dj)−1, where the dı are the

corresponding distances.
Now, a relatively straightforward generalization of (2) to the ALC setting is

to replace I(λ = λxı) by I(λ ∈ Lxı):

λest
x0

df= arg max
λ∈L

k∑

ı=1

ωı I(λ ∈ Lxı). (3)

Thus, a neighbor xı is allowed not one single vote only, but rather one vote for
each its associated labels. If the maximum in (3) is not unique, one among the
labels with highest score is simply chosen at random.1

1 A reasonable alternative is to choose the prevalent class in the complete training set.

4.2 Decision Tree Induction

Another standard learning method whose extension to the ALC setting might
be of interest, is decision tree induction [15]. Its basic strategy of partitioning
the data in a recursive manner can of course be maintained for ALC. The main
modification rather concerns the splitting measure. In fact, standard measures
of the (im)purity of a set of examples, such as entropy, cannot be used, since
these measures are well-defined only for a probability distribution over the label
set.

As an extended measure of (im)purity, we propose the potential entropy of a
set of examples D, defined by

E∗(D) df= min
S∈F(D)

E(S), (4)

where F(D) is the set of selections (1) and E(S) denotes the standard entropy:
E(S) df= −∑m

ı=1 pı log2(pı), with pı the proportion of elements in S labeled by
λı. As can be seen, (4) is the standard entropy obtained for the most favorable
instantiation of the ALC-examples (xı, Lxı). It corresponds to the “true” en-
tropy that would have been derived if this instantiation was compatible with the
ultimate decision tree. Taking this optimistic attitude is justified since the tree
is indeed hopefully constructed in an optimal manner.

Of course, computing the potential entropy comes down to solving a combi-
natorial optimization problem and becomes intractable for large samples. There-
fore, we suggest the following heuristic approximation of (4):

E+(D) df= E(S∗), (5)

where the selection S∗ is defined as follows: Let qı be the frequency of the label
λı in the set of examples D, i.e. the number of examples (xj, Lxj) such that
λı ∈ Lxj . The labels λı are first put in a (total) “preference” order according to
their frequency: λı is preferred to λj if qı > qj (ties are broken by coin flipping).
Then, the most preferred label λı ∈ Lxı is chosen for each example xı. Clearly,
the idea underlying this selection is to make the distribution of labels as skewed
(non-uniform) as possible, as distributions of this type are favored by the entropy
measure. We found that the measure (5) yields very good results in practice and
compares favorably with alternative extensions of splitting measures [12].

With regard to the stopping condition of the recursive partitioning scheme,
note that a further splitting of a (sub)set of examples D is not necessary if
L(D) df=

⋂
xı∈D Lxı �= ∅. The corresponding node in the decision tree then be-

comes a leaf, and any label λ ∈ L(D) can be chosen as the prescribed label
associated with that node.

Pruning a fully grown tree can principally be done in the same way as pruning
standard trees. We implemented the pruning technique that is used in C4.5 [15].

4.3 Rule Induction

An alternative to the divide-and-conquer strategy followed by decision tree learn-
ers is to induce rules in a more direct way, using a separate-and-conquer or cover-
ing strategy [10]. Concrete implementations of this approach include algorithms
such as, e.g., CN2 [4, 3] and Ripper [5].

In order to learn a concept, i.e., to separate positive from negative examples,
covering algorithms learn one rule after another. Each rule covers a subset of
(positive) examples, namely those that satisfy the condition part of the rule. The
covered examples are then removed from the training set. This process is iterated
until no positive examples remain. Covering algorithms can be extended to the
m-class case (m > 2) in several ways. For example, following a one-versus-all
strategy, CN2 learns rules for each class in turn, starting with the least frequent
one. Since in the m-class case the order in which rules have been induced is
important, the rules thus obtained have to be treated as a decision list.

A key component of all covering algorithms is a “find-best-rule” procedure for
finding a good or even optimal rule that partly covers the current training data.
Starting with a maximally general rule, CN2 follows a top-down approach in
which the candidate rules are successively specialized (e.g. by adding conditions).
The search procedure is implemented as a beam search, guided by the Laplace-
estimate as a heuristic evaluation:

L(r) df= (p + 1)(n + p + 2)−1, (6)

where r is the rule to be evaluated, p is the number of positive examples covered
by r, and n the number of negative examples. As a stopping criterion, CN2
employs a statistical significance test (likelihood ratio) that decides whether or
not the distribution of positive and negative examples covered by the rule is
significantly different from the overall distribution in the complete training set.

In order to adapt CN2 to the ALC setting, we have made the following
modifications: Similarly to the generalization of the entropy measure, we have
turned the Laplace-estimate into a “potential” Laplace-estimate: Considering
label λj as the positive class, p = pj is given by the number of all examples xı

covered by the rule r and such that λj ∈ Lxı . This way, (6) can be derived for
each label, and the maximal value is adopted as an evaluation of the rule:

L(r) = max
1≤j≤m

(pj + 1)(|r| + 2)−1,

where |r| is the number of examples covered by the rule. The consequent of r is
then given by the label λj for which the maximum is attained.

As noted before, CN2 learns classes in succession, starting with the smallest
(least frequent) one. As opposed to this, we learn rules without specifying a
class in advance. Rather, the most suitable class is chosen depending on the
condition part of a rule. In fact, the label predicted by a rule can even change
during the search process. This modification is in agreement with our goal of
to disambiguate by implementing a simplicity bias. Moreover, the focusing on
one particular label is less useful in the ALC setting. In fact, in the presence of

ambiguously labeled examples, it may easily happen that a rule r is dominated
by a class λj while all of its direct specializations are dominated by other classes.

5 Experimental Results

The main purpose of our experimental study was to provide evidence for the con-
jecture that exploiting ambiguous data for model induction by using a suitable
ALC-method is usually better than the obvious alternative, namely to ignore
such data and learn with a standard algorithm from the remaining (exactly
labeled) examples. We used the latter approach as a baseline method.

Note that this conjecture is by far not trivial. In fact, whether or not am-
biguous data can be useful will strongly depend on the performance of the ALC-
method. If this method is not able to exploit the information contained in that
data, ambiguous examples might be misleading rather than helpful. In this con-
nection, recall our supposition that the weaker the inductive bias of a learning
method, the more likely that method might be misled by ambiguous examples.

5.1 Experimental Setup

We have worked with “contaminated” versions of standard benchmark data sets
(in which each instance is assigned a unique label), which allowed us to conduct
experiments in a controlled way. In order to contaminate a given data set, we
have devised two different strategies:
Random model: For each example in the training set, a biased coin is flipped in
order to decide whether or not this example will be contaminated; the probability
of contamination is p. In case an example xı is contaminated, the set Lxı of
candidate labels is initialized with the original label λxı , and all other labels
λ ∈ L \ {λxı} are added with probability q, independently of each other. Thus,
the contamination procedure is parameterized by the probabilities p and q, where
p corresponds to the expected fraction of ambiguous examples in a data set.
Moreover, q reflects the “average benefit” of a contaminated example xı: The
smaller q is, the smaller the (average) number of candidate labels becomes and,
hence, the more informative such an example will be. In fact, note that the
expected cardinality of Lxı , in the case of contamination, is given by 1+(m−1)q.
Bayes model: The random model assumes that labels are added independently
of each other. In practice, this idealized assumption will rarely be valid. For
example, the probability that a label is added will usually depend on the true
label. In order to take this type of dependency into account, our second approach
to contamination works as follows: First, a Naive Bayes classifier is trained using
the original data, and a probabilistic prediction is derived for each input xı. Let
Pr(λ |xı) denote the probability of label λ as predicted by the classifier. Whether
or not an example is contaminated is decided by flipping a biased coin as before.
In the case of contamination, the true label λxı is again retained. Moreover, the
other m−1 labels λ ∈ L\{λxı} are arranged in an increasing order according to
their probability Pr(λ |xı). The k-th label, λ(k), is then added with probability

(2 · k · q)/m. Thus, the expected cardinality of Lxı is again 1 + (m− 1)q, but the
probabilities of the individual labels are now biased in favor of the labels found
to be likely by the Bayes classifier. Intuitively, the Bayes model should come
along with a decrease in performance for the ALC approach because, roughly
speaking, disambiguating the data might become more difficult in the case of a
“systematic” contamination.

The experimental results have been obtained in the following way: In a single
experiment, the data is randomly divided into a training set and a test set of
the same size. The training set is contaminated as outlined above. From the con-
taminated data, a model is induced using an ALC-extension of a classification
method (kNN, decision trees, rule induction). Moreover, using the classification
method in its standard form, a model is learned from the reduced training set
that consists of the non-contaminated examples. Then, the classification accu-
racy of the two models is determined by classifying the instances in the test set.
The expected classification accuracy of a method – for the underlying data set
and fixed parameters p, q – is approximated by averaging over 1,000 experiments.

For decision tree learning and rule induction, all numeric attributes have been
discretized in advance using hierarchical entropy-based discretization [9]. We
didn’t try to optimize the performance of the three learning methods themselves,
because this was not the goal of the experiments. Rather, the purpose of the
study was to compare – under equal conditions – ALC learning with the baseline
method.

5.2 Results

Due to reasons of space, results are presented for only five data sets from the
UCI repository: (1) dermatology (385 instances, 34 attributes, 6 classes), (2)
ecoli (336, 7, 8), (3) housing (506,13,10), (4) glass (214, 9, 6), (5) zoo (101, 16,
7) and a few combinations of (p, q)-parameters (more results can be found in an
extended version, available as a technical report from the authors).

The results for k-NN classification with k = 5 are summarized in Table 1,
where (r) stands for the random model and (b) for the Bayes model. As can be
seen, the ALC version is generally superior to the standard 5-NN classifier. Ex-
ceptions (marked with a *) only occur in cases where both p and q are large, that
is, where the data is strongly contaminated. Roughly speaking, the superiority
of the ALC version shows that relying on a nearby ambiguous neighbor is usu-
ally better than looking at an exact example that is faraway (because the close,
ambiguous ones have been removed). We obtained similar results for k = 7, 9, 11.

The results do not convincingly confirm the supposition that the ALC ver-
sion will perform better for the random model than for the Bayes model. Even
though it is true that the results for the former are better than for the latter in
most cases, the corresponding difference in performance is only slight and much
smaller than expected. In general, it can be said that the contamination model
does hardly influence the performance of the classifier most of the time. In fact,
there is only one noticeable exception: For the Zoo data, the performance for

Table 1. Results for 5-NN classification (classification rate and standard deviation).

data method q p = .1 p = .5 p = .9

derma ALC (r) .3 .959 (.013) .955 (.014) .943 (.017)
ALC (b) .3 .959 (.013) .955 (.015) .940 (.018)
standard .3 .958 (.014) .948 (.018) .910 (.039)
ALC (r) .5 .958 (.014) .949 (.015) .890 (.028)
ALB (b) .5 .958 (.014) .946 (.016) .874 (.031)
standard .5 .957 (.014) .945 (.019) .851 (.067)
ALC (r) .7 .959 (.014) .938 (.019) .746 (.050)
ALC (b) .7 .958 (.014) .936 (.018) .745 (.046)
standard .7 .958 (.014) .945 (.020)∗ .833 (.072)∗

ecoli ALC (r) .3 .845 (.025) .832 (.025) .798 (.024)
ALC (b) .3 .846 (.025) .830 (.028) .798 (.029)
standard .3 .845 (.026) .827 (.028) .743 (.059)
ALC (r) .5 .844 (.027) .815 (.023) .715 (.039)
ALC (b) .5 .843 (.022) .814 (.028) .709 (.045)
standard .5 .843 (.027) .815 (.030) .691 (.099)
ALC (r) .7 .844 (.022) .801 (.029) .582 (.050)
ALC (b) .7 .841 (.024) .802 (.032) .593 (.052)
standard .7 .842 (.024) .820 (.034)∗ .699 (.087)∗

glass ALC (r) .3 .634 (.041) .620 (.043) .592 (.045)
ALC (b) .3 .638 (.040) .622 (.041) .592 (.044)
standard .3 .630 (.041) .604 (.048) .510 (.070)
ALC (r) .5 .636 (.042) .611 (.042) .542 (.052)
ALC (b) .5 .635 (.042) .607 (.043) .529 (.051)
standard .5 .633 (.042) .599 (.045) .438 (.077)
ALC (r) .7 .633 (.042) .602 (.045) .463 (.061)
ALC (b) .7 .631 (.042) .604 (.045) .453 (.060)
standard .7 .631 (.041) .595 (.051) .408 (.077)

housing ALC (r) .3 .488 (.027) .461 (.029) .423 (.017)
ALC (b) .3 .476 (.026) .457 (.029) .412 (.032)
standard .3 .486 (.028) .455 (.030) .403 (.032)
ALC (r) .5 .476 (.028) .431 (.030) .320 (.034)
ALC (b) .5 .477 (.027) .445 (.031) .367 (.032)
standard .5 .474 (.028) .444 (.030) .362 (.046)∗

ALC (r) .7 .486 (.027) .440 (.033) .271 (.035)
ALC (b) .7 .478 (.029) .443 (.030) .324 (.032)
standard .7 .484 (.027) .454 (.031)∗ .369 (.048)∗

zoo ALC (r) .3 .926 (.038) .912 (.041) .887 (.054)
ALC (b) .3 .925 (.038) .911 (.042) .886 (.055)
standard .3 .925 (.039) .896 (.053) .782 (.104)
ALC (r) .5 .924 (.037) .901 (.048) .824 (.072)
ALC (b) .5 .925 (.039) .895 (.048) .777 (.091)
standard .5 .923 (.038) .889 (.059) .667 (.155)
ALC (r) .7 .922 (.038) .885 (.058) .673 (.110)
ALC (b) .7 .924 (.039) .881 (.060) .609 (.111)
standard .7 .921 (.038) .884 (.061) .655 (.162)

Table 2. Results for decision tree induction.

data method q p = .1 p = .5 p = .9

derma ALC (r) .3 .860 (.046) .841 (.051) .809 (.069)
ALC (b) .3 .861 (.047) .839 (.055) .802 (.069)
standard .3 .858 (.049) .814 (.063) .654 (.129)
ALC (r) .5 .858 (.047) .818 (.057) .742 (.098)
ALB (b) .5 .854 (.047) .816 (.058) .736 (.082)
standard .5 .858 (.049) .807 (.069) .488 (.155)
ALC (r) .7 .855 (.048) .802 (.059) .618 (.125)
ALC (b) .7 .854 (.048) .801 (.063) .659 (.092)
standard .7 .855 (.048) .799 (.075) .446 (.154)

ecoli ALC (r) .3 .705 (.039) .676 (.041) .645 (.043)
ALC (b) .3 .707 (.038) .682 (.038) .663 (.039)
standard .3 .704 (.043) .655 (.058) .543 (.115)
ALC (r) .5 .703 (.039) .658 (.042) .611 (.051)
ALC (b) .5 .703 (.038) .669 (.039) .639 (.045)
standard .5 .700 (.041) .646 (.059) .517 (.139)
ALC (r) .7 .700 (.039) .648 (.043) .567 (.065)
ALC (b) .7 .701 (.039) .661 (.040) .635 (.051)
standard .7 .699 (.041) .643 (.064) .509 (.149)

housing ALC (r) .3 .348 (.038) .321 (.043) .282 (.045)
ALC (b) .3 .348 (.038) .333 (.042) .311 (.044)
standard .3 .353 (.039)∗ .334 (.051)∗ .313 (.088)∗

ALC (r) .5 .346 (.038) .308 (.043) .246 (.047)
ALC (b) .5 .348 (.038) .331 (.044) .294 (.043)
standard .5 .353 (.039)∗ .336 (.051)∗ .306 (.099)∗

ALC (r) .7 .348 (.038) .301 (.046) .261 (.062)
ALC (b) .7 .352 (.036) .321 (.044) .286 (.078)
standard .7 .350 (.042)∗ .337 (.052)∗ .302 (.104)∗

glass ALC (r) .3 .557 (.059) .533 (.065) .507 (.072)
ALC (b) .3 .559 (.059) .534 (.069) .496 (.080)
standard .3 .553 (.063) .514 (.086) .437 (.120)
ALC (r) .5 .556 (.055) .525 (.066) .460 (.085)
ALC (b) .5 .555 (.054) .513 (.078) .434 (.082)
standard .5 .551 (.064) .497 (.091) .395 (.152)
ALC (r) .7 .554 (.056) .507 (.075) .410 (.092)
ALC (b) .7 .557 (.057) .504 (.079) .382 (.065)
standard .7 .554 (.064) .493 (.093) .389 (.172)

zoo ALC (r) .3 .876 (.057) .841 (.063) .806 (.066)
ALC (b) .3 .876 (.058) .843 (.060) .807 (.063)
standard .3 .876 (.059) .814 (.084) .654 (.171)
ALC (r) .5 .877 (.057) .827 (.067) .765 (.079)
ALC (b) .5 .876 (.057) .830 (.063) .753 (.103)
standard .5 .873 (.060) .811 (.091) .552 (.245)
ALC (r) .7 .873 (.055) .820 (.069) .696 (.102)
ALC (b) .7 .874 (.054) .825 (.066) .553 (.206)
standard .7 .873 (.061) .807 (.092) .500 (.272)

the random model is much better than for the Bayes model in the case of highly
contaminated data.

For decision tree induction, the ALC-version consistently outperforms the
standard version. As the results in Table 2 show, the gain in performance is
even higher than for NN classification. Again, the results show that a systematic
contamination of the data, using the Bayes instead of the random model, does
hardly affect the performance of ALC. It is true that the classification perfor-
mance deteriorates on average, but again only slightly and not in every case.

An interesting exception to the above findings is the Housing data (not only
for decision tree learning but also for NN classification). First, for this data
the standard version is down the line better than the ALC-version. Second, the
ALC-version is visibly better in the case of the Bayesian model than in the
case of the random model. A plausible explanation for this is the fact that for
the Housing data the classes are price categories and hence do have a natural
order. That is, we actually face a problem of ordinal classification rather than
standard classification. (Consequently, ordinal classification methods should be
applied, and the results for this data set should not be overrated in our context.)
Moreover, the Bayesian model tends to add classes that are, in the sense of this
ordering, neighbored to the true price category, thereby distorting the original
class information but slightly. Compared to this, ambiguous information will be
much more conflicting in the case of the random model.

Since the experimental results for rule induction are rather similar to those
for decision tree learning, they are omitted here for reasons of space.

In summary, the experiments show that our ALC extensions of standard
learning methods can successfully deal with ambiguous label information. In fact,
except for some rare cases, these extensions yield better results than the base-
line method (which ignores ambiguous examples and applies standard learning
methods). A closer examination reveals two interesting points: Firstly, it seems
that the gain in classification accuracy (of ALC compared with the baseline
method) is a monotone increasing function of the parameter p (probability of
contamination). With regard to the parameter q, however, the dependency ap-
pears to be non-monotone: The gain first increases but then decreases for large
enough q-values. Intuitively, these findings can be explained as follows: Since q
represents a kind of “expected benefit” of an ambiguous example, the utility of
such an example is likely to become negative for large q-values. Consequently,
it might then be better to simply ignore such examples, at least if enough other
data is available. Secondly, the performance gain for decision tree learning seems
to be slightly higher than the one for rule induction, at least on average, and
considerably higher than the gain for NN classification. This ranking is in perfect
agreement with our conjecture that the stronger the inductive bias of a learning
method, the more useful ALC will be.

6 Concluding Remarks

In order to successfully learn a classification function in the ALC setting, where
examples can be labeled in an ambiguous way, we proposed several extensions

of standard machine learning methods. The idea is to exploit the inductive bias
underlying these (heuristic) methods in order to disambiguate the label infor-
mation. In fact, we argued that looking at the label information with a “biased
view” may remove the ambiguity of that information to some extent. This idea
gives rise to the conjecture that ALC learning methods with a strong (and of
course approximately correct) bias can exploit the information provided by am-
biguous examples better than methods with a weak bias. This conjecture has
been supported empirically by experiments that have been carried out for three
concrete learning techniques, namely ALC extensions of nearest neighbor classi-
fication, decision tree learning, and rule induction. The experiments also showed
that applying our ALC methods to the complete data will usually yield better
results than learning with a standard method from the subset of exactly labeled
examples, at least if the expected benefit of the ambiguous examples is not too
low. In any case, our approach can be seen as a simple yet effective alternative
that complements the probabilistic approaches proposed in [11, 13] in a reason-
able way.

References

1. KP. Bennet and A. Demiriz. Semi-supervised support vector machines. In Advances
in Neural Information Processing 11, pages 368–374. MIT Press, 1999.

2. J. Cavarelli et al. The structure of Staphylococcus aureus epidermolytic toxin A,
an atypic serine protease, at 1.7 A resolution. Structure 5(6):813–24, 1997.

3. P Clark and R Boswell. Rule induction with CN2: Some recent improvements. In
Proc. 5th Europ. Working Session of Learning, pages 151–163, Porto, 1991.

4. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–
283, 1989.

5. W.W. Cohen. Fast effective rule induction. Proc. 12th ICML, pages 115–123,
Tahoe City, CA, 1995.

6. B.V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press, Los Alamitos, California, 1991.

7. T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez. Solving the multiple-instance
problem with axis-parallel rectangles. Art. Intell. Journal, 89, 1997.

8. P. Domingos. The role of Occam’s razor in knowledge discovery. Data Mining and
Knowledge Discovery, 3:409–425, 1999.

9. U. Fayyad and KB. Irani. Multi-interval discretization of continuos attributes as
preprocessing for classification learning. Proc. IJCAI–93, pages 1022–1027, 1993.

10. J Fürnkranz. Separate-and-conquer rule learning. AI Review, 13(1):3–54, 1999.
11. Y Grandvalet. Logistic regression for partial labels. IPMU–02, pages 1935–1941,

Annecy, France, 2002.
12. E. Hüllermeier and J. Beringer. Learning decision rules from positive and negative

preferences. IPMU-04, Perugia, Italy, 2004.
13. R Jin and Z Ghahramani. Learning with multiple labels. NIPS-02, Vancouver,

Canada, 2002.
14. A. McCallum. Multi-label text classification with a mixture model trained by EM.

In AAAI–99 Workshop on Text Learning, 1999.
15. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.

