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Abstract

Geometric objects are often represented approximately in terms of a finite set of points in three-
dimensional Euclidean space. In this paper, we extend this representation to what we call labeled
point clouds. A labeled point cloud is a finite set of points, where each point is not only associated
with a position in three-dimensional space, but also with a discrete class label that represents a
specific property. This type of model is especially suitable for modeling biomolecules such as pro-
teins and protein binding sites, where a label may represent an atom type or a physico-chemical
property. Proceeding from this representation, we address the question of how to compare two
labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a
suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover,
we consider the problem of establishing an alignment of the structures in the sense of a one-to-one
correspondence between their basic constituents. From a biological point of view, alignments of
this kind are of great interest, since mutually corresponding molecular constituents offer important
information about evolution and heredity, and can also serve as a means to explain a degree of sim-
ilarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments
of labeled point clouds. To this end, we proceed from an optimal superposition of the correspond-
ing point clouds and construct an alignment which is as much as possible in agreement with the
neighborhood structure established by this superposition. We apply our methods to the structural
analysis of protein binding sites.

1 Introduction

Geometric objects are often represented in terms of a set of points in three-dimensional Euclidean
space. This type of representation is finite and hence approximate (even though the number of
points can become very large, as for example in laser range scanning), focusing on the most impor-
tant characteristics of the object while ignoring less important details. A well-known example of a
representation of this kind is the Molfile format [16], where molecules are described in terms of the
spatial coordinates of all atoms. However, since not only the position but also the type of an atom is
of interest, this representation is not a simple point cloud. Likewise, other biomolecular structures,
such as proteins and protein binding sites, are not only characterized by their geometry but also by
additional features, such as physico-chemical properties. In this paper, we therefore introduce the
concept of a labeled point cloud. A labeled point cloud is a finite set of points, where each point is not
only associated with a position in three-dimensional space, but also with a discrete class label that
represents a specific property. Formally, a labeled point cloud P is a set of points {p1, p2, . . . , pn}
with two associated functions: c : P → R

3 maps points to coordinates in the Euclidean space, and
� : P → L assigns a label to each point.

Since theory formation in the biological sciences is largely founded on similarity-based and analog-
ical reasoning principles, the comparison of two (or more) objects with each other is a fundamental
problem in bioinformatics. In this paper we propose the method of labeled point cloud superposition
(LPCS), from which we then derive a proper similarity measure for labeled points clouds. Our mea-
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sure proceeds from the idea of equivalence (inclusion) of point clouds in a set-theoretic sense while
being tolerant toward exceptions (on the level of label information) and geometric deformations.

Despite producing a degree of similarity, an LPCS does not establish a unique alignment, that is,
a one-to-one correspondence between the basic constituents of the structures. From a biological
point of view, alignments of this kind are of great interest, as they offer important information about
evolution and heredity. In sequence analysis, for example, one is typically not only interested in
the degree of similarity between two DNA or amino acid sequences, but also in finding those parts
of the two sequences that match each other and, therefore, give an explanation for the similarity
score. Therefore, we additionally develop an approach to structure alignment, called multiple point
cloud alignment. To this end, we proceed from an optimal superposition of the corresponding point
clouds and construct an alignment which is as much as possible in agreement with the neighborhood
structure established by this superposition.

The remainder of the paper is organized as follows. Subsequent to an overview of related work in
Section 2 and a brief introduction to protein binding sites and their formal representation in Sec-
tion 3, we introduce the concept of LPCS in Section 4. The problem of computing an LPCS is
then addressed in Section 5, where an evolution strategy is proposed for this purpose. Section 6
introduces the concepts of pairwise and multiple point cloud alignment. Section 7 is devoted to the
experimental validation of the approach, and Section 8 concludes the paper.

2 Related Work

The problems of structural similarity computation and structural alignment have been addresses in
many research fields including, amongst others, pattern recognition, data mining and machine learn-
ing, databases, structural bio- and chemoinformatics. Two major directions can be distinguished,
namely geometrical and graph-based approaches. Subsequently, we give a brief overview of re-
lated work in these two fields, focusing on those approaches most relevant for our method.

2.1 Geometrical Approaches

A common approach in this branch is to apply methods from computational geometry to objects
represented in terms of point clouds. Roughly, such methods can be divided into the following
categories: exact point matching, one-to-one matching, approximate point matching, and partial
point matching. The first two categories are essentially dealing with the question of isomorphism
[1], that is, equality instead of similarity. For applications in bioinformatics, where inexact structures
of different size need to be compared, this approach is obviously not flexible enough and therefore
inappropriate.

Approaches that neither require exact matches nor a one-to-one correspondence are often based on
the Hausdorff distance between sets [20, 19, 17, 29]. These approaches have different drawbacks,
however. In particular, many of them are restricted to two-dimensional objects, for which the com-
putational complexity can already become high, or they are not invariant toward rotation. Besides,
these methods do not take point labels into consideration.

Another interesting approach, namely geometric hashing, allows for calculating a partial alignment
between point clouds [34, 3, 26, 25, 42, 27]. First, k-tuples are drawn from a point cloud and stored
in a hash table. Then, in the recognition phase, k-tuples of another point cloud are drawn and looked
up in the hash table. If two matching k-tuples are found, one from the first and one from the second
point cloud, they can be superimposed and thus define a transformation that can be used to derive
an alignment.

More specialized methods can be used if additional information is available. For example, the au-
thors in [33] make use of the C-α atoms to align a set of (labeled) point clouds in a very efficient
way. However, due to the fact that similar binding site patterns may occur in proteins with different
folds, such approaches are limited. A classical example for protein binding sites for which such
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approaches will fail is (Chymo)Trypsin and Subtilisin [32], other examples can be found in [39, 38].
These binding sites are similar but do not share similar folds.

2.2 Graph-Based Approaches

A second important direction is to use graph-based methods: Geometric objects are first mapped to
a graph representation, capturing geometric information in terms of edge weights and label informa-
tion in terms of node labels, and are then compared by means of graph-theoretic methods.

The authors in [2] especially advocate the use of graph kernels as similarity measures [7, 15].
Roughly speaking, a graph kernel is a real function κ that, to compute a degree of similarity κ(G,G′)
between two graphs G and G′, first decomposes each graph into a set of simple components, then
compares all components with each other, and finally adds the similarity degrees thus obtained. In
our experimental study, we use the well-known shortest path and random walk kernels. In the former
case, the components are given by all shortest paths between any pair of nodes in a graph [8]. In
the latter case, the (infinite) set of components is defined by the set of all walks in a graph [15]. In
both cases, the components are hence one-dimensional structures that can easily be compared by
similarity measures on strings. The runtime complexity is O(M4) for shortest path and O(M6) for
random walk kernels, where M is the number of nodes in the graphs.

The concepts of maximum common subgraph [10] and minimum common supergraph [11] have
been widely used for the comparison of chemical compounds [31]. Like other problems related to
subgraph isomorphism, they are computationally complex. While being acceptable for small molec-
ular structures, complexity indeed becomes prohibitive for large structures such as proteins. More-
over, subgraph isomorphism is not tolerant toward noise. Relaxations and approximate methods
have been proposed [12, 35, 43, 37], but these increase computational complexity even further.

In [40], the authors introduce the concept of a multiple graph alignment as a structural counterpart
to sequence alignment, and use it for the comparison of protein binding sites. Roughly speaking, a
multiple graph alignment is an alignment of several protein structures, each of which is represented in
the form of a graph. An alignment of that kind is produced using a two-step procedure: First, a seed
solution is obtained by means of exact graph matching techniques. Then, this seed is successively
expanded by means of a greedy optimization technique.

2.3 Graph-Based vs. Geometric Modeling

The LPCS method introduced in this paper can be seen as a combination of geometric and graph-
based approaches: Using point clouds, it captures geometric information in an explicit way, but at the
same time, it allows for adding label information as typically used in graph representations. Conse-
quently, LPCS inherits properties, and hence advantages and disadvantages, from both directions,
with the advantages arguably being more important than the disadvantages.

Probably the most important difference between geometric and graph-based approaches concerns
their flexibility toward variations and conformational changes of the underlying structures. Since ge-
ometric approaches, especially those based on point clouds, are rigid, graph-based methods can
have an advantage in situations where much flexibility is needed. On the other hand, this flexibility
comes at a certain price and can also have disadvantages, especially when it is not needed. First,
graph-based methods can be too flexible in the sense of producing solutions that are geometrically
infeasible. In fact, many types of geometrical constraints cannot be verified on the graph level. Sec-
ond, graph-based methods drop large parts of the (global) geometric information and represent the
rest only in an implicit way. This information must hence be reconstructed from the graph represen-
tation whenever needed. Due to the discrete nature of graphs, this normally leads to combinatorial
optimization problems that are hard to solve. As a result, graph-based methods are often computa-
tionally complex.
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Figure 1: Two point clouds A (left, points as circle) and B (right, points as squares): The intra-point
distances are the same in both point clouds, except for the additional gray point in A. Labels are
depicted as letters within the circles and boxes, respectively.

3 Modeling Protein Binding Sites

In this paper, our special interest concerns the modeling of protein binding sites. More specifically,
our work builds upon CavBase [32], a database for the automated detection, extraction, and storing
of protein cavities (hypothetical binding sites) from experimentally determined protein structures
(available through the PDB). In CavBase, a set of points is used as a first approximation to describe
a binding pocket. The database currently contains 248,686 hypothetical binding sites that have been
extracted from 61,516 publicly available protein structures using the LIGSITE algorithm [18].

The geometrical arrangement of the pocket and its physico-chemical properties are first represented
by predefined pseudocenters – spatial points that represent the geometric center of a particular prop-
erty. The type and the spatial position of the centers depend on the amino acids that border the
binding pocket and expose their functional groups. They are derived from the protein structure using
a set of predefined rules [32]. As possible types for pseudocenters, hydrogen-bond donor, accep-
tor, mixed donor/acceptor, hydrophobic aliphatic, metal ion, pi (accounts for the ability to form π–π
interactions) and aromatic properties are considered.

Pseudocenters can be regarded as a compressed representation of areas on the cavity surface
where certain protein-ligand interactions are experienced. Consequently, a set of pseudocenters is
an approximate representation of a spatial distribution of physico-chemical properties. Obviously,
just like in the case of Molfile, this representation is already in the form of a labeled point cloud:
Points correspond to pseudocenters and are labeled with a physico-chemical property and their
spatial coordinates.

4 Labeled Point Cloud Superposition

Intuitively, two labeled point clouds are similar if they can be spatially superimposed, at least approxi-
mately. That is, by fixing the first and “moving” the second one (as a whole, i.e., without changing the
internal arrangement of points) in a proper way, an approximate superposition of the two structures
is obtained. More specifically, we will say that two point clouds are well superimposed if, for each
point in one of the structures, there exists a point in the other cloud that is spatially close and has the
same label. As an illustration, the example in Figure 1 shows two point clouds A and B, for simplicity
only in two dimensions. By moving B to the left (or A to the right), a superposition can be found so
that, except for the hatched and gray nodes, all points in A spatially coincide with a corresponding
point in B having the same label, and vice versa. So, A and B can be considered as being similar,
at least to some extent.

4.1 Similarity as Fuzzy Equivalence

More formally, let

A = {(x1, �(x1)), . . . , (xm, �(xm))}
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be a point cloud consisting of m points xi = (xi1, xi2, xi3) ∈ R
3 with associated label �(xi) ∈ L,

where L is a discrete set of labels (in the context of modeling protein binding sites, as discussed in
the previous section, L is given by the seven types of pseudocenters). Moreover, let

B = {(y1, �(y1)), . . . , (yn, �(yn))}
be a second point cloud to be compared with A. In the following, we define a function SIM(·, ·) that
returns a degree of similarity between two such structures A and B.

Roughly speaking, we consider similarity as a generalized (fuzzy) equivalence. Moreover, motivated
by the fact that, for ordinary sets A and B, (A = B) ⇔ (A ⊂ B) ∧ (B ⊂ A), we reduce this
equivalence to two inclusion relations, namely the inclusion of A in B and, vice versa, of B in A.
Thus, we are first of all interested in whether each point y ∈ B is also present in A (and each point
x ∈ A also present in B). More specifically, we are interested in the degree to which y ∈ B is at
least “fuzzily” present in A. Recall that a fuzzy subset F of a reference set U is characterized by
its membership function, which is a U → [0, 1] mapping μF (·) that generalizes the characteristic
function of a set [45]. For each u ∈ U , μF (u) is the degree of membership of u in the fuzzy set F .

For a fixed y ∈ B, we define the membership degree of this point in A, that is, the degree to which
this point is also present in A, by

μA(y) = exp (−γ · d(y,A)) , (1)

where

d(y,A) = min
x∈A

�(x)=�(y)

‖y − x‖1

is the distance between a point y ∈ B and the closest point x ∈ A having the same label (d(y,A) = ∞
and hence μA(y) = 0 if no such point exists); for x ∈ A, μB(x) and d(x,B) are defined analogously.

For a pair of sets A and B, the inclusion B ⊂ A is equivalent to the equality B = B ∩ A. Conse-
quently, one possibility to relax the inclusion relation on sets to a “fuzzy inclusion” is to make use
of a corresponding fuzzy equivalence like, for example, the Jaccard measure |A ∩ B|/|A ∪ B|. In
the fuzzy case, set intersection and union are accomplished through t-norm and t-conorm operators
� and ⊥ [23], respectively, and set cardinality through summing membership degrees. Noting that
μB(y) = 1 for all y ∈ B (and that 1 is the neutral element of a t-norm �), this eventually yields

inc(B,A) =
|B ∩ (B ∩ A)|
|B ∪ (B ∩ A)| =

|B ∩ A|
|B|

=

∑
y∈B �(μA(y), μB(y))∑

y∈B μB(y)
=

1

|B|
∑
y∈B

μA(y).

4.2 Optimizing Similarity

As mentioned above, the idea of our approach is to define the similarity between two labeled point
clouds in terms of the best superposition of these two clouds. Therefore, let TF(·, t) be a function
that moves a point cloud via rotation and translation, as specified by the six-dimensional vector
t = (θ1, θ2, θ3, δ1, δ2, δ3) ∈ [0, 2π]3 × R

3. Thus,

B∗ = TF(B, t) = {(y∗1 , �(y∗1)), . . . , (y∗n, �(y∗n))}
is the point cloud obtained by translating the point cloud B by δ = (δ1, δ2, δ3) (which means adding δ
to each point y ∈ B) and rotating the result thus obtained by the angles θ1, θ2, and θ3. Note that this
operation leaves the label information unchanged (i.e., �(yi) = �(y∗i )). The position-invariant degree
of inclusion of B in A is then given by

INC(B,A) = max
t∈[0,2π]3×R3

inc(TF(B, t), A) , (2)
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and INC(A,B) is defined analogously.

Based on these degrees, the similarity between A and B, in the sense of a generalized equivalence,
can be defined as

SIM(A,B) = min{ INC(A,B), INC(B,A) } . (3)

4.3 Generalizing Similarity

It is worth mentioning, however, that (3) is not always appropriate, especially if A and B greatly
differ in size. In some applications, it makes sense to have a high similarity degree even if A is only
a substructure of B, for example if A is a subpocket of B containing the most important catalytic
residues (while the rest of the binding site B is functionally less important). Obviously, this is not
guaranteed by (3). An interesting generalization, therefore, is to let

SIM(A,B) =α ·min{INC(A,B), INC(B,A)} (4)

+ (1− α) ·max{INC(A,B), INC(B,A)} .

Formally, this similarity measure can be motivated from a fuzzy logical point of view as follows.
Considering the min (max) operator as a generalized conjunction (disjunction), the first (second)
combination of the two inclusion degrees is the truth degree of the proposition that A is contained
in B AND (OR) B is contained in A. A conjunctive combination of the two degrees of inclusion is
obviously more demanding than a disjunctive one, as the former requires equality between A and
B while the latter only requires inclusion of A in B or B in A. The measure (4), which formally
corresponds to an OWA (ordered weighted average) combination of the two degrees of inclusion
[44], achieves a trade-off between these two extreme aggregation modes, which is controlled by the
parameter α ∈ [0, 1]: The closer α is to 0, the closer the aggregation is to the maximum, i.e., the
less demanding it becomes. The optimal α is application-specific and depends on the purpose of
the similarity measure.

5 Solving the LPCS Problem

The computation of the similarity (4) involves the solution of a real-valued optimization problem,
namely the problem of finding an optimal vector t in (2) and, thus, an optimal point cloud super-
position. The objective function to be maximized here is highly non-linear and multimodal. As an
illustration, Figure 2 shows the objective function obtained for the superposition of a randomly gener-
ated two-dimensional point cloud A (in which all points have the same label) with itself. This function
maps each two-dimensional translation vector t = (x, y) to the corresponding similarity degree be-
tween TF(A) and A (where we used α = 1 in (4) and did not consider rotation). As can be seen,
there is a sharp peak at t = (0, 0), which corresponds to the optimal superposition. Surrounding this
solution, however, there are also many local optima.

The problem of local optima also becomes clear from the small example in Figure 1. Moving the point
cloud A from left to right, into the direction of B, has the following effect: First, a good superposition
of two sub-clouds will be found, namely the right part of cloud A and the left part of cloud B. This
results in a local maximum. Moving A further to the right leads to a larger local maximum (sub-clouds
are growing), until the global maximum will eventually be reached.

5.1 Evolution Strategies

To solve the LPCS problem, we resort to evolution strategies (ES), a population-based, stochastic
optimization method inspired by biological evolution and specifically developed for real-valued op-
timization problems [5]. An evolution strategy is based on a population, a set of μ (sub-optimal)
candidate solutions that are initially spread randomly over the search space. In each generation,
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Figure 2: Example of an LPCS objective function.

new solutions are generated by applying the genetic operators recombination and mutation. Re-
combination randomly selects ρ individuals from the current population and combines them to a new
solution. Mutation takes this solution and shifts it randomly in the search space. An ES produces
λ = μ · ν� offsprings per iteration, so that this procedure has to be repeated λ times. A selection
operator implements the “survival of the fittest” principle by picking the best individuals for the new
population. There are two kinds of selection: The plus-selection chooses the best μ individuals
among the offsprings plus the parents, while the comma-selection ignores the parent generation
(this requires ν > 1).

A main advantage of the ES is its self-adaptation mechanism that controls the step sizes used in the
mutation operator. One property of this mechanism (the advantage during optimization is obvious)
is that step sizes decrease dramatically if the optimization reached a maximum. This property can
be used as a termination criterion (stop when the largest step size falls below a given threshold).

Population-based optimization methods are especially advantageous for highly multimodal prob-
lems. Using a large population leads to an increased probability to generate a candidate solution in
a region where the direction of descent points to the global maximum. Choosing the membership
function (1) as a strictly monotone decreasing function which converges to zero ensures to have this
direction in each point t ∈ [0, 2π]3 × R

3 and thus greatly simplifies the maximization problem.

5.2 Complexity

Even though evolution strategies are generally known to be quite efficient solvers, the concrete com-
plexity does of course depend on the application at hand. The application-specific part is the fitness
function, i.e., the objective function to be optimized. This function has to be evaluated frequently
and, therefore, is an important factor for the runtime. In our case, this function is given by the similar-
ity measure (4), and its evaluation is strongly dominated by the nearest neighbor search which has
to be conducted for each single point in both structures (recall that, according to (1), membership
degrees are determined by the distance to closest points with the same label).

There exist a lot of data structures for supporting nearest neighbor search; see e.g. [13]. The most
efficient among them need time O(n log2 n) for construction and O(log3 n) for answering a query.
Unfortunately, we are not aware of an approach that allows for updating a data structure in an
efficient and dynamic way. This would be desirable for our problem, in which the point clouds per-
manently change (the point cloud associated with an individual changes in each iteration). Instead,
conventional approaches necessitate a construction from scratch in every iteration.

Figure 3 compares the runtimes, as a function of the number of points, for two approaches: (1) The
use of a kd-tree data structure [13], which is reconstructed in each iteration and then used for query
processing. (2) The use of a simple linear data structure, in which the points are stored in a fixed
order. It needs linear instead of logarithmic time to answer a query but, on the other hand, does not
cause additional costs for reconstruction. As can be seen, the use of a more complex approach pays
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Figure 3: Runtime of a simple procedure and a more complex data structure as a function of the
number of points.

off only for sufficiently large point clouds: The kd-tree reaches a break-even point at approximately
150 points.

In our application, we are mainly concerned with protein binding sites, which are characterized by
around 180 points on average (even though much larger structures do of course exist). The use of a
complex data structure did therefore not pay off. Nevertheless, we increased efficiency by hashing
the points xi of a point cloud, using the label �(xi) ∈ L as a key. Since nearest neighbors are
only searched among points having the same label, this obviously reduces runtime by a factor of
approximately |L|.

6 Multiple Point Cloud Alignment

So far, we have mainly been concerned with the problem of similarity measurement: Given two
molecular structures, our goal was to determine a numerical degree of similarity between them.
Apart from the number itself, however, one is naturally interested in an explanation of the similarity
degree. From a biological point of view, it is especially interesting to find out what two (or even
more) structures have in common. In this regard, the concept of an alignment has established itself
as an important tool in bioinformatics, at least in the domain of sequence analysis. A structural
counterpart to sequence alignment, called multiple graph alignment, was recently introduced in [40].
As the name suggests, the authors made use of graphs to model protein structures (binding sites).
In this section, we propose an alternative approach to structure alignment, called multiple point cloud
alignment, which operates on point clouds instead of graph representations.

Just like in the case of sequence alignment, the goal in structure alignment is to establish a one-to-
one correspondence between the basic constituents of the structures under consideration. When
comparing homologs from different species in protein cavity space, one has to deal with the same
mutations that are also given in sequence space. Corresponding mutations, in conjunction with
conformational variability, strongly affect the spatial structure of a binding site as well as its physico-
chemical properties and, therefore, its point cloud descriptor. For example, a pseudocenter can be
deleted or introduced due to a mutation in sequence space. Likewise, if a mutation replaces a certain
functional group by another type of group at the same position, the physico-chemical property of a
pseudocenter can change. Finally, the distance between two pseudocenters can change due to
conformational differences.

Due to the above reasons, one cannot expect that point clouds of two related binding pockets match
exactly. When looking for an alignment of two structures in the form of a one-to-one correspondence
between pseudocenters, it is therefore necessary to allow for “mismatches” as well as pseudocenters
for which no matching partner is defined. This situation is quite similar to sequence alignment, where
mismatches between symbols and the insertion of blanks (to compensate for non-existing matching
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partners) is also allowed.

Definition 1 (Multiple Point Cloud Alignment, MPCA). Let P be a set of m point clouds Pi =
{pi1, . . . , pini

}, i = 1, 2, . . . ,m. A multiple point cloud alignment (MPCA) of these point clouds is a
subset A ⊆ (P1 ∪ {⊥})× · · · × (Pm ∪ {⊥}) with the following properties:

1. for all i = 1, 2, . . . ,m and for each p ∈ Pi there exists exactly one a = (a1, . . . , am) ∈ A such
that p = ai;

2. for each a = (a1, . . . , am) ∈ A there exists at least one 1 ≤ i ≤ n such that ai �=⊥.

Here, the symbol ⊥ denotes a “dummy point” which is needed to compensate for non-existing match-
ing partners.

Each tuple in the alignment represents a mutual assignment of m points, one from each point cloud
Pi (possibly a dummy). Thus, the second property in the above definition requires that each tuple of
the alignment contains at least one non-dummy point, and the first property means that each point
of each point cloud occurs exactly once in the alignment. While these properties can be satisfied
by a large number of alignments, we are of course looking for an alignment that reflects structural
correspondence in an optimal way.

Our idea is to derive an optimal MPCA from an optimal superposition of the labeled point clouds.
More specifically, we define the score of an alignment on the basis of a given superposition. As
will be seen below, the problem to find an optimal MPCA thus comes down to solving several linear
assignment problems. We proceed in two steps, solving the problem to align two structures before
addressing the more general problem of multiple alignment.

6.1 Construction of Pairwise Alignments

To construct a pairwise alignment of two point clouds P1 and P2, we reduce the alignment problem to
an optimal assignment problem. To this end, we need a square matrix M = (mi,j), where mi,j ∈ R

defines the costs for assigning point pi ∈ P1 to point pj ∈ P2. According to Definition 1, the maximal
length of a pairwise alignment is n = n1 + n2 = |P1| + |P2|. Therefore, to consider all possible
alignments, the matrix M has size n× n.

The entries mi,j are derived from the optimal superposition of point clouds P1 and P2 as produced
by a modification of our LPCS method. The modification concerns the similarity measure to be
maximized. Since we are looking for a mutually optimal alignment, we do not split the similarity into
two optimal degrees of inclusion, as done by the measure (3). Instead, we define similarity in terms
of a compromise measure as follows:

SIMPCA(A,B) = max
t∈[0,2π]3×R3

F (A,B, t) , (5)

where

F (A,B, t) =
1

2
(inc(TF(B, t), A) + inc(A,TF(B, t))) .

Given a spatial superposition optimal in the sense of (5), it makes sense to define the cost mi,j in
terms of the associated distance between point pi ∈ P1 and pj ∈ P2. To account for point-to-dummy
mappings, the distance between a point and a dummy is specified by a parameter k. Finally, dummy-
dummy assignments are scored by zero, so that these mappings will not influence the construction
of the alignment. As an illustration, Table 1 shows a matrix M for two point clouds P1 = {a, b, c, d}
and P2 = {a′, b′, c′}.

Formally, an assignment (weighted bipartite matching) problem is specified by a graph G = (V,E)
with V = V1 ∪ V2 (V1 ∩ V2 = ∅) and E = {(v1, v2) | v1 ∈ V1, v2 ∈ V2}. Moreover, each edge e ∈ E has
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Table 1: Matrix representation of the optimal assignment problem.
a′ b′ c′ ⊥ ⊥ ⊥ ⊥

a d(a, a′) d(a, b′) d(a, c′) k k k k
b d(b, a′) d(b, b′) d(b, c′) k k k k
c d(c, a′) d(c, b′) d(c, c′) k k k k
d d(d, a′) d(d, b′) d(d, c′) k k k k
⊥ k k k 0 0 0 0
⊥ k k k 0 0 0 0
⊥ k k k 0 0 0 0

an associated cost value d(e). The goal is to find a subset of edges M ⊆ E solving the following
constrained optimization problem:

minimize
∑
e∈M

d(e)

subject to
⋃

(v1,v2)∈M

{v1} = V1,
⋃

(v1,v2)∈M

{v2} = V2,

and such that (v1, v2), (v′1, v
′
2) ∈ M with (v1, v2) �= (v′1, v

′
2) implies v1 �= v′1 and v2 �= v′2. In other words,

M defines a bijection between V1 and V2. In our case, the sets V1 and V2 represent, respectively,
the points in point cloud P1 (supplemented with |P2| dummy points) and the points in cloud P2

(supplemented with |P1| dummy points). Moreover, the cost d(e) of an edge e = (vi, vj) is given by
the corresponding matrix entry mi,j . See Figure 4 for an illustration.

To solve the weighted bipartite matching problem, we use the Hungarian algorithm [24] that needs
time O(n3). Once a cost-minimal assignment has been found, the point cloud alignment is defined
by the corresponding node-to-node and node-to-dummy assignments, while dummy-to-dummy as-
signments are ignored.
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Figure 4: Illustration of the weighted bipartite graph matching problem.

6.2 Construction of Multiple Alignments

Instead of restricting to pairwise alignments, it is also interesting to look for a multiple alignment in
the sense of a simultaneous alignment of a set of m > 2 structures. Alignments of this type can be
useful, for example, to discover conserved patterns in a family of evolutionary related proteins.

To derive a multiple point cloud alignment (MPCA) of m point clouds, we resort to the idea of a
star alignment [40]: One of the point clouds, say, P1, is selected and aligned in a pairwise way
with all other clouds Pi, i = 2, . . . ,m. The pairwise alignments are then “merged” by using P1 as a
pivot structure. Thus, if pij ∈ Pi denotes the point (possibly a dummy) aligned with p1j ∈ P1 in the
alignment of P1 and Pi, then a single assignment in the multiple alignment is of the form

a = (p1j , p2j, p3j , . . . , pmj) , (6)

10



and the cost caused by this assignment is given by∑
1≤i<k≤m

d((pij , pkj)) .

The sum of the costs of all these assignments finally determines the cost of the multiple alignment.
Since the quality of a multiple alignment thus defined is strongly influenced by the choice of the pivot
structure, we try each point cloud as a pivot and adopt the best result. Thus, m(m − 1)/2 pairwise
alignments have to be computed in total.

Another interesting way to obtain a multiple alignment in one step is proposed in [34], were a k-
partite pivot graph is used instead of a bipartite graph. Since the problem to find a matching on
that graph is NP-hard, the authors make use of a simple greedy heuristic. Again, since the solution
depends on the pivot point cloud, it is reasonable to try each point cloud as a pivot.

The selection of pivot clouds is completely avoided by tree-based approaches. Here, we adapt an
approach from [41]: In a first step, an UPGMA-tree is calculated based on the LPCS-scores of all
pairwise comparisons. This tree defines the bottom-up order in which the alignments are merged.
Leaves in the tree can be merged like in the pairwise case. Merging two inner nodes, both of
which correspond to (multiple) alignments ai = (a1i, . . . , ani) and bj = (b1j , . . . , bmj), respectively, is
accomplished by calculating the averaging pairwise distances:

d(ai, bj) =
∑

k=1,...,n

l=1,...,m

d(aki, blj) ,

where d(aki, blj) is the distance between points aki and blj in the optimal superposition. If necessary,
the distance matrix thus constructed is filled by dummy assignments to obtain a square matrix as
input for the Hungarian algorithm.

6.3 Conserved Patterns

A multiple alignment of several (protein) structures can be analyzed in various ways. From a biolog-
ical point of view, it is especially interesting to look for conserved patterns, i.e., substructures which
can be found, at least approximately, in all structures.

Again, conserved patterns of that kind can be defined in various ways. Here, we simply define it in
terms of the union of all conserved assignments (6), where we call an assignment conserved if

cons(a) =
|{i | ai �=⊥}|

m
≥ ω

maj(a) = max
l∈L

|{i | ai = l}|
|{i | ai �=⊥}| ≥ ξ

for thresholds ω, ξ ∈ (0, 1], and with cons(a) and maj(a) denoting, respectively, the relative number
of non-dummy nodes in a and the relative frequency of the most frequent label.

7 Experimental Results

In our experimental studies, we perform three types of experiments, in which we compare our meth-
ods with existing approaches applicable to the same type of problems, both graph-based and geo-
metrical. In the first and second study, we focus on the aspect of similarity measurement, whereas
the third study is devoted to the problem of structural alignment.

7.1 Data

The assessment of a similarity measure for biomolecular structures, such as protein binding sites,
is clearly a non-trivial problem. In particular, since the concept of similarity by itself is rather vague
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and subjective, it is difficult to evaluate corresponding measures in an objective way. To circumvent
this problem, we propose to evaluate similarity measures in an indirect way, namely by means of
their performance in the context of nearest neighbor (NN) classification. The underlying idea is
that, the better a similarity measure is, the better should be the predictive performance of an NN
classifier using this measure for determining similar cases. To realize this idea, we compose a
suitable classification data set in Section 7.1.1.

A second, much smaller data set is compiled in Section 7.1.2. The purpose of this data set is to
check the performance of our method on the level of concrete structures. For this data set, a natural
grouping into subsets is known, and we are interested in the question whether this grouping can be
reproduced by clustering the structures according to the LPCS similarity measure. We compare the
result not only with the ground truth, but also with clustering according to sequence similarity. Thus,
we seek to show that some relationships not visible on the sequence level can still be recognized on
the structural level.

For the third type of experiment, dealing with multiple structure alignment, data sets consisting of
many structures sharing a common fragment are needed; such data sets will be introduced in Sec-
tions 7.1.3 and 7.1.4.

7.1.1 NADH/ATP

One important problem in pharmaceutical chemistry is the identification of protein binding sites that
bind a certain ligand. We selected two classes of binding sites that bind, respectively, to NADH or
ATP. This gives rise to a binary classification problem: Given a protein binding site, predict whether
it binds NADH or ATP.

More concretely, we compiled a set of 355 protein binding pockets representing two classes of
proteins that share, respectively, ATP and NADH as a cofactor. To this end, we used CavBase
to retrieve all known ATP and NADH binding pockets that were co-crystallized with the respective
ligand. Subsequently, we reduced the set to one cavity per protein, thus representing the enzymes
by a single binding pocket. As protein ligands adopt different conformations due to their structural
flexibility, it is likely that the ligands in our data set are bound in completely different ways, hence the
corresponding binding pocket does not necessarily share much structural similarity. We thus had to
ensure the selection of binding pockets with ligands bound in similar conformation. To achieve this,
we used the Kabsch algorithm [21] to calculate the root mean square deviation (RMSD) between
pairs of ligand structures. Subsequently, we combined all proteins whose ligands yielded a RMSD
value below a threshold of 0.4, thereby ensuring a certain degree of similarity. This value was chosen
as a trade-off between data set size and similarity. Eventually, we thus obtained a two-class data set
comprising 214 NADH-binding proteins and 141 ATP-binding proteins.

7.1.2 Carbonic anhydrases

Carbonic anhydrases (CA, E.C. 4.2.1.1.) catalyze the conversion of carbon dioxide and water to
bicarbonate and a proton. They are encoded by four evolutionary unrelated gene families α, β, γ, δ.
In case of vertebrates, only the α-class is known to be present. α-CA exhibit a conserved secondary
structure of a ten-stranded, twisted beta-sheet. At the bottom of the 15 Å deep, cone-shaped active
site a zinc ion is tetrahedrally coordinated to the nitrogens of three histidine residues and a water
molecule/hydroxide ion occupies the forth coordination site. The metal ion binding residues and
additional 17 residues are found to be invariant in all sequences of α-CA [28]. Up to now, the crystal
structures of eight active isozymes have been determined out of 16 isoforms described in literature
[36]. Along the catalytic reaction, residues within the CA binding pocket can undergo conformational
changes and single amino acid mutations can develop great impact on the catalytic properties. In
order to investigate the effect of minimal but critical changes within the active site we have created a
data set of 38 entries from 9 active α-CA isozymes.
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7.1.3 Benzamidine

For a first proof-of-concept of the MPCA approach, we analyzed a data set consisting of 87 com-
pounds that belong to a series of selective thrombin inhibitors and were taken from a 3D-QSAR
study [6]. The data set is suitable for conducting experiments in a systematic way, as it is quite
homogeneous and relatively small (the descriptors contain 47 – 100 points, where each point cor-
responds to an atom). Moreover, as the 87 compounds all share a common core fragment (which
is distributed over two different regions with a variety of substituents), the data set contains a clear
and unambiguous target pattern.

7.1.4 Thermolysin

Additionally, we used a data set consisting of 74 structures derived from the Cavbase database.
Each structure represents a protein cavity belonging to the protein family of thermolysin, bacte-
rial proteases frequently used in structural protein analysis and annotated with the E.C. number
3.4.24.27 in the ENZYME database. The data set is well-suited for our purpose, as all cavities be-
long to the same enzyme family and, therefore, evolutionary related, highly conserved substructures
ought to be present. On the other hand, with cavities (hypothetical binding pockets) ranging from
about 30 to 90 pseudocenters and not all of them being real binding pockets, the data set is also
diverse enough to present a real challenge for matching techniques.

7.2 Classification

In our experiments, first we compared our novel method (LPCS) with existing graph-based ap-
proaches, namely the random walk (RW) kernel [15], the shortest path (SP) kernel [8], and the
method of multiple graph alignment (MGA) recently introduced in [40]. Moreover, we included geo-
metric hashing (GH) as a representative geometrical approach [27]. Given two labeled points clouds
as input, all these methods produce a degree of similarity as an output. Yet, for the graph-based
approaches, it is of course necessary to transform a point cloud into a graph representation in a
preprocessing step. This was done as proposed in [40]:

1. each point is transformed into a node with corresponding node label

2. for each pair of nodes:

(a) the Euclidean distance between both nodes is calculated

(b) if the distance is below a certain threshold (here 11 Å to ensure connected graphs), an
edge with weight equal to this distance is added

LPCS was realized using an evolution strategy as proposed in Section 5. Its parameterization
was optimized with the sequential parameter optimization toolbox [4] and was chosen as follows:
μ = 30, ν = 4, ρ = 6, plus-selection, termination criteria: largest step size < 0.00001, intermedi-
ate recombination for object and discrete recombination for strategy-component. A comprehensive
explanation of the different ES parameters and operators can be found in [5].

The step sizes were initialized in [5, 15]3 and [1, π]3, respectively. The SP-kernel is parameter-free,
the RW-kernel expects a parameter λ that is set to the largest degree of a node in the data set to
ensure a geometric series during calculation, which results in a simpler evaluation [7]. Since the
geometric information of real-world data is noisy, we also need a tolerance parameter ε to decide
whether two edges have equal length (difference ≤ ε) or not; in our experiments, we used ε = 0.2.
For MGA, we chose the parameterization proposed in [40].

The implementation of GH, based on [27], involves quite a number of technical details that we can-
not all explain here. As suggested by the authors, we used seed patterns (k-tuples) consisting of 5
points and defined a hash key based on the discretized distances between these points. The equals
predicate, which is used to decide whether two patterns are approximately equal, was implemented
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in an error-tolerant way through solving an optimal assignment problem: The corresponding dis-
tances are assigned in an optimal and mutually exclusive way, and equal is evaluated as true if at
least 80% of the assigned distances differ by at most 0.2 Å .

7.2.1 Results

The results of a leave-one-out cross validation, using the simple 1-NN classifier for prediction, are
summarized in Table 2. As can be seen, the kernel-based methods (SP and RW) perform very poorly
and are hardly better than random guessing. In terms of accuracy, MGA is much better, though still
significantly worse than the geometric approaches, GH and LPCS. The latter performs clearly best
on this problem. In fact, LPCS is not only better than GH in terms of performance but also much
faster in terms of runtime.

Table 2: Accuracy and runtimes (in seconds with standard deviation, referring to a single compari-
son) of LPCS (α = 0.5, with restarts like described above), MGA, RW, and SP on the NADH/APT
data set.

method accuracy runtime
MGA 0.7662 121.74± 418.02
SP 0.6056 9.75± 97.77
RW 0.5972 65.51± 89.07
GH 0.8873 81.71± 98.88
LPCS 0.9352 20.04± 24.65

Table 3 furthermore shows how the performance of LPCS depends on the choice of the trade-off
parameter α in (4). As can be seen, this parameter does indeed have an influence, even though the
differences are not extreme. For this data set, α-values around 0.5 yield better results than extreme
values close to 0 or 1; the optimal choice would be α = 0.7. In practice, α can be considered as a
tuning parameter to be adapted to the problem at hand (e.g., by means of a cross-validation on the
training data).

Table 3: Accuracy of LPCS for different values of α in (4).
α accuracy α accuracy α accuracy
0.0 0.904 0.4 0.927 0.8 0.924
0.1 0.918 0.5 0.935 0.9 0.927
0.2 0.913 0.6 0.935 1.0 0.918
0.3 0.915 0.7 0.938

7.2.2 Runtime

To investigate the computational complexity of our method, we used the NADH/ATP data set. From
this data set we chose protein binding sites of size approximately s ∈ {25, 35, . . . , 985, 995}; this was
done by selecting the largest binding site smaller than s and the smallest binding site larger than s.

Again, in addition to our novel approach and MGA, the shortest path and the random walk kernel
were included for comparison (especially the SP kernel is known to be fast). Each approach is
applied on the protein binding sites mentioned above, and the time for comparing the structures of
size s is measured. Since LPCS is based on a stochastic optimizer, we repeated each calculation
10 times and derived the median, minimum and maximum of the runtime.

The results are summarized in Figure 5. Due to their excessive memory requirements, MGA and
RW-kernel are not able to compare binding sites exceeding a certain size. For small problems,
LPCS has the highest runtime, but the runtime is growing very slowly with the problem size; for point
clouds larger than 150 or 200, LPCS is already faster than MGA or RW-kernel. To explain the high
variation of the runtime of LPCS, note that we hash the points with equal label to support nearest
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Figure 5: Runtimes of LPCS, MGA, SP-, and RW-kernel w.r.t. problem size; for RW-kernel and
MGA a calculation was posible to a certain size of the problem since the memory requirement was
becoming too high

neighbor search. Therefore, the runtime strongly depends on the distribution of the labels, which
varies among the data sets: The more uniformly the labels are distributed, the more efficient the
search becomes.

The SP-kernel has cubic runtime, so that this method is the most efficient alternative for s < 600.
LPCS is becoming the most efficient approach for s > 600, which is hardly surprising in light of the
fact that the dimensionality of the LPCS optimization problem is constant (six parameters have to be
optimized) and does not depend on the number of data points. It is true that the size of the point
clouds does have an influence on the evaluation of the objective function, which involves a nearest
neighbor search for each point. The increase in runtime is at most quadratic, however.

7.3 Clustering

In this study, we compared the cluster structure of α-CA cavities obtained through sequence align-
ment and LPCS. Protein sequences of the α-CA cavities were mutually aligned using, respectively,
FASTA 3.5 [30] in its default settings. An all-against-all comparison of cavities was also performed
using LPCS. As a result, two distance matrices were produced, one based on sequence alignment
and the other one based on structure comparison. In a second step, a clustering algorithm was
applied to the distance matrices. More specifically, we used a partitional clustering method (rbr) in
the Cluto package [22]. The number of output clusters, which is a parameter of this method, was set
to the expected number of 11.

The overall results of LPCS-based clustering show a clear separation among the different isozymes.
Furthermore, CA-I and CA-II are each separated in two clusters respectively (Figure 6(a)). Two CA-I
structures (CA-I, Michigan 1), which are grouped in a small cluster, exhibit the amino acid substi-
tution His67Arg. This mutation leads to the coordination of a second zinc ion within the active site,
which causes minor conformational changes to several other residues. Due to these modifications
within the cavity, the esterase activity of the CA-I Michigan 1 mutant is enhanced toward α- and
β- naphthyl acetates [9]. The CA-II isozymes are also split into two clusters reflecting the confor-
mational flexibility of His64. His64 serves as a proton shuttle providing the rate-limiting step of the
catalysis. Since, in the considered crystal structures, His64 occurs in two distinct conformations,
flexibility of this residue is postulated to be pivotal for the high efficiency of CA II [14]. LPCS is able
to detect conformational change of this residue within the active site.

Our α-CA data set comprises two murine (2znc, 3znc) and one human (1znc) crystal structure of
CA-IV isozyme. Murine structures are found in a separated cluster, whereas human CA-IV falls into
the same cluster as CA-XII. Apparently, the cavity of human CA-IV share more similarity in terms
of physico-chemical properties, represented by pseudocenters, in common with the cavity of the
human CA-XII than with the murine CA-IV binding site.

A sequence-based clustering also leads to separation of different isozymes (Figure 6(b)). Yet, this
approach is not able to detect crucial changes expressed by the exposed physico-chemical proper-
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Figure 6: Cluster structure based on pairwise distances of α-CA cavities using LPCS (left) and
FASTA (right).

ties within the active site which are induced, e.g., by a single amino acid mutation or a conformational
change of an active site residue. Sequence alignment rather discriminates between structures from
different species. For instance, CA-IV and CA-III are each divided in two clusters respectively, since,
they comprise either human proteins and structures from mouse (CA-IV: 2znc, 3znc) and rat (CA-III:
1flj).

In summary, LPCS-based clustering not only generates a convincing classification of α-CA but also
detects local changes within the active site that cannot be reflected by a sequence based analysis.
Regarding clustering results of MGA, SP- and RW-kernel, no reasonable classifications could be
achieved. All three approaches group different isozymes together and isozymes of the same type
are clustered apart from each other.

7.4 Alignment Quality

In the second study, we compared the quality of the alignments calculated, respectively, by MPCA
and MGA.1 To this end, 100 alignments of size 2 were calculated for randomly chosen structures.
The quality of a pairwise alignment A is evaluated in terms of two criteria. The first criterion is the
fraction of assignments of pseudocenters preserving the label information:

s1 =
1

|A|
∑

(a1,a2)∈A

{
1, �(a1) = �(a2)
0, �(a1) �= �(a2)

,

where �(a1) is the label of the pseudocenter a1. Similarly, the second criterion evaluates to what
extent the geometry of the structures is preserved. Since an MGA does not include information
about the position of single pseudocenters, this has to be done by looking at distances between
pairs of pseudocenters in each structure:

s2 =
1

N

∑
(a1,a2),(b1,b2)∈A

{
1, |d(a1, b1)− d(a2, b2)| ≤ ε
0, |d(a1, b1)− d(a2, b2)| > ε

,

where d(a1, b1) = |c(a1) − c(b1)| is the distance between the coordinate vectors of a1 and b1 and
N = |A|(|A| − 1)/2. We summarize the evaluation by the vector

s = (s1, s2) ∈ [0, 1]× [0, 1] .

1Note that the kernel-methods used in the previous study, SP and RW, produce similarity degrees but not an alignment.
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To measure the improvement of our method, we calculate the relative improvement

ri =

⎛
⎜⎜⎜⎝

[sMPCA]1 − [sMGA]1
[sMGA]1

[sMPCA]2 − [sMGA]2
[sMGA]2

⎞
⎟⎟⎟⎠ (7)

where sMPCA and sMGA denote, respectively, the evaluations of MPCA and MGA, and[s]i denotes
the i-th element of a vector s.

7.4.1 Results

We parameterized MGA as proposed in [40]. For MPCA, we set k = 6 and performed experiments
like described above. The results for the benzamidine data set are shown in Figure 7 (a), where the
relative improvement vectors are plotted. As one can see, most of the ri vectors are lying in the first
quadrant, indicating a positive improvement for both criteria.

The corresponding results for the thermolysin data set are depicted in Figure 7 (b). Here, the picture
is not as clear, and the number of negative improvements is even slightly higher than the number
of positive ones. Apparently, MPCA performs especially good on highly similar structures while
not improving on structures that are more diverse. This is hardly surprising, since MPCA strongly
exploits information about the geometry of the structures while MGA, as a graph-based approach,
is more flexible and can more easily deal with local variations and deformations.
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Figure 7: Relative improvements (ri) obtained by substituting the MGA approach in MPCA
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7.4.2 Parametrization

As an important advantage of MPCA, it deserves mentioning that it only has a single parameter,
while MGA has six parameters. In spite of this, we found that it often produces better results, even
when trying to parameterize MGA in an optimal way. For example, Figure 8 shows a set of solutions
for the benzamidine data that we found by varying the parameters in MPCA and MGA. For ease
of exposition, we only plotted the solutions that are Pareto optimal2 in the two respective sets of
solutions; in total, 7776 result vectors s were computed for MGA by varying its 5 parameters in a
systematic way. This was done by choosing penalties from −5 to 0 and rewards form 0 to 5 and
considering all possible combinations (see [40] for an explanation of these parameters). For MPCA
there is only one parameter (threshold k) to be chosen, so that here only 12 results were calculated
by considering k = 0, . . . , 11. As one can see in Figure 8, the MPCA solutions are consistently better
than the MGA solutions, regardless of the parameterization.
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Figure 8: Pareto optimal solutions found by MGA (circles) and MPCA (crosses)

7.5 Structure Retrieval

The focus of the third study is on the ability to detect common substructures in a set of biochemical
structures. We randomly selected 100 subsets of c compounds from the benzamidine data set and
used MPCA and MGA to calculate an alignment. Then, we checked whether the aforementioned
benzamidine core fragment, an amide derivative of benzol which consists of 25 atoms (11 hydro-
gens), was fully conserved in the alignment, which means that all pseudocenters belonging to the
core were mutually assigned in a correct way. For detecting the core fragment we searched for
conserved patterns in the alignment and used the parameter ω = 1 and ξ = 0.9.

The results, shown in Table 4 for different numbers c, clearly show that MPCA is able to retrieve the
core fragment much more reliably than MGA, regardless of the merging technique used.

Table 4: Percent of alignments in which the benzamidine core fragment was fully conserved in the
alignment of c = {2, 4, 8, 16} structures, and consistency value.

c 2 4 8 16 consist
MGA 0.85 0.38 0.14 0.04 —
MPCA (star) 0.97 0.92 0.80 0.76 0.8686
MPCA (k-partite) 0.93 0.83 0.78 0.67 0.8023
MPCA (tree) 0.97 0.96 0.93 0.90 0.8953

The star and tree-based alignment derive a multiple alignment indirectly, through merging pairwise
alignments; k-partite obtains the multiple alignment in one step, however, by using a greedy heuris-
tic. Thus, it is natural to ask for the consistency of these methods. To answer this question, we

2Given a set of solutions S, a solution s ∈ S is called Pareto optimal if it is not dominated by any other solution. A solution
x dominates another solution y if x[i] ≥ y[i] for all i and x[i] > y[i] for at least one i.
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compared the pairwise alignments induced by each method, i.e., by the multiple alignment con-
structed by the method, with the actually optimal pairwise alignments. As a measure of consistency
between two pairwise alignments, we used the number of mutually assigned points that are shared
by both alignments, divided by the number of such tuples contained in either the first or the second
alignment. The average of these consistency degrees over all pairwise alignments is given in Table
4. As can be seen, all techniques perform reasonably well; the tree-based approach even sticks out
a bit and achieves the best results.

8 Conclusions

In this paper, we have introduced labeled point cloud superposition (LPCS) as a novel tool for struc-
tural bioinformatics, namely as a method for comparing biomolecules on a structural level. The
concept of a labeled point cloud, appears to be a quite natural representation for biological struc-
tures [33, 34]. In comparison to other approaches, such as the prevalent graph-based methods, the
modeling step is hence simplified and does not involve any complex transformations. More impor-
tantly, a labeled point cloud preserves the full geometric information and makes it easily accessible
to computational procedures.

Taking advantage of suitable fuzzy logic-based modeling techniques, we have defined a reasonable
measure of similarity between two labeled point clouds. A labeled point cloud superposition is then
defined in terms of a spatial transformation that maximizes this degree of similarity. Like for related
problems in bioinformatics, such as sequence alignment, the computation of the similarity between
two objects hence involves the solution of an optimization problem. To this end, we have proposed
the use of an evolution strategy, an approach from the family of evolutionary algorithms, which
appears to be especially suitable for this problem.

First experimental results with classification data are quite promising and suggest that our approach
is able to compare protein binding sites in a reasonable way. In terms of classification accuracy,
LPCS turned out to be significantly better than existing (graph-based) methods used for compari-
son. Moreover, even though it is computationally more complex than these methods for small data
sets, it scales much better and becomes more efficient for larger data sets. This is due to the fact
that, in contrast to graph-based methods, the search space does not depend on the size of the
point clouds and remains low-dimensional. LPCS also compares favorably with geometric hashing,
another geometric approach to structure comparison, both in terms of performance and runtime.
Besides, it is conceptually simpler, with less parameters that need to be defined by the user.

Drawing on the method of labeled point cloud superposition, we furthermore proposed the concept
of a multiple point cloud alignment which establishes a one-to-one correspondence between the
points from different structures and, therefore, can be seen as a structural counterpart to sequence
alignment. Again, first experiments carried out in the context of protein binding site comparison are
quite promising and show that our method is competitive, if not even superior, to state-of-the-art
graph-based methods for multiple structure alignment.

Still, as mentioned previously, graph-based approaches may have advantages in situations where a
high degree of flexibility is needed. As future work, we therefore plan to develop hybrid approaches
combining the advantages of both geometrical and graph-based methods.
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[8] K. M. Borgwardt and H. P. Kriegel. Shortest-path kernels on graphs. In International Conference on Data
Mining, pages 74–81, Houston, Texas, 2005.

[9] F. Briganti, S. Mangani, P. Orioli, A. Scozzafava, G. Vernaglione, and C. T. Supuran. Carbonic anhydrase
activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II
with histamine. Biochemistry, 36(34):10384–10392, 1997.

[10] H. Bunke and X. Jiang. Graph matching and similarity. Intelligent systems and interfaces, 15:281 – 304,
2000.

[11] H. Bunke, X. Jiang, and A. Kandel. On the Minimum Common Supergraph of two Graphs. Computing,
65(1):13–25, 2000.

[12] W.J. Christmas, J. Kittler, and M. Petrou. Structural Matching in Computer Vision using Probabilistic
Relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):749–764, 1995.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry. Springer, New
York, 2000.

[14] M. Ferraroni, S. Tilli, F. Briganti, W. R. Chegwidden, C. T. Supuran, K. E. Wiebauer, R. E. Tashian, and
A. Scozzafava. Crystal structure of a zinc-activated variant of human carbonic anhydrase I, CA I Michigan
1: evidence for a second zinc binding site involving arginine coordination. Biochemistry, 41(20):6237–
6244, 2002.
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[40] N. Weskamp, E. Hüllermeier, D. Kuhn, and G. Klebe. Multiple graph alignment for the structural analysis of
protein active sites. IEEE Transactions on Computational Biology and Bioinformatics, 4(2):310–320, 2007.

[41] T. J. Wheeler and J. D. Kececioglu. Multiple alignment by aligning alignments. Bioinformatics, 23(13):i559–
i568, 2007.

[42] H. J. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE Computational Science and
Engineering, 1997.

[43] L. Xu and E. Oja. Improved Simulated Annealing, Boltzmann Machine, and Attributed Graph Matching. In
EURASIP Workshop on Neural Networks, pages 151–160. Springer-Verlag London, UK, 1990.

[44] R. R. Yager. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE
Transactions on Systems, Man and Cybernetics, 18(1):183 – 190, 1988.

[45] L.A. Zadeh. A computational approach to fuzzy quantifiers in natural languages. Computing and Mathe-
matics with Applications, 9:149–184, 1983.

21


