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Abstract
Building on recent research on preference hand-
ling in artificial intelligence and related fields,
our goal is to develop a coherent and generic
methodological framework for case-based reason-
ing (CBR) on the basis of formal concepts and
methods for knowledge representation and reason-
ing with preferences. A preference-based approach
to CBR appears to be appealing for several reasons,
notably because case-based experiences naturally
lend themselves to representations in terms of pref-
erence or order relations. Moreover, the flexibil-
ity and expressiveness of a preference-based for-
malism well accommodate the uncertain and ap-
proximate nature of case-based problem solving. In
this paper, we outline the basic ideas of preference-
based CBR and sketch a formal framework for re-
alizing these ideas.

1 Introduction
Case-based reasoning (CBR) is a problem solving paradigm
built upon a rule of thumb suggesting that “similar problems
tend to have similar solutions” [Kolodner, 1993; Aamodt and
Plaza, 1994]. More specifically, the idea of CBR is to ex-
ploit the experience from similar problems in the past and to
adapt then successful solutions to the current situation. Thus,
the core of every case-based problem solver is the case base,
which is a collection of memorized “chunks of experience”,
called cases. Besides, the concept of similarity plays a pivotal
role in every CBR system.

Despite its great practical success, work on the theoreti-
cal foundations of CBR is still under way, and a coherent and
universally applicable methodological framework is yet miss-
ing. The CBR cycle proposed by Aamodt and Plaza [1994] is
a commonly accepted process model, which nicely illustrates
the main aspects of the case-based problem solving paradigm.
Likewise, the metaphor of knowledge containers, introduced
by Richter [Richter, 1995], provides a general framework
for the structuring of knowledge in CBR. However, both are
high-levels models and still rather far from the conceptual re-
alization and implementation of a case-based problem solver.
On the other extreme, many CBR systems have been designed
for tackling concrete problems. These, however, are mostly

tailored for a specific purpose and not easily applicable to a
wider range of problems.

In-between these two extremes, conceptual models and
practical systems, there is arguably a need for developing
CBR methodologies [Watson, 1998]. On the one hand, a CBR
methodology should be sufficiently general and abstract, so as
to allow for the development of generic algorithms, for ana-
lyzing formal properties, etc. On the other hand, it should also
be sufficiently concrete, so as to support the development of
specific applications. To make this idea more tangible, con-
sider as an analogy the formalism of graphical models, by
now an established methodology for the design of probabilis-
tic expert systems [Koller and Friedman, 2009]. This class of
models disposes of a formal theory and generic algorithms,
but also tools for supporting the design of models for con-
crete applications.

In [Hüllermeier and Schlegel, 2011], we have made a
first step toward a methodological framework for case-based
reasoning on the basis of formal concepts and methods for
knowledge representation and problem solving with prefer-
ences. The topic of preferences has recently attracted con-
siderable attention in artificial intelligence (AI) research and
plays an increasingly important role in several AI-related
fields, including, e.g., agents, constraint satisfaction, deci-
sion theory, planning, machine learning, and argumentation
[Doyle, 2004; Goldsmith and Junker, 2008; Domshlak et al.,
2011]. Preference-based methods are especially appealing
from an AI perspective, notably as they allow one to spec-
ify desires in a declarative way, to combine qualitative and
quantitative modes of reasoning and to deal with inconsis-
tencies and exceptions in a quite flexible manner. Indeed, a
preference can be considered as a relaxed constraint, which,
if necessary, can be violated to some degree.

The important advantage of an increased flexibility of
a preference-based problem solving paradigm is nicely ex-
plained by Brafman and Domshlak [2009]: “Early work in
AI focused on the notion of a goal—an explicit target that
must be achieved—and this paradigm is still dominant in AI
problem solving. But as application domains become more
complex and realistic, it is apparent that the dichotomic no-
tion of a goal, while adequate for certain puzzles, is too crude
in general. The problem is that in many contemporary ap-
plication domains ... the user has little knowledge about the
set of possible solutions or feasible items, and what she typi-



cally seeks is the best that’s out there. But since the user does
not know what is the best achievable plan or the best avail-
able document or product, she typically cannot characterize
it or its properties specifically. As a result, she will end up
either asking for an unachievable goal, getting no solution in
response, or asking for too little, obtaining a solution that can
be substantially improved.”

Our claim is that the above insights do not only apply to AI
in general but to CBR in particular. In fact, as will be argued
in more detail below, case-based experience can be modeled
in terms of preference information in a quite convenient way
and, moreover, case-based inference can be realized quite ele-
gantly in the form of preference processing. As pointed out
in the above quotation, a key advantage in comparison to the
classical (constraint-based) approach [Hüllermeier, 2007] is
an increased flexibility and expressiveness, which appears to
be especially advantageous for CBR.

The remainder of the paper is organized as follows. In the
next section, the main ideas of our approach to preference-
based CBR are outlined in an informal way. A formal frame-
work of preference-based CBR as well as two core compo-
nents of this framework, namely inference and search, is then
introduced in Section 3. The paper ends with some conclud-
ing remarks and an outlook on future work in Section 4.

2 Preference-based CBR: General Ideas
Experience in CBR is most commonly (albeit not exclu-
sively) represented in the form of problem/solution tuples
(x,y) ∈ X × Y, where x is an element of a problem space
X, and y an element of a solution space Y. These two spaces
can be as simple as Euclidean or categorical spaces (like in
classification or regression problems), but may also be very
complex; for example, in the problem of text summarization,
X could be the “space” of scientific articles and Y the “space”
of abstracts [Capus and Tourigny, 2003].

Despite its generality and expressiveness, the standard
problem/solution representation exhibits some limitations,
both from a knowledge acquisition and reuse point of view.

• Existence of correct solutions: It assumes the existence
of a “correct” solution for each problem, and implicitly
even its uniqueness. This assumption is often not ten-
able. In text summarization, for example, there is not
a single “correct” abstract of an article. Instead, there
will be many possible alternatives, maybe more or less
preferred by the user.

• Verification of optimality: Even if the existence of a sin-
gle correct solution for each problem could be assured,
it will often be impossible to verify the optimality of
the solution that has been produced by a CBR system.
Storing a suboptimal solution y for a problem x, how-
ever, and later on reusing this solution as if it were opti-
mal, may mislead future problem solving. This issue is
less critical, though does not dissolve completely, if only
“acceptable” instead of optimal solutions are required.

• Loss of information: Storing only a single solution y for
a problem x, even if it can be guaranteed to be optimal,
may come along with a potential loss of information.

In fact, during a problem solving episode, one typically
tries or at least compares several candidate solutions,
and even if these solutions are suboptimal, preferences
between them may provide useful information.
• Limited guidance: From a reuse point of view, a re-

trieved case (x,y) only suggests a single solution,
namely y, for a query problem x0. Thus, it does not
imply a possible course of action in the case where the
suggestion fails: If y is not a good point of departure,
for example since it cannot be adapted to solve x0, there
is no concrete recommendation on how to continue.

To avoid these problems, preference-based CBR replaces
experiences of the form “solution y (optimally) solves prob-
lem x” by weaker information of the form “y is better (more
preferred) than z as a solution for x”, that is, by a prefer-
ence between two solutions “contextualized” by a problem
x. More specifically, the basic “chunk of information” we
consider is symbolized in the form y �x z and suggests that,
for the problem x, the solution y is supposedly at least as
good as z.

This type of knowledge representation overcomes many of
the problems discussed above. As soon as two candidate so-
lutions y and z have been tried as solutions for a problem x,
these two alternatives can be compared and, correspondingly,
a strict preference in favor of one of them or an indifference
can be expressed. To this end, it is by no means required that
one of these solutions is optimal. It is worth mentioning, how-
ever, that knowledge about the optimality of a solution y∗, if
available, can be handled, too, as it simply means that y∗ � y
for all y 6= y∗. In this sense, the conventional CBR setting
can be considered as a special case of preference-based CBR.

The above idea of a preference-based approach to knowl-
edge representation in CBR also suggests a natural extension
of the case retrieval and inference steps, that is, the recom-
mendation of solutions for a new query problem: Instead of
just proposing a single solution, it would be desirable to pre-
dict a ranking of several (or even all) candidate solutions, or-
dered by their (estimated) degree of preference:

y1 �x y2 �x y3 �x . . . �x yn (1)

Obviously, the last problem mentioned above, namely the
lack of guidance in the case of a failure, can thus be over-
come.

In order to realize an approach of that kind, a number of
important questions need to be addressed, including the fol-
lowing: How to represent, organize and maintain case-based
experiences, given in the form of preferences referring to a
specific context, in an efficient way? How to select and ac-
cess the experiences which are most relevant in a new prob-
lem solving situation? How to combine these experiences and
exploit them to infer a solution or, more generally, a prefer-
ence order on a set of candidate solutions, for the problem at
hand?

3 A Formal Framework
In the following, we assume the problem space X to be
equipped with a similarity measure SX : X × X → R+

or, equivalently, with a (reciprocal) distance measure ∆X :



X × X → R+. Thus, for any pair of problems x,x′ ∈ X,
their similarity is denoted by SX(x,x′) and their distance
by ∆X(x,x′). Likewise, we assume that the solution space
Y to be equipped with a similarity measure SY or, equiva-
lently, with a (reciprocal) distance measure ∆Y . In general,
∆Y (y,y′) can be thought of as a kind of adaptation cost, i.e.,
the (minimum) cost that needs to be invested to transform the
solution y into y′.

In preference-based CBR, problems x ∈ X are not asso-
ciated with single solutions but rather with preferences over
solutions, that is, with elements from a class of preference
structures P(Y) over the solution space Y. Here, we make
the assumption that P(Y) is given by the class of all weak
order relations � on Y, and we denote the relation associ-
ated with a problem x by �x. More precisely, we assume
that �x has a specific form, which is defined by an “ideal”
solution1 y∗ ∈ Y and the distance measure ∆Y : The closer
a solution y to y∗ = y∗(x), the more it is preferred; thus,
y �x z iff ∆Y (y,y∗) ≤ ∆Y (z,y∗). In conjunction with
the regularity assumption that is commonly made in CBR,
namely that similar problems tend to have similar (ideal) so-
lutions, this property legitimates a preference-based version
of this assumption: Similar problems are likely to induce sim-
ilar preferences over solutions.

3.1 Case-based Inference
The key idea of preference-based CBR is to exploit experi-
ence in the form of previously observed preferences, deemed
relevant for the problem at hand, in order to support the cur-
rent problem solving episode; like in standard CBR, the rele-
vance of a preference will typically be decided on the basis of
problem similarity, i.e., those preferences will be deemed rel-
evant that pertain to similar problems. An important question
that needs to be answered in this connection is the following:
Given a set of observed preferences on solutions, considered
representative for a problem x0, what is the underlying pref-
erence structure �x or, equivalently, what is the most likely
ideal solution y∗ for x0?

Case-based Inference as Probability Estimation
We approach this problem from a statistical perspective, con-
sidering the true preference model �x0∈ P(Y) associated
with the query x0 as a random variable with distribution
P(· |x0), where P(· |x0) is a distribution Pθ(·) parametrized
by θ = θ(x0) ∈ Θ. The problem is then to estimate this dis-
tribution or, equivalently, the parameter θ on the basis of the
information available. This information consists of a set D of
preferences of the form y � z between solutions.

The basic assumption underlying nearest neighbor estima-
tion is that the conditional probability distribution of the out-
put given the input is (approximately) locally constant, that
is, P(· |x0) ≈ P(· |x) for x close to x0. Thus, if the
above preferences are coming from problems x similar to x0

(namely from the nearest neighbors of x0 in the case base),
then this assumption justifies considering D as a representa-
tive sample of Pθ(·) and, hence, estimating θ via maximum

1The solution y∗ could be a purely imaginary solution, which
may not exist in practice.

likelihood (ML) inference by

θML = arg max
θ∈Θ

Pθ(D) . (2)

An important prerequisite for putting this approach into prac-
tice is a suitable data generating process, i.e., a process gen-
erating preferences in a stochastic way.

A Discrete Choice Model
Our data generating process is based on the idea of a discrete
choice model as used in choice and decision theory [Peterson,
2009]. Recall that the (absolute) preference for a solution y ∈
Y supposedly depends on its distance ∆Y (y,y∗) ≥ 0 to an
“ideal” solution y∗, where ∆(y,y∗) can be seen as a “degree
of suboptimality” of y. As explained in [Hüllermeier and
Schlegel, 2011], more specific assumptions on an underlying
(latent) utility function on solutions justify the logit model of
discrete choice:

P(y � z) =
exp(−β(∆Y (y,y∗))

exp(−β(∆Y (z,y∗)) + exp
(
− β∆Y (y,y∗))

Thus, the probability of observing the (revealed) prefer-
ence y � z depends on the degree of suboptimality of y
and z, namely their respective distances to the ideal solu-
tion, ∆Y (y,y∗) and ∆Y (z,y∗): The larger the difference
∆Y (z,y∗) − ∆Y (y,y∗), i.e., the less optimal z in compar-
ison to y, the larger the probability to observe y � z; if
∆Y (z,y∗) = ∆Y (y,y∗), then P(y � z) = 1/2. The
coefficient β can be seen as a measure of precision of the
preference feedback. For large β, P(y � z) converges to
0 if ∆Y (z,y∗) < ∆Y (y,y∗) and to 1 if ∆Y (z,y∗) >
∆Y (y,y∗); this corresponds to a deterministic (error-free)
information source. The other extreme case, namely β = 0,
models a completely unreliable source reporting preferences
at random.

Maximum Likelihood Estimation
The probabilistic model outlined above is specified by two pa-
rameters: the ideal solution y∗ and the (true) precision param-
eter β∗ ∈ R+. Depending on the context in which these pa-
rameters are sought, the ideal solution might be unrestricted
(i.e., any element of Y is an eligible candidate), or it might be
restricted to a certain subset Y0 ⊆ Y of candidates.

Now, to estimate the parameter vector θ∗ = (y∗, β∗) ∈
Y0 × R∗ from a given set D = {y(i) � z(i)}Ni=1 of ob-
served preferences, we refer to the maximum likelihood esti-
mation principle. Assuming independence of the preferences,
the likelihood of θ = (y, β) is given by

`(θ) =

N∏
i=1

P
(
y(i) � z(i) | θ

)
(3)

The ML estimation θML = (yML, βML) of θ∗ is given by
the maximizer of (3):

θML =
(
yML, βML

)
= arg max

y∈Y0, β∈R+

`(y, β) (4)

The problem of finding this estimation in an efficient way is
discussed in [Hüllermeier and Schlegel, 2011].



3.2 CBR as Preference-guided Search
Case-based inference as outlined above realizes a “one-shot
prediction” of a promising solution for a query problem,
given preferences in the context of similar problems encoun-
tered in the past. In a case-based problem solving process,
this prediction may thus serve as an initial solution, which is
then adapted step by step. Formally, an adaptation process
of that kind can be formalized as a search process, namely a
traversal of a suitable space of candidate solutions [Bergmann
and Wilke, 1998].

In the spirit of preference-based CBR, we implement case-
based problem solving as a search process that is guided by
preference information collected in previous problem solving
episodes. The type of application we have in mind is charac-
terized by two important properties:

• The evaluation of candidate solutions is expensive.
Therefore, only relatively few candidates can be consid-
ered in a problem solving episode before a selection is
made. Typical examples include cases where an evalu-
ation requires time-consuming simulation studies or hu-
man intervention (for example, the reading of a text sum-
mary).

• The quality of candidate solutions is difficult to quan-
tify. Therefore, instead of asking for numerical utility
degrees, we make a much weaker assumption: Feed-
back is only provided in the form of pairwise compar-
isons, informing about which of two candidate solutions
is preferred (for example, which of two text summaries
is better). Formally, we assume the existence of an “ora-
cle” (for example, a user or a computer program) which,
given a problem x0 and two solutions y and z as input,
returns a preference y � z or z � y as output.

We assume the solution space Y to be equipped with a topol-
ogy that is defined through a neighborhood structure: For
each y ∈ Y, we denote by N (y) ⊆ Y the neighborhood of
this candidate solution. The neighborhood is thought of as
those solutions that can be produced through a single modifi-
cation of y, i.e., by applying one of the available adaptation
operators to y (for example, adding, removing or modifying
a single sentence in an abstract).

Our case base CB stores problems xi together with a set
of preferences P(xi) that have been observed for these prob-
lems. Thus, each P(xi) is a set of preferences of the form
y �xi z, which are collected while searching for a good so-
lution to xi.

We conceive preference-based CBR as an iterative process
in which problems are solved one by one. In each problem
solving episode, a good solution for a new query problem is
sought, and new experiences in the form of preferences are
collected. In what follows, we give a high-level description
of a single problem solving episode:

(i) Given a new query problem x0, the K nearest neigh-
bors x1, . . . ,xK of this problem (i.e., those with small-
est distance in the sense of ∆X ) are retrieved from the
case base CB, together with their preference informa-
tion P(x1), . . . ,P(xK).

(ii) This information is collected in a single set of prefer-
encesP , which is considered representative for the prob-
lem x0 and used to guide the search process.

(iii) The search for a solution starts with an initial candidate
y∗ ∈ Y, namely the “one-shot prediction” (4) based on
P , and iterates L times. Restricting the number of iter-
ations by an upper bound L reflects our assumption that
an evaluation of a candidate solution is costly.

(iv) In each iteration, a new candidate yquery is determined,
again based on (4), and given as a query to the oracle,
i.e., the oracle is asked to compare yquery with the cur-
rent best solution y∗. The preference reported by the
oracle is memorized by adding it to the preference set
P0 = P(x0) associated with x0, as well as to the set
P of preferences used for guiding the search process.
Moreover, the better solution is retained as the current
best candidate.

(v) When the search stops, the current best solution y∗ is
returned, and the case (x0,P0) is added to the case base.

The preference-based guidance of the search process is real-
ized in (iii) and (iv). Here, our case-based inference method
is used to find the most promising candidate among the neigh-
borhood of the current solution y∗, based on the preferences
collected in the problem solving episode so far. By providing
information about which of these candidates will most likely
constitute a good solution for x0, it (hopefully) points the
search into the most promising direction.

For a detailed description of the above search procedure,
as well as first experimental studies, we refer to [Abdel-Aziz
et al., 2013].

4 Conclusion
In this paper, we have presented the idea of a preference-
based approach to CBR: Experience is represented in the
form of preferences, which are “contextualized” by a previ-
ously solved problem, and these preferences are used to direct
the search for a good solution to a new problem. This is an in-
teresting alternative to conventional CBR whenever solution
quality is a matter of degree and feedback is only provided in
an indirect or qualitative way. We have introduced a general
framework of preference-based CBR, in which prediction is
realized through statistical inference and problem solving is
formalized as (heuristic) search.

For future work, we plan to generalize our framework in
various directions, and extend it by adding components that
are essential for a complete and effective CBR system. For
example, since the number of preferences collected in the
course of time may become rather large, effective methods
for case base maintenance ought to be developed [Smyth and
McKenna, 2001]. Besides, we are of course interested in test-
ing and evaluating our approach in different application do-
mains.
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