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In this paper, fuzzy initial value problems for modelling aspects of uncertainty in dynam­
ical systems are introduced and interpreted from a probabilistic point ofview. Due to the 
uncertainty incorporated in the model, the behavior of dynamical systems modelIed in 
this way will generally not be unique. Rather, we obtain a large set of trajectories which 
are more or less compatible with the description of the system. We propose so-called 
fuzzy reachable sets for characterizing the (fuzzy) set of solutions to a fuzzy initial value 
problem. Loosely spoken, a fuzzy reachable set is defined as the (fuzzy) set of possible 
system states at a certain point of time, with given constraints concerning the initial 
system state and the system evolution. The main-part of the paper is devoted to the 
development of numerical methods for the approximation of such sets. Algorithms for 
precise as weil as outer approximations are presented. It is shown that fuzzy reachable 
sets can be approximated to any degree of accuracy under certain assumptions. Our 
method is illustrated by means of an example from the field of economics. 

Keywords: uncertain dynamics, fuzzy differential equations, fuzzy reachable sets, ap­
proximation, nuinerical computation. 

1. Introduction 

A common approach to the mathematical modelling of dynamical systems in 
engineering and the natural sciences is to characterize the system behavior by means 
of (ordinary) differential equations. Since these models are purely deterministic, 
the application of this approach requires precise knowlege about the system under 
investigation. However, this knowledge will rarely be available. On the contrary, 
parameter values, functional relationships, or initial conditions will often not be 
known precisely. 

Consider, for instance, some physiological model in form of a set of differential 
equations. Some functional relationships between system variables are often known: 
"Right atrial pressure is equal to the mean circulatory filling pressure minus a 
pressure gradient which is the product of cardiac output and the resistance to 
venous return." However, several parameters of such equations may be unknown 
since system parameters are not directly measurable, those parameters may vary 
with time or differ from patient to patient, or exact values are only known for 
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healthy patients but not under pathological conditions. Even worse, other functional 
relationships may only be characterized "linguistically" but not in terms of a precise 
mathematical model: "Increases in right atrial pressure produce increases in cardiac 
output only when right atrial pressure is relatively low and the ventricles are not 
distended" 4. Despite these model uncertainties, it might be important to predict 
the system behavior, Le., the patient's condition. For instance, it might be necessary 
to derive at least some bounds on the future cardiac output in order to decide on 
some medical treatment. 

Probabilistic extensions of mathematical methods, such as stochastic differential 
equations 9, have been developed in order to take account of model uncertainties 
and the indeterminancy of the system evolution. However, recent research has 
shown that many different types of uncertainty exist 39 and that the framework of 
probability theory is perhaps inadequate to capture the fuU scope of uncertainty 20. 

At least, alternative frameworks such as fuzzy set theory 38 and fuzzy measure 
theory 35 seem to complement probability theory in a meaningful way 19. According 
to our opinion, this observation is also true for the domain of dynamical systems. 
Indeed, alternative approaches to modeIling uncertain dynamical systems have been 
proposed recently in research areas such as qualitative reasoning 25,26 and fuzzy set 
theory 16,17,21,32. 

The approaches just mentioned in connection with fuzzy set theory have pro­
posed a concept of juzzy differential equations which is principally based on the 
"fuzzification" of the differential operator. The definition of this operator makes 
use of a generalization of the so-called Hukuhara difference of sets X, Y C lRn : A 
fuzzy set Z E lF(lRn) is called the H-difference of X and Y, denoted X - Y, if 
X =Y+ Z. Here, + is the usual addition of fuzzy sets and lF(./Rn) denotes the set 
of all fuzzy subsets of ./Rn. A fuzzy set X/(to) is defined to be the derivative of a 
fuzzy function X : ./Rm -+ lF(./Rn ) at to if the limits 

, X(to + At) - X(to) I' X(to) - X(to - At)
I1m 1m (1)

ßt/,o At ' ßt/,o At 

exist and are equal to X/(to), A solution to a juzzy initial value problem (FIVP) 
based on this kind of derivative is thought of as a trajectory in the "state space" 
lF(lRn). However, the interpretation of such a solution seems unclear. At least, this 
approach leads to results which are not intuitive. Consider the (crisp) problem 
x = -x, x(O) E [-1, IJ with an unknown initial system state as an example, where 
x denotes the derivative of the variable x. Since x(t) a exp(-t) is the general 
solution of the initial value problem x= -x, x(O) a and a is restricted to values 
within the interval [-1,1] in our example, we should expect to obtain a solution 
in form of a prediction x(t) E [-exp(-t),exp(-t)]. However, the fuzzy function 
(which is actually a set-valued function) solving this initial value problem according 
to (1) is X(t) =[- exp(t), exp(t)]. Particularly, we have diam(X(t» -+ 00 instead 
of diam(X(t» -+ 0 as t -+ 00, where diam(X) := sup {Ix - yll x, y EX}. Indeed, 
the fact that diam(X(t)) is non-decreasing in t, which means that the prediction of 
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the system states xCt) can only beco{lle less precise over time, for each solution of 
a fuzzy differential equation is a simple consequence of (1). 

A solution to a FIVP based on (1), Le., making use of generalized arithmetic 
operations and a fuzzy differential calculus 8, is interpreted as a single trajectory 
in F(]Rn). In 13 we have proposed a different definition of the "solution" to a 
FIVP which is closely related with set-valued analysis and set-valued differential 
equations 2,6. Instead of one "fuzzy" trajectory, our interpretation is that of a 
(fuzzy) set of "ordinary" trajectories. According to our opinion, this approach 
produces more reasonable results. At least, it avoids such pathological examples as 
the one presented above. Moreover, as Section 2 will show, it can be weH motivated 
from a semantical point of view. 

In this paper, we are going to "operationalize" our approach., Le., we are going 
to propose a method for computing approximations of (an adequate characterization 
of) the set of all solutions to a FIVP using numerical methods. Since finding this set 
of solutions analytically does only work with trivial examples, a numerical approach 
seems to be the only way of "solving" such problems. 

The paper is organized as folIows: For the sake of completeness we briefty re­
view our approach to fuzzy differential equations· in Section 2, although most of the 
material of this section including technical details can also be found in the compan­
ion paper 13. Numerical solution methods require a "discretization" of the original 
problem. In Section 3 several discretization steps in connection with fuzzy differen­
tial equations are discussed. Numerical approximation methods are then proposed 
in Section 4. A discussion of the results in Section 5 concludes the paper. 

2. Fuzzy Initial Value Problems 

2.1. Modelling bounded uncertainty 

One way to model uncertainty in a dynamical system is to replace functions and 
initial values in the problem 

x(t) = !o(t,x(t», x(O) = Xo E ]Rn (2) 

by set-valued functions and initial sets. This leads to the foHowing (generalized) 
initial value problem (GIVP): 

x(t) E F(t, x(t», x(O) E X o C]Rn , (3) 

-+ 2lRnwhere F : [0, Tl X ]Rn \ {0} is a set-valued function, X o is compact and 
convex. A solution x of (3) is understood to be an absolutely continuous function 
x: [0, Tl -+ ]Rn which satisfies (3) almost everywhere. The function F is taken to be 
set-valued in order to represent the bounded uncertainty of the dynamical system: 

•As will become clear in subsequent sections, the notion differential indusion seems more appro­
priate than differential equation. Nevertheless, we will use both terms interchangeably. 

http:F'u.z.zy
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For each system state (t, x) E [0, Tl x ]Rn the derivative is not known precisely, hut 
it is an element of the set F(t, x). With 

X := {x : [0, Tl -+ ]Rn IX is a solution of (3)} C C([D, T]) , (4) 

where C([O, TJ) is the set of continuous functions on [0, Tl, the reachable set X(t) 
at time t E [0, TJ is defined as 

X(t) {x(t) Ix EX} . 

The reachable set X (t) is the set of all possible system states at time t. Knowl­
edge about reachable sets is important for many applications such as, e.g., collision 
avoidance in robotics 11. Thus, it seems meaningful to characterize the behavior of 
uncertain dynamical systems by means of reachable sets. Our objective is to find 
approximations of these sets for the system (3) using numerical methods. In order 
to define meaningful approximation procedures, it is necessary to know some prop­
erties of these sets. Results concerning such properties have been presented in 13. 

Furthermore, we need a theoretical basis which allows us to solve (3) numerically, 
i.e., a discrete approximation of (3). Before we turn to these aspects, we consider a 
further generalization of (3). 

2.2. Fuzzy initial value problems 

A reasonable generalization of "set-valued" modelling, which takes aspects of 
gradedness into account, is the replacement of sets by fuzzy sets, Le. (3) becomes 
the fuzzy initial value problem 

x(t) E F(t,x(t», x(O) E Xo (5) 

on J [0, TJ with a fuzzy function F : J x ~n -+ t:n and a fuzzy set Xo E t:n , where 
t:n is the set of normal, upper semicontinuous, fuzzy-convex, and compactly sup­
ported fuzzy sets X E IF(~n). We suppose the right hand side to be continuous and 
bounded. Here, by continuity we mean continuity w.r.t the (generalized) Hausdorff 
metric on t:n . The Hausdorff distance between two (nonempty) sets A, B C ~n is 
given as 

dH(A, B) := max {ß(A, B), ß(B, An , 
where ß(A,B) := sUPxEA p(x,B) and p(x,B) := infyEB Ix Yl. The generalization 

dH(A, E):= sup dH([A]a, [El a ) 
aE(O,l] 

defines a distance measure for fuzzy sets A, E E IF(~n). The fuzzy function F is 
bounded if 

s : J x ~n -+ ~n , (t,x) H sup {Iyll y E supp(F(t, x»)} 
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is bounded, where supp(X) is the support set of a fuzzy set X. 
For sOme 0 < a ::; 1 consider the generalized initial value problem 

x(t) E Fa(t,x(t», x(O) E [Xol a , (6) 

where F is defined pointwise as the a-cut Fa(t, z) := [P(t, z)]a of the fuzzy set 
F(t, z). We call a function x : J -t !!Rn an a-solution to (5) if it is absolutely 
continuous and satisfies (6) almost everywhere on J. The set of all a-solutions to 
(5) Is denoted Xa, and the a-reachable set Xa(t) is defined as 

Xa(t) := {x(t) IxE Xa} . 

Proposition 1 Consider a FIVP and suppose the assumptions conceming the 
juzzy right hand side and the initial set to hold. 11 the solution sets Xa (0 < a ::; 1) 
are interpreted as corresponding level-sets, the dass {Xa I0 < a ::; I} defines a 
normal luzzy set X E lF(C(J» 01 solutions. Likewise, lor all 0 ::; t ::; T, the class 
{ X a ( t) I0 < a ::; I} defines anormal luzzy reachable set X\t) E F( IRn ) . 

Proor. For 0 < a < ß ::; 1 we obviously have Xß C Xa' In order to show that 
the class {Xa I0 < a ::; I} defines a fuzzy set we still have to guarantee that (let 
Xo := C(J)) 

(7) 

for all 0 < ß ::; 1. Observe that continuity and boundedness of F implies continuity 
and boundedness of Fa (0< a ::; 1). Moreover, since F is a fuzzy function and Xo 
is a fuzzy set, we have 

n . graph(Fa ) = graph(Fß) and n [XoJa = [Xolß , 
a:a<ß a:a<ß 

where graph(F) := («t,x),y) Iy E F(t,x)}. From F(t, x) E En also follows that Fa 
has compact and convex values. Then, (7) follows from Proposition 1 (Chapter 2.2) 
in 1. As a consequence we also obtain 

n Xa(t) Xß(t) 
a:a<ß 

for all 0 ::::: t ::; T. Of course, Xß(t) C Xa(t) does also hold true for 0 < a < ß ::; 1, 
i.e., {Xa (t) I0 < a ::; I} defines a fuzzy reachable set. 

Since F is continuous and normal on J x IRn, a continuous function I : J x !!Rn -t 

JJr'1 satisfying f(t,x) E H(t,x) on J x JRn exists. Furthermore, [Xoh -.:f. 0. Thus, a 
solution to (6) with a 1 exists (see basic existence theorems), and this solution 
belongs to XI, which means that X and X(t) are normal for all 0::::: t::::: T O. 

In connection with the numerical methods we are going to consider in subsequent 
chapters we will also assume that F satifies the Lipschitz condition 
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for all t E [0, Tl and (x, y) E JR.1l x ]Rn with a Lipsehitz eonstant L > O. 

2.3. A probabilistic interpretation 

Our interpretation of a fuzzy initial value problem is that of a generalized model 
0/ bounded uncertainty. Such a model is thought of as a erude characterization of 
an underlying but not precisely known probabilistic model in form of a probability 
space (C x D, A, Jl). The probability space models the uncertainty concerning the 
unknown function fo E C and the unknown initial system state Xo E D in (2). 
Here, C is a eertain dass of fUHL.: ..;;, and D is a set of possible initial system 
states. The tuple (Jo,xo) E C x D can be thought of as an unknown "parameter" 
of the initial value problem (2). In this case, the probability Jl is interpreted (in a 
subjective sense) as a (condltional) distribution based on a body of knowledge, Le., 
as a quantifieation of the belief eoncerning the "value" of (Jo, xo). 

The fuzzy right hand side in (5) is regarded as "weak" information about the 
probability Jl: For certain values a the set-valued (l-a)-section F1- er of F together 
with the (1 a)-cut [XolI-er are associated with an a-confidence region Cer x Der C 
C x D for the true but unknown tuple (Jo, xo). More precisely, Cer 1S defined as 
the set of all functions f E C which are selections of F1- er , Le., as the set of all 
funetions f E C satisfying f(t,x) E F1_ er (t,x) on J x lRn . Likewise, Der is defined 
as [Xoh-er C ]Rn. Thus, we obtain Prob «(Jo, xo) E Cer x Der) =1 - a. It should be 
noted that an alternative interpretation of (Jo, xo) as a random variable modelIed 
by the probability space (C x D, A, Jl) is possible just as weIL 

Loosely spoken, the set Xer of a-solutions 1S then thought of as an (1 - a)­
confidence region for the (unknown) solution(s) Xo : J -+ ]Rn to (2). Likewise, 
Xer(t) is a confidence region for the system state xo{t) E ]Rn at time t. The results 
obtained in 13 provide the formal basis for this interpretation. There, it is shown 
that the set X of solutions of a generalized initial value problem corresponds with 
the set of solutions associated with "ordinary" problems x = f(t, x), where f is a 
CaratModory selection of F. Therefore, the dass C should be defined as the dass 
of all functions f(t, x) measurable in t and continuous in x. Moreover, the existence 
of a probability measure compatible with the confidence regions associated with a 
fuzzy function F is proven. 

3. Discretization of Fuzzy Initial Value Problems 

3.1. Approximation 01 juzzy reachable sets 

The discussion in Section 2.2 made dear that the behavior of a fuzzy dynamical 
system, characterized by the "fuzzy funnel" {X(t) lOS t S T}, can be described 
"levelwise" by the a-Ievel sets {Xer(t) lOS t S T} for a E (O,lJ. For a certain 
value a, such a "crisp funnel" is defined by the reachable sets of a G IVP. Thus, we 
can characterize the set of solutions to a FIVP by characterizing the corresponding 
solution sets for a dass of GIVPs. 
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Of course, it is not possible to compute the a-Ievel sets for all values a within 
the interval (0,1]. Therefore, our first approximation step is to characterize a fuzzy 
reachable set X(t) by a finite set of (crisp) reachable sets 

and, hence, a "fuzzy funnel" by a finite set of "crisp funnels." The membership 
function of the fuzzy set X(t) is approximated by means of 

In 13 we have shown that this approximation makes sense: Under certain conditions, 
we can compute approximations to any degree of accuracy. 

3.2. Approximation 0/ reachable sets 

After having reduced the problem of computing fuzzy reachable sets to one of 
computing "crisp" reachable sets, we now turn to the question of how to characterize 
such sets. For computing approximations of reachable sets X(t) it is necessary to 
define a "discrete version" of (3). A simple first order discretization of (3) is given 
by 

(8) 

where 0 = to < t1 < ... < tN = T is a grid with stepsize h = TIN = ti - ti-1 

(i = 1, ... ,N). As a solution to difference indusion (8), we define any continuous 
and piecewise linear function yN : [0, TJ -t ]Rn such that 

where (Yo, ... ,YN) satisfies (8). Furthermore, let SN denote the set of aU such 
solutions (see 7). 

The following Euler scheme is the set-valued generalization of (8): 

Y(t + dt) = U Y + dtF(t,y) . (9) 
yEY(t) 

Denote by ytN the reachable set associated with (9) at time ti, i.e., 

Now, the question is whether yt -t X(T) for N -t 00. 

A closed-valued and continuous function R : [0, Tl -t 2lRn is called an R-solution 
of the initial value problem 

x(t) E F(t,x(t» almost everywhere on [0, Tl, x(O) = Xo (10) 
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if R(D) = {Xo} and 

lim ;- dH(R(t+ßt), U x + ßtF(t, x» =0 (11) 
lit-+O t...J.t 

xER(t) 

uniformly in t E [0, Tl (see 31). The union of the graphs of all solutions of (3) is 
usually called the integral funnel. Since the integral funnel is characterized by (11), 
this equation is also called funnel equation 31,33. The following two theorems can 
be found in 31. 

Theorem 1 Suppose F to have nonempty, compact and convex values and to be 
continuous on [0, TJ x jRn. Let the reachable set of problem (10) be bounded by 
K C jRn. Furthermore, let F be Lipschitz in a neighborhood of K with respect to 
x, uniformly in t E [0, T]. Then, a unique R-solution of (10) exists whose value at 
any tE [0, T] is the reachable set X(t) of initial value problem (10). 

The next theorem shows that this unique R-solution is obtained by means of 
y N for N -+ 00 30,31. 

Theorem 2 Under the conditions of Theorem 1, 

asN-+oo. 

For autonomous differential indusions the following theorem is obtained in 37. 

Theorem 3 Let the set-valued junction F : jRn -+ 2lR" have nonempty, compact and 
convex values. Moreover, let F be locally Lipschitz. Then, for the reachable sets X(t) 
of the autonomous initial value problem (10) it holds tme that limN-+oo YJj = X(T) 
for all D ::; T < T(xo). Here, the "escape time" T(xo) is defined as 

T(xo) := sup{T I U X(t) is compact } , 
°9::;T 

i.e., T(xo) is the smallest T for which Ix(t)1 -+ 00 as t -+ T for some solution x of 
(10). 

As we have seen, discrete methods can principally be used in order to find 
approximations of reachable sets X(t) with any degree of accuracy. Based on a 
discretization (9), we can pass from the true solution X(t) to an approximation 
Y(t) such that dH(X(t), Y(t» O(ßt), i.e., the approximation error is at most 
linear in ßt. A further problem, however, is that of handling the approximating sets 
yeti) = yt· Since these sets may have very complicated structures, it is generally 
not possible to represent them exactly. Thus, in addition to a discretization with 
regard to time, we have to perform an approximation of the dass of all subsets 
Y c jRn. For this purpose, consider a dass A C 2R" of sets which can be represented 
by means of a certain finite data structure. Moreover, for all Y c jRn suppose 
that a unique approximation Z = A(Y) E A does exist. We call the dass A a 
<5-approximation of an (arbitrary) dass B C 2Rn if 

VY E B : dH(Y,A(Y»::; <5. 
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Furthermore, we define the following approximation of (9): 

Z;:+1 == Z(tn+d == A ( U Z+ 6.t A(F(tn, Z))), Zer == A(Xo) . (12) 
zEZ:! 

Proposition 2 Suppose the dass A to be a t5-approximation of the dass of all 
subsets which have to be approximated in the iteration scheme (12). Moreover, 
suppose Xo and F(t,x) to be exady approximated byA, i.e., X o E A and F(t,x) E 

Afor all (t,x) E [a,T] x IR.n. Then, dH(Y:'",Z;:) ~ t5Texp(LT)/6.tfor alln E 
{O, ... ,N}. 

Proof. Consider Y:," and Z;: for some nE {O, ... ,N I} and let the sets Y::-1 

and V~l be defined as 

Y::-1 == U y+6.tF(tn ,y), V::-1 == U z+6.tF(tn,z). 

For Yl E Y::-1 we find some Yo E Y:," and 6.Yo E F(tn,yo) such that Yl == Yo + 
6.t 6.Yo. Let Zo E Z!:'. Since F(tn, zo) is compact, we find 6.zo E F(tn , zo) such 
that p(6.Yo, F(tn , zo)) == l6.yo - 6.z0 12 . Thus, using the Lipschitz property of F, 

l6.yo - 6.z0 12 p(6.Yo, F(tn , zoll ~ dH(F(tn , Yo), F(tn ,zo» ~ Llyo - ZOI2' 

For Zl := Zo + 6.t6.zo we have Zl E V~l and 

Taking the infimum on the right-hand side (w.r.t. Zo) we obtain 

IYl . Zd2 ~ (1 + L6.t)p(yo, Z;:) 5 (1 + L6.t)dH(Y:,", Z;:). 

Since this holds for all Yl E ynN (and Y!' is compact,) 

,8(Y::-l' V::-1 ) ~ (1 + L6.t)dH(Y:'",Z;:). 

In the same way one verifies that ß(V::-l,Y::-1 ) ~ (1 +L6.t)dH(Y:,",Z!:'), which 
means dH(Y::- 1 , V::-d 5 (1 + L6.t)dH(Y:,", Z;{) Since Z:!+1 == A(Vn~d, we have 

dH(Y~l,Z:!+1) == dH(Y::-l,A(Vn~l)) 
5 dH(Yn~l' V::-1 ) + dH(Vn~l,A(V:;'l)) (13) 

~ (1 + L6.t)dH(Y:'",Z;:) +15. 

The result then follows from the application of the (discrete) Gronwall lemma to 
(13) D. 

Corollary 1 Consider a sequence (6.tN) c ~ with 6.tN ~ °as N ~ 00. More­
over, suppose that for all N E N there is a dass AN satisfying the assumptions in 
Proposition 2 for t5N = O(6.tN) and that ON = O((6.tN)2). Then, 

dH(Z;;,X(n6.t)) ~ ° as N ~ 00 . 
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Proof. We have dH(Z~,X(nßt)) ~ dH(Z~,Y:) + dH(y:,X(nßt)), and we 
already know that dH(Yj",X(nßt» == O(ßtN). Moreover, from Proposition 2 
follows that 

Therefore, dll(Z~,X(nßt» = O(ßtN) O. 
Numerical methods for the simulation of ordinary initial value problems gener­

ally behave as folIows: The smaller the step size ßt is chosen, the more precise the 
simulation results are. Interestingly enough, the same does not need to be true for 
the simulation of generalized initial value problems based on (12). On the one hand, 
smaller values ßt induce better approximations Yn . On the other hand, the smaller 
ßt is, the more often such sets have to be approximated by sets Zn E A. Since most 
of these approximations are affiicted with a corresponding approximation error, the 
overall result may become less precise. This is also the reason why 6 N has to be 
chosen of the order O( (ßtN )2) in Corollary L 

4. Numerical Approximation Methods 

The numerical methods presented in this section are based on the theoretical 
considerations of the previous sections, particularly on the discretization steps dis­
cussed there. The basic question we have to answer in the simulation, Le., the 
numerical computation, of the behavior of fuzzy dynamical systems is the follow­
ing: Given a fuzzy set X(t) of reachable system states at time t, what does the set 
X(t + ßt) look like? In Section 3 we have argued that the fuzzy trajectory assa­
ciated with a fuzzy dynamical system can be approximated by a dass of "crisp" 
funnels associated with certain generalized initial value problems. 

A qllestion we still have to answer is how to approximate (reachable) sets X C 

jRn. There are different ways of representing such sets in finite-dimensional space, 
such as pointwise description, specification by their support fllnctions or by means of 
a parametric description of their boundaries, or as level curves of smooth functions 
22. The latter aspect is dosely related with efficient computation. Since a reachable 
set has to be represented by some (finite) data structure, it is not possible to deal 
with arbitrary sets X C jRn. Therefore, X has to be replaced by some set Z which is 
an efficient representation from a computational point of view. As just mentioned, 
Z can be a parameterized set, that is, a set which is determined by a small number 
of parameters. Geometrical bodies such as rectangles, spheres and ellipsoids may 
serve as an example 27,28. 

Intervals are a common approach for representing one-dimensional domains in 
numerical constraint satisfaction 5,29. Relations X C jRn are then represented 
by their none-dimensional projections, i.e. by an n-dimensional rectangle. This 
representation, which has also been used in simulation methods for uncertain dy­
namics 18,34, is very simple but it often leads to inaccurate results 12. Therefore, 
we will make use of more complex approximations. To achieve this, we consider the 
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dass 

A = eC1i ={lch(A, 1i) IA c jRn, eard(A) < 00, 1i C 2A 
} 

of loeal eonvex hulis. 

Definition 1 (eC1i) A Ioeal eonvex huH is defined as a hyper graph G = (A,1i), 
where A C lRn , eard(A) < 00, and 1i is a finite set 0/ hyperedges H C A. The set 
0/ all loeal eonvex hulls is denoted CC1i (where the dimension n is supposed to be 
fix.) The geometrieal body X C lRn assoeiated with the hypergraph G is defined as 

X:= U convH 
HE1l 

with conv H the eonvex huli 0/ the set H. X is also re/erred to as a loeal eonvex 
hult. 

The definition of a diserete eonvex hull in 10 can be seen as a special case of 
Definition 1 with the hyperedges H given implicitely. Based on a discretization of 
the state space into (rectangular) cells, a hyperedge is defined as a set of points 
located in a neighborhood of such cells. 

Definition 2 (~-net) Let ~ > O. A ~-net EA in lRn is defined as 

EA = {[Zl il, (Zl + 1) ilJ x ... X [zn il, (zn + 1) ~J IZl, .. ,Zn E Z} . 

For eaeh point x = (Zl il, ... ,Zn il) E lRn with Zl, .•. , Zn E Z the union U 0/ the 
set 0/2n "eells" C E EA satisfying x E C is ealled a neighborhood. The set 0/ all 
neighborhoods in EA is denoted N(EA). 

Definition 3 (eC1iA) An implicit local convex huH or discrete convex huH asso­
eiated with a ~-net EA and a (finite) set A C lRn is defined as 

X := U conv(A n U) . 
UEN(eA) 

The set 0/ all loeal convex hulis defined in this way is denoted eC1iA. 

The approximation of sets X C lRn by the dass eC1i is very flexible. It com­
bines advantages of global approximation with geometrical bodies (such as rect­
angles) and local approximation methods (such as the union of many small n­
dimensional rectangles.) For example, with 1i = {V} we obtain the global ap­
proximation leh( G) = conv V, whereas 1i = {{Xl},'" , {xm }} leads to the local 
"approximation" leh( G) == V. 

4.1. Precise approximations 

Consider a generalized initial value problem 

x(t) E F(t, x(t)), x(O) E Xo C lRn 
. 

As far as properties of the function Fand the initial set X o are concerned we have, 
according to our assumptions, that X o is convex and compact, F is bounded with 
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nonempty, compact and convex values, and F is continuous (with respect to dH). 
Moreover, F satisfies the Lipschitz condition dH(F(t,x),F(t,y)) $ Llx yl for all 
X, Y E jRn with a (global) Lipschitz constant L > O. Particularly, we assume X o E A 
and F( t, x) E A for all (t, x) E [0, Tl x ~. By lchß (M) we denote the Iocal convex 
huH defined implicitely by means of a ~-net. For fixed ~ > 0 let Aß be the dass 
of aIl such sets. 

Definition 4 (6-discretization) Let X c jRn. A finite set M c X satisfying 
dH(M,X) :5 6 is called a 6-discretization 0/ X. 

The algorithm for computing approximations Zn Z;: of the reachable sets 
X(tn ) is based on the following iteration scheme: 

Zn+! =lchß (ld (Z+~tF(tn,Z)))' Zo X o . (14) 

zEZ" 

Here, Zn is a 8-discretization of Zn, and F(tn,z) is a 6-discretization of F(tn,z). 
Thus, each step of the iteration scheme consists of three main parts: 

• 	 Discretization: A discretization Zn of Zn, as weIl as discretizations F(tn , z) of 
F(tn, z) have to be defined for all z E Zn. 

• 	 Integration: The set reachable at time tn+l is characterized by a finite set of 
points, which is the union of the sets of points associated with each z E Zn 
according to (14). 

• 	 Approximation: A new representation Zn+! E Aß of the approximation of the 
reachable set X (tn+!) has to be found. 

Finding effici~nt algorithms for these parts, particularly the steps of discretiza­
tion and integration, is a highly non-trivial task. We have developed and imple­
mented corresponding algorithms 36 which are, however, not discussed in detail 
here. 

We are now going to show that the algorithm based on (14) can compute ap­
proximations ofreachable sets X(t) to any degree of accuracy. 

Lemma 1 For all Me jRn and ~ > 0 it holds true that dH(M,lchß(M)) $~. 

ProoC. ObviousIy, M c lchß(M), Le., ß(M,lchß(M)) O. Now, consider some 
x E lchß (M). Then, x E conv{Xl, ... ,Xm } for some points Xl, ... ,Xm Iocated in 
an n-dimensional cube A with center a (al,'''' an) E jRn and Iength 2~. Now, 
suppose Ix - xkloo > ~ for all k E {l, ... ,m}. W.l.o.g. suppose X (0, ... ,0) and 
let B = [-~, ~ln. Then, {Xl,'" ,Xm}n B = 0. However, C := B n conv(A \ B) 
does not contain the origin in this case. This is obvious if ak 0 for some 1 :5 k :5 n. 

Otherwise, some calculations show that C is the convex huB of a set of n rectangles 
of dimension n 1 which also does not contain the origin. However, this is a 
contradiction to the assumption that X E conv{xl,'" ,xm }. Thus, there is some 
k E {1, ... , m} such that Xk E Band, hence, Ix Xk 100 :5~. Consequently, 
ß(lchß(M),M) :5 ~ and, therefore, dH(M,lchß(M)) :5 ~ D. 
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Proposition 3 Let Zn be the approximation 0/ the reachable set X(tn ) obtained 
by means 0/ (14). There are sequences (~N) C 114 and (ON) C 114 so that 
dH(Zn, X (tn)) -+ 0 as N -+ 00 /or all n E {I, ... ,N}. 

Proof. First, observe that ~tN = TjN -+ 0 as N -+ 00. Now, for all NE N we 
can choose ~N and ON in such way that ~tN ON + (1 + ~tN L) ON + ~N ~ (~tN)2, 
where L is the Lipschitz constant associated with F. Für some nE {O, ... ,N I} 
consider the sets 

11 A:= U z+~tF(tn,z), B:= U z+~tF(tn,z), 
zEZn 

where Zn is a o-approximation of Zn and F(tn, z) is a o-approximation of F(tn, z). 
We have 

according to Lemma 1. Now, let us estimate dH(A, B). Since B c A, we have 
dH(A,B) = ß(A,B). Consider some x E A, Le., x z + ~t~z, where z E Zn 
and ~z E F(tn,z). Since Zn is a 8-approximation of Zn, there is a value Z' E Zn 
such that Iz - z'loo ~ O. Since F is lipschitzean with Lipschitz constant L (and 
compact-valued,) we can find a value ~z" E F(tn , Zl) satisfying Ißz - ß zl1loo ~ L8. 
Moreover, since F(tn, z') is a o-approximation of F(tn , z'), there i8 a ~Z' E F(tn, z') 
such that Ißz' - ~z/loo ~ O. For this value ßz' let y Zl + ~t ßz' E B. We 
übtain 

Ix - Yloo = Iz Z' + ßt(ßz ßz')loo 

~ Iz - z'loo + ßt Ißz - ßz'loo 

~ 0+ ~t (I~z - ~z"loo + I~z" ßz1loo) 

~ 0 + ~t(Lo + 0) . 

Thus, dH(A, B) ~ ~to + (1 + ~tL) O. Therefore, choosing for ~ and 8 the values 
~N and ON as indicated above, we obtain dH(A,lch~N(B» ~ (~tN?' This means 
that A~N satisfies the assumptions of Corollary 1 and, hence, dH(Zn, X(n ~t» -+ 0 
aB N -+ 0 für all nE {I, ... ,N} D. 

Corollary 2 Suppose the sequences (ßN) C lI4 and (ON) c lI4 to be defined as 
in Proposition 3 and IF(t,x)1 ~ r /or alt (t,x) E [O,T] x ]Rn. I/ we extend the 
approximations Z" 0/ X(t,,) to an approximation 0/ X(t) on [0, Tl by means 0/ 

i/t" ~ t ~ t"H, then Z(t) -+ X(t) on [O,T]. 

Proof. Let T(kjN) = tk ~ t ~ tkH =T«k + l)jN). Then, 
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Le., dH(Zk,X(t)) --* °as N --* 00 according to Proposition 3. In the same way one 
can show that dH(ZHI,X(t)) --* 0 as N --* 00. Therefore, 

as N --* 00 D. 

4.2. Outer approximations 

The computation of precise approximations of reachable sets may become very 
complex and time-consuming. In applications it is often not necessary to provide 
such precise results. Rather, one is often interested in estimations of reachable 
sets, particularly outer approximations Z(t) :J Y(t). Obviously, it is not difficult 
to define a "trivial" solution to this problem by simply making Z(t) large enough. 
Since this does not make any sense, we will try to find a solution which satisfies 
ß(Y(t),Z(t)) = 0 and which keeps ß(Z(t), Y(t)) as small as possible. We are now 
going to consider a modification of our algorithm based on (14) for computing outer 
approximations of the sets Y(t), i.e., the reachable sets associated with a discrete 
time scheme. 

Lemma 2 Let M {Xl, ... ,Xm } C JRm, m ::::: 2, z E conv M and suppose 
diam(M) = max{lx - yll X, y E M} :5 6. Moreover, suppose F to be lipschitzean 
with a Lipschitz. constant L. Then, 

ß (z + 6.t F(t, z), conv kQ (Xk + 6.t F(t, Xk))) :5 6.t L6 . 

Proof. We will prove this lemma for m = 2. The general case is treated analogously. 
Let X, y, z E /R.n and suppose Ix - yl :5 6 and Z = ..\x + (1-..\) Y for some ..\ E (0,1). 
Let A := X + 6.t F(t, x), B y + 6.t F(t, y), and C := Z + 6.t F(t, z). Since A and 
Bare convex, conv(A U B) = U099 ..\A + (1 - ..\)B, which means 

ß(C,conv(AUB)) =max min Iz' - (..\x' + (1- ..\)y')1 . 
z'EC x'EA,y'EB,>.E[O.l] 

Now, consider some z' E C, i.e., Zl = Z + 6.t 6.z, where 6.z E F(t, z), and recall 
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that dH(F(t, x), F(t, z» :S Llx - zl and dH(F(t, y), F(t, z» :S Lly - zl. Then, 

p(ZI, conv(A U B» = min Iz + At Az - (>' x' + (1 _ >') yJ)/
x' EA,y/EB,AE[O,lJ 

= min Iz + AtAz - (..\x + (1 - ..\)y) At(..\Ax + (1 -..\) Ay)1 
~x,~y,A 

(choose..\ such that z =..\x + (1 -..\) y) 

< min At 1..\ Ax + (1 >') Ay - Azi 
- ~x,~y 

:S min At (>'IAx - Azi + (1 - >') IAy - Azl) 
~x,~y 

:S At (..\ min lAx - Azi + (1 - ..\) min IAy Azl)
~x ~y 

:S At (>' dH(F(t, x), F(t, z» + (1 - ..\) dH(F(t, y), F(t, z») 


:S At max{dH(F(t,x),F(t,z»,dH(F(t,y),F(t,z»} 


:S At L max{lx - z/, Iy - zl} 


:S At L 15. 


Therefore, ß(C, conv{A U B» :S At L 15 D. 


Lemma 3 Let {Xl, ... , x m } c R,m, c > ü and denote by A k the set 0/ vertices 01 


the cube {x E m:.n Ilx - xkloe :S cl. Moreover, let B,,(ü) = {x E m:.n Ilxloe :S cl· 

Then, 

conv{xl"" ,xm } + B,,(O) C conv(A I u ... U Am) . , 

Proof. Consider some y E conv{xl"" ,xm } + B,,(O). Then, y = 2:~1 "\kXk + a, 
where ..\k 2: 0, 2:;:'=1 ..\k = 1, and laloe :S c. That is, 

m m m 

y = L "\kXk + a = L "\k(Xk + a) = L ..\kX~, 
k=l k=l k=l 

where Xk E conv Ak (1 :S k :S m). Therefore, y E conv(A1 U ... U Am) O. 

Lemma 4 Consider a finite set M C m:.n and suppose 

diam(M) = max{jx - Yloe jx, y E M} :S A . 

Then, conv M C lch~(M). 

Proof. For some x E M we have M C conv M C B~(x). Obviously, B~(x) is 
contained in some neighborhood of 2n A-cells O. 

Now, consider the following iteration scheme: 

Zn+! = lch~ ( II W~tLcl(Z + At F(tn, Z»), ZO = X o . (15) 
zEZn 
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Here, Zn is a o-discretization of Zn with following property: 

"f z E Zn 3 Me Zn : z E conv M 1\ diam(M) ~ 0 . (16) 

Such discretizations can easily be constructed. F(tn , z) is a discretization of F(tn , z) 
containing the extreme points of F(tn , z), Le., F(tn, z) C conv F(tn , z). Moreover, 
for some e > 0 and a finite set Me lR.n the set Wö(M) is defined by replacing each 
point x E M by the set of vertices of the cu be B" (x). 

Proposition 4 The algorithm based on iteration scheme (15) computes outer ap­
proximations Zn :) Yn of the reachable sets Yn if /F(t , x)/oo ~ r on [0, Tl x lR.n and 
ß ~ (1 + 3ßtL)o + ßtr. 

Proof. Suppose that Yn C Zn holds true for some n E {O, ... ,N - I}. We will 
show that this relation also holds true for Yn+1 and Zn+l. Observe that 

Thus, it suffices to show that Zn+1 is an outer approximation of the second set, i.e., 
z + ßt F(tn , z) E Zn+l for all z E Zn. Let z E Zn. According to our assumption 
concerning the discretization Zn of Zn, there is a set M C Zn such that z E conv M 
and diam(M) ~ 6. Prom Lemma 2 and the fact that F(tn , x) c conv F(tn , x) follows 
that ß(z+ ßtF(tn,z),convMI) ~ ßtLo, where MI = UXEM(x + ßtF(tn,x». 
Now, consider the set MI! WAtLo(MI). According to Lemma 3, we have (z + 
ßt F(t n , z» c conv MI!. For every two values x, y E M" there are values Xl, yl E MI 

such that Ix xll co = Iy - yl/oo = ßtLo, i.e., diam(M") ~ diam(M') + 2ßtLJ. 
Moreover, for two points Xl, yl E MI we have 

.lxI - ylloo = Ix + ßt ßx - y - ßt ßy/oo 

~ J + ßt p(ßx, F(tn , y» + diam(F(tn , y» 
~ J + ßt (L J + r) 

with x, y E M, ßx E F(tn,x), ßy E F(tn, y). Therefore, diam(M') ~ 6 + ßt (L6 + 
r) and, hence, diam(M") ~ «1 + 3 ßtL) 0 + ßt r). Thus, 

z + ßt F(tn, z) C conv M" C Zn+l 

according to the choice of ß and Lemma 4 O. 

4.3. Examples 

Our first example discussed is based on a business cyc1e model which tries to 
explain how several causes of business activity induce business trends 24. U nder 
certain assumptions the dynamics of the corresponding economic system is described 
by the differential equations 

x = Ox (tanh(tI;x x + ax y) - x) cosh(tI;x x + a x y) (17) 

iJ = Oy (tanh(tI;y y + ay x) y) cosh(tI;y y + ay x) . (18) 
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Here, the state variables 1::; x(t), y(t) ::; 1 characterize the stages of the business 
cycle. The parameters a x , a y , K x , K y , <Jx , <Jy , which have a certain economic inter­
pretation do not only influence the quantitative but also the qualitative behavior 
of the system 23. 

Now, suppose these parameters are not known precisely or are not constant over 
time. Rather, suppose the knowledge concerning a certain parameter to be given 
in form of a probability distribution resp. a system of confidence intervals. For 
example, suppose K x to be an a-confidence inter val for K x . This may be interpreted 
in different ways: (1) The (subjective) probability that the interval K x covers the 
(fixed but unknown) parameter K x is a. (2) The probability that the (time-varying) 
parameter K x remains within the inter val K x for the complete time interval [0, TJ 
is a. 

If the assumption of independence holds between the (random) parameters, we 
easily obtain a joint prob ability distribution, Le., a system of confidence regions 
for the corresponding parameter vector 0 = (ax , a y , K x , K y , <Jx , <Jy ). From this dis­
tribution we can then derive a fuzzy function F : ]R2 ~ lF(1R2 ) characterizing the 
uncertain dynamic behavior of our economic system, i.e., (17) is replaced by 

(x,v) E F(x,y) . 

The values of an a-section Fa of F are given as 

Fa(x,y) = {(f(x,y,O),g(x,y,O)) E 1R2 /0 E Ca}, 

where the functions f and 9 are defined by the right hand sides of (17) and Ca is an 
a-confidence region for O. Together with a fuzzy initial value (xo, yo) characterized 
by some fuzzy set· Xo E lF(]R2) we obtain a fuzzy initial value problem 

(x(t), y(t)) E F(x(t), y(t)), (x(O),y(O)) E Xo 

resp. a class of generalized inital value problems 

(±(t),y(t)) E Fa(x(t),y(t)), (x(O), y(O)) E [Xola . 

Simulation results for this system using the numerical methods discussed in the 
previous section are shown in Figure 1 and Figure 2. The uncertainty concerning 
four of the six parameters was modelled by means of fuzzy sets with (symmetric) 
triangular membership functions p'I<., p'I<y' p,/J"z, P,/J"y with the support sets (1.5,1.6), 
(1,1.1), (-0.5, -OA), (0.5,0.6), respectively. Uncertainty concerning the initial sys­
tem state was modelIed by means of a "fuzzy drclen with radius 0.01 around the 
system state (0.5,0.5). Figure 1 shows the evolution of the a-cut of the fuzzy reach­
able set for a = 0.5 and time points t E {O, 1, ... ,1O}. The boundaries of these 
sets are depicted in the state space of the economic system. For instance, the small 
circle around the system state (0.5,0.5) is the 1/2-cut of the "fuzzy circle" mod­
elling the uncertain system state at time t = O. Likewise, the leftmost set is the 
1/2-cut of the fuzzy reachable set at time t = 10. This set covers the true system 
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Figure 1: Simulation results for the dynamical economic 
system with imprecise parameters: Evolution of the a-cuts 
of the fuzzy reachable set for a = 0.5. 

Figure 2: Simulation results for the dynamical economic 
system with imprecise parameters: Characterization of the 
fuzzy reachable set X(t) for t = 11. 
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Figure 3: The approximation of the reachable set X 1/ 2 (5) of the 
system considered in the second example. 

state (x(10), y(lO)) with a probability of at least 1/2. A characterization of the 
fuzzy reachable set X(t) for t = 11 is shown in Figure 2, where the a-cuts of this 
set are depicted for a E {O.I,O.2, ... , I}. Notice that the sets represented by their 
boundaries in this picture correspond to different values of a, whereas those shown 
in Figure 1 correspond to different values of time t. 

The second example is a generalization of an optimal control problem that has 
been studied in 3. Consider the system 

(x,y,i) E (;?(lxl, Iyl, Izl)· W, x(O) = y(O) = z(O) = 0, 

where the fuzzy set W is characterized by the a-cuts 

[W]cr = {(a, b, e) E ~ Ilal, Ibl, lei ~ 2 (1 - an , 
and (;? is defined by 

( ) _ min{lxl, Iyl, Izl} 

(;? x, y, z - 1 - 1 + max{lxl, Iyl, Izl} 


Figure 3 shows the three-dimensional reachable set Xa(t) for a = 1/2 and t = 5. 

5. Discussion and Further Work 

In this paper, we have outlined a method for modelling and simulation of un­
certain dynamical systems. This approach is based on modelling uncertainty by 
means of fuzzy sets. Nevertheless, our interpretation of corresponding models is a 
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probabilistic one. A "fuzzy" model is interpreted as a generalized model of bounded 
uncertainty, i.e., as a crude characterization of an underlying probabilistic model. In 
this sense, the approach establishes an interesting link between probability theory 
and the theory of fuzzy sets, which is closely related with random sets and upper 
probabilities. 

The main-part of the paper is concerned with numerical methods for the compu­
tation of so-called fuzzy reachable sets. We have used such sets for charaeterizing 
the set of solutions to a fuzzy initial value problem. The methods, whieh were 
shown to provide outer approximations or even exaet results in the limit, are based 
on three kinds of diseretization: (1) Discretization with respect to uncertainty or 
gradedness, Le., replacing the fuzzy problem by a finite number of crisp problems 
associated with certain a-sections of the fuzzy right hand side and the fuzzy initial 
system state. (2) Discretization with respect to time, i.e., eomputing reachable sets 
only for a diserete time scherne. (3) Discretization with respect to space, Le., ap­
proximating reachable sets by geometrical bodies t and replacing such bodies by a 
finite number of points in jRn. 

Of course, the numerical simulation methods we have developed are very com­
plex from a eomputational point of view. The reason for this complexity is the 
"pointwise" consideration of approximations of reachable sets in the discretization 
and integration phase of our numerical algorithm and the problem of handling (al­
most arbitrary) n-dimensional sets in the approximation phase of this algorithm. 
However, with regard to this point the following should be remarked: Firstly, we 
have shown elsewhere that very precise numerical results based on less complex 
methods ean be found for special classes of systems, such as, e.g., quasi-monotone 
or linear systems 15. Secondly, the precision of the results provided by our method 
is eligible. That is, less precise resuIts can be obtained within reduced running 
time. Thirdly, parallel computation is a promising approach for eoping with the 
complexity of approximation methods as defined in this paper. Since diseretization 
and integration can be done simultaneously for different regions of a reachable set, 
these algorithms are weII-suited for parallelization. The same is also true for the 
geometrie approximation with local eonvex hulls. Therefore, an optimal speed-up 
is expected, and running time can be redueed considerably this way. Nevertheless, 
increasing the efficieney of simulation methods remains a central topic for future 
work. Particularly, developing speciaIized algorithms for certain classes of systems, 
Le., exploiting the structure of such systems, seems to be a promising direction for 
further research. 

The application of simulation methods for uncertain dynamics is another im­
portant aspeet of future research. Such methods ean be used in different ways. For 
example, they can be used directly in order to obtain predictions of the behavior of 
uncertain dynamical systems. The appIieation of corresponding methods might be 
of particular interest in the so-called "soft sciences," where precise mathematical 

tThis is not really a discretization because the dass of geometrical bodies we have considered is 
actually not discrete. 
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models are rarely available and probabilistic models are hard to specify. Moreover, 
the approach can also be used as a component of a certain reasoning mechanism 
such as, e.g., an expert system. For instance, our framework can be used for sup­
porting the task of model-based diagnosis, where uncertain models appear due to 
the inherent vagueness or nonspecificity of (Iinguistic) hypotheses. More precisely, 
the simulation methods can be utilized as part of a methodology for testing hy­
potheses about dynamical systems. In 14 we have applied this approach for testing 
hypotheses about the misbehavior of a certain biological system. 
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