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Abstract. This introduction gives a brief overview of the field of pref-
erence learning and, along the way, tries to establish a unified terminol-
ogy. Special emphasis will be put on learning to rank, which is by now
one of the most extensively studied problem tasks in preference learning
and also prominently represented in this book. We propose a catego-
rization of ranking problems into object ranking, instance ranking, and
label ranking. Moreover, we introduce these scenarios in a formal way,
discuss different ways in which the learning of ranking functions can be
approached, and explain how the contributions collected in this book
relate to this categorization. Finally, we also highlight some important
applications of preference learning methods.

1 Introduction

The topic of preferences has recently attracted considerable attention in Artifi-
cial Intelligence (AI) research, notably in fields such as agents, non-monotonic
reasoning, constraint satisfaction, planning, and qualitative decision theory [15].
Recent special issues of the AI Magazine (December 2008) and the Artificial In-
telligence Journal (announced for 2010), both devoted to preferences, highlight
the increasing importance of this area for AI. Preference-based methods are es-
pecially appealing from an AI perspective, notably as they allow one to specify
desires in a declarative way, to combine qualitative and quantitative modes of
reasoning and to deal with inconsistencies and exceptions in a quite flexible man-
ner. A preference can be considered as a relaxed constraint which, if necessary,
can be violated to some degree. In fact, an important advantage of a preference-
based problem solving paradigm is an increased flexibility, as nicely explained
in [6]:

“Early work in AI focused on the notion of a goal—an explicit target that
must be achieved—and this paradigm is still dominant in AI problem
solving. But as application domains become more complex and realistic,
it is apparent that the dichotomic notion of a goal, while adequate for
certain puzzles, is too crude in general. The problem is that in many
contemporary application domains ... the user has little knowledge about
the set of possible solutions or feasible items, and what she typically
seeks is the best that’s out there. But since the user does not know what
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is the best achievable plan or the best available document or product,
she typically cannot characterize it or its properties specifically. As a
result, she will end up either asking for an unachievable goal, getting no
solution in response, or asking for too little, obtaining a solution that
can be substantially improved.”

Drawing on past research on knowledge representation and reasoning, AI
offers qualitative and symbolic methods for treating preferences that can rea-
sonably complement traditional approaches that have been developed for quite
a while in fields such as economic decision theory [37]. Needless to say, however,
the acquisition of preferences is not always an easy task. Therefore, not only are
modeling languages and representation formalisms needed, but also methods for
the automatic learning, discovery and adaptation of preferences. For example,
computerized methods for discovering the preferences of individuals are useful
in e-commerce and various other fields where an increasing trend toward per-
sonalization of products and services can be recognized.

It is hence hardly surprising that methods for learning and predicting prefer-
ences in an automatic way are among the very recent research topics in disciplines
such as machine learning, knowledge discovery, and recommender systems. Ap-
proaches relevant to this area range from approximating the utility function of
a single agent on the basis of an as effective as possible question-answer pro-
cess (often referred to as preference elicitation) to collaborative filtering where
a customer’s preferences are estimated from the preferences of other customers.
In fact, problems of preference learning can be formalized within various set-
tings, depending, e.g., on the underlying type of preference model or the type of
information provided as an input to the learning system.

Roughly speaking, preference learning is about inducing predictive preference
models from empirical data. In the literature on choice and decision theory,
two main approaches to modeling preferences can be found, namely in terms of
utility functions and in terms of preference relations. From a machine learning
point of view, these two approaches give rise to two kinds of learning problems:
learning utility functions and learning preference relations. The latter deviates
more strongly than the former from conventional problems like classification and
regression, as it involves the prediction of complex structures, such as rankings
or partial order relations, rather than single values. Moreover, training input in
preference learning will not, as it is usually the case in supervised learning, be
offered in the form of complete examples but may comprise more general types
of information, such as relative preferences or different kinds of indirect feedback
and implicit preference information.

This book tries to give a comprehensive overview of the state-of-the-art in
the field of preference learning. Some of its chapters are based on selected con-
tributions to two successful workshops on this topic [29, 30], but the material
is complemented with chapters that have been solicited explicitly for this book.
Most notably, several survey chapters give a detailed account on ongoing re-
search in various subfields of preference learning. Thus, we are confident that
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the book succeeds in giving a comprehensive survey of work on all aspects of
this emerging research area.

In the remainder of this chapter, we shall briefly sketch some important
branches of preference learning and, along the way, give pointers to the con-
tributions in this volume. References to these contributions are indicated by
capitalized author names, for example Fürnkranz & Hüllermeier.

2 Preference Learning Tasks

Among the problems in the realm of preference learning, the task of “learning
to rank” has probably received the most attention in the machine learning lit-
erature in recent years. In fact, a number of different ranking problems have
been introduced so far, though a commonly accepted terminology has not yet
been established. In the following, we propose a unifying and hopefully clarifying
terminology for the most important types of ranking problems, which will also
serve as a guideline for organizing the chapters of the book. Aiolli & Sperduti
give an alternative unifying framework for learning to rank from preferences.

In general, a preference learning task consists of some set of items for which
preferences are known, and the task is to learn a function which predicts prefer-
ences for a new set of items, or for the same set of items in a different context.
Frequently, the predicted preference relation is required to form a total order, in
which case we also speak of a ranking problem. In this book, we will frequently
use the term “ranking” for categorizing different types of preference learning
problems, but we note that the characterization mainly depends on the form of
the training data and the required predictions, and not on the fact that a total
order is predicted.3

In the notation used in the remainder of this chapter (and throughout most
of the book), our goal is to stick as much as possible to the terminology com-
monly used in supervised learning (classification), where a data object typically
consists of an instance (the input, also called predictive or independent vari-
able in statistics) and an associated class label (the output, also called target
or dependent variable in statistics). The former is normally denoted by x, and
the corresponding instance space by X , while the output space is denoted by Y.
Instances are often represented in the form of feature vectors, which means that
x is a vector

x = (x1, x2, . . . , xm) ∈ X = X1 ×X2 × . . .×Xm .

We distinguish three types of ranking problems, namely label ranking, in-
stance ranking, and object ranking, which are described in more detail in the
following.
3 Besides, one should be aware of conflicts between terminology in different fields. In

the field of operations research, for example, the term “ranking” is used for arranging
a set of objects in a total order, while “sorting” refers to the assignment of objects
to an ordered set of categories, a problem closely related to what is called “ordinal
classification” in machine learning.
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Given:
– a set of training instances {x` | ` = 1, 2, . . . , n} ⊆ X (each instance typically though

not necessarily represented by a feature vector)
– a set of labels Y = {yi | i = 1, 2, . . . , k}
– for each training instance x`: a set of pairwise preferences of the form

yi �x` yj

Find:
– a ranking function that maps any x ∈ X to a ranking �x of Y (permutation

πx ∈ Sk)

Performance measures:
– ranking error (e.g., based on rank correlation measures) comparing predicted rank-

ing with target ranking
– position error comparing predicted ranking with a target label

Fig. 1. Label ranking

2.1 Label Ranking

In label ranking, we assume to be given an instance space X and a finite set
of labels Y = {y1, y2, . . . , yk}. The goal is to learn a “label ranker” in the form
of an X → SY mapping, where the output space SY is given by the set of all
total orders (permutations) of the set of labels Y (the notation is leaned on the
common notation Sk for the symmetric group of order k). Thus, label ranking
can be seen as a generalization of conventional classification, where a complete
ranking

yπ−1
x (1) �x yπ−1

x (2) �x . . . �x yπ−1
x (k)

is associated with an instance x instead of only a single class label. Here, πx is
a permutation of {1, 2, . . . , k} such that πx(i) is the position of label yi in the
ranking associated with x.

The training data T of a label ranker typically consists of a set of pairwise
preferences of the form yi �x yj , suggesting that, for instance x, yi is preferred
to yj . In other words, an “observation” consists of an instance x and an ordered
pair of labels (yi, yj). The label ranking problem is summarized in Figure 1.

This learning scenario has a large number of practical applications. For ex-
ample, it is relevant for the prediction of every sort of ordering of a fixed set of
elements, such as the preferential order of a fixed set of products (e.g., different
types of holiday apartments) based on demographic properties of a person, or
the ordering of a set of genes according to their expression level (as measured
by microarray analysis) based on features of their phylogenetic profile [1]. An-
other application scenario is meta-learning, where the task is to rank learning
algorithms according to their suitability for a new dataset, based on the char-
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acteristics of this dataset [7]. Finally, every preference statement in the well-
known CP-nets approach [3], a qualitative graphical representation that reflects
conditional dependence and independence of preferences under a ceteris paribus
interpretation, formally corresponds to a label ranking.

In addition, it has been observed by several authors [25, 18, 14] that many
conventional learning problems, such as classification and multi-label classifica-
tion, may be formulated in terms of label preferences:

– Classification: A single class label yi is assigned to each example x`. This
implicitly defines the set of preferences {yi �x`

yj | 1 ≤ j 6= i ≤ k}.
– Multi-label classification: Each training example x` is associated with a sub-

set P` ⊆ Y of possible labels. This implicitly defines the set of preferences
{yi �x`

yj | yi ∈ L`, yj ∈ Y \ P`}.

A general framework encompassing these and other learning problems can be
found in the chapter by Aiolli & Sperduti.

In each of the former scenarios, a ranking model f : X → Sk is learned from a
subset of all possible pairwise preferences. A suitable projection may be applied
to the ranking model (which outputs permutations) as a post-processing step,
for example a projection to the top-rank in classification learning where only
this label is relevant.

To measure the predictive performance of a label ranker, a loss function on
rankings is needed. In principle, any distance or correlation measure on rankings
(permutations) can be used for that purpose, for example the number of pairs of
labels which are incorrectly ordered (i.e., the number of label pairs yi and yj such
that yi precedes yj in the predicted ranking although yj is actually preferred to
yi). Apart from this type of ranking error, which compares a predicted ranking
with a given target ranking, it is also possible to compare a predicted ranking
with a single class label. For example, if this class label is the target one is
looking for, then it makes sense to evaluate a predicted ranking by the position
it assigns to the label; in [28], this type of error (measuring the distance of the
assigned position from the top-rank) is called the position error.

A general survey of label ranking is given by Vembu & Gärntner. An-
other discussion of label ranking and related problems is given by Fürnkranz
& Hüllermeier. This chapter is specifically focused on approaches which are
based on the idea of learning by pairwise comparison, i.e., of decomposing the
original problem into a set of smaller binary classification problems. Yu, Wan
& Lee show how decision-tree learning algorithms like CART can be adapted to
tackle label ranking learning problems by extending the concept of purity to la-
bel ranking data. Tsivtsivadze et al. show how an approach for minimizing an
approximation of a ranking loss function can be extended with a semi-supervised
learning technique that tries to improve predictions by minimizing the disagree-
ment of several ranking functions which have been learned from different views
of the training data.
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Given:
– a set of training instances {x` | ` = 1, 2, . . . , n} ⊆ X (each instance typically though

not necessarily represented by a feature vector)
– a set of labels Y = {y1, y2, . . . , yk} endowed with an order y1 < y2 < · · · < yk

– for each training instance x` an associated label y`

Find:
– a ranking function that allows one to order a new set of instances {xj}t

j=1 according
to their (unknown) preference degrees

Performance measures:
– the area under the ROC-curve (AUC) in the dichotomous case (k = 2)
– generalizations such as the C-index in the polychotomous case (k > 2)

Fig. 2. Instance ranking

2.2 Instance Ranking

This setting proceeds from the setting of ordinal classification, where an instance
x ∈ X belongs to one among a finite set of classes Y = {y1, y2, . . . , yk} and,
moreover, the classes have a natural order: y1 < y2 < . . . < yk. Training data
consists of a set T of labeled instances. As an example, consider the assignment
of submitted papers to categories reject, weak reject, weak accept, and accept.

In contrast to the classification setting, the goal is not to learn a classifier
but a ranking function f(·). Given a subset X ⊂ X of instances as an input,
the function produces a ranking of these instances as an output (typically by
assigning a score to each instance and then sorting by scores).

For the case k = 2, this problem is well-known as the bipartite ranking prob-
lem. The case k > 2 has recently been termed k-partite [42] or multipartite
ranking [19]. As an example, consider the task of a reviewer who has to rank the
papers according to their quality, possibly though not necessarily with the goal
of partitioning this ranking into the above four categories.

Thus, the goal of instance ranking —our proposal for a generic term of bipar-
tite and multipartite ranking— is to produce a ranking in which instances from
higher classes precede those from lower classes; see Figure 2 for a formalization
of this task. Different types of accuracy measures have been proposed for pre-
dictions of this kind. Typically, they count the number of ranking errors, that is,
the number of pairs (x,x′) ∈ X ×X such that x is ranked higher than x′ even
though the former belongs to a lower class than the latter. In the two-class case,
this amounts to the well-known AUC, the area under the ROC-curve [5], which
is equivalent to the Wilcoxon-Mann-Whitney statistic [47, 38]. Its generalization
to multiple (ordered) classes is known as the concordance index or C-index in
statistics [22].
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Given:
– a (potentially infinite) reference set of objects Z (each object typically though not

necessarily represented by a feature vector)
– a finite set of pairwise preferences xi � xj , (xi, xj) ∈ Z × Z

Find:
– a ranking function f(·) that assumes as input a set of objects and returns a per-

mutation (ranking) of this set

Performance measures:
– ranking error (e.g., based on rank correlation measures) comparing the predicted

ranking with the target ranking
– top-K measures comparing the top-positions of the rankings
– retrieval measures such as precision, recall, NDCG

Fig. 3. Object ranking

These measures and the multipartite ranking scenario are discussed in more
detail by Waegeman & De Baets. Zhang et al. discuss different methods
for employing rule learning algorithms for learning bipartite rankings. This sce-
nario has been studied for decision-tree learning, but not yet for rule learning,
where several additional problems have to be considered, such as how to combine
estimates from overlapping rules into a single probability estimate.

2.3 Object Ranking

In the setting of object ranking, there is no supervision in the sense that no
output or class label is associated with an object. The goal in object ranking
is to learn a ranking function f(·) which, given a subset Z of an underlying
referential set Z of objects as an input, produces a ranking of these objects as
an output. Again, this is typically done by assigning a score to each instance
and then sorting by scores.

Objects z ∈ Z are commonly though not necessarily described in terms
of an attribute-value representation. As training information, an object ranker
has access to exemplary rankings or pairwise preferences of the form z � z′

suggesting that z should be ranked higher than z′. This scenario, summarized
in Figure 3, is also known as “learning to order things” [12].

As an example consider the problem of learning to rank query results of a
search engine [33, 41]. The training information is provided implicitly by the
user who clicks on some of the links in the query result and not on others. This
information can be turned into binary preferences by assuming that the selected
pages are preferred over nearby pages that are not clicked on [34].
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The performance of an object ranker can again be measured in terms of a
distance function or correlation measure on rankings. In contrast to the setting
of label ranking, however, the number of items to be ordered in the context of
object ranking is typically much larger. Therefore, one often prefers measures
that put more emphasis on the top of a ranking while paying less attention
to the bottom [17]. In Web search, for example, people normally look at the
top-10 results while ignoring the rest. Besides, the target is often not a “true”
ranking but instead a single object or a subset of relevant objects, for example
a set of documents relevant to a query. Evaluation measures especially tailored
toward these types of requirements have been proposed in information retrieval.
Typical examples include precision and recall as well as normalized discounted
cumulative gain (NDCG) [32, 39].

An extensive survey of object ranking approaches is given by Kamishima,
Kazawa & Akaho. Subsequently, Kamishima & Akaho discuss dimension-
ality reduction methods for object ranking tasks, which retain the preference
information as much as possible. They assume a scenario (which they call super-
vised ordering) in which total orders for multiple subsets of objects are given,
and the goal is to predict an ordering of the full set of objects. Dembczyński et
al. compare different approaches for rule-based learning of object ranking func-
tions, namely one utility-based approach and one approach that directly learns
the binary preference predicate (cf. also Section 3). An application to learning
to rank documents in biomedical information retrieval is described by Arens.

3 Preference Learning Techniques

All three of the basic learning tasks discussed in the previous section can be tack-
led by very similar basic techniques. In agreement with the distinction between
using utility functions and binary relations for modeling preferences, two general
approaches to preference learning have been proposed in the literature, the first
of which is based on the idea of learning to evaluate individual alternatives by
means of a utility function (Section 3.1), while the second one seeks to compare
(pairs of) competing alternatives, that is, to learn one or more binary prefer-
ence predicate (Section 3.2). Making sufficiently restrictive model assumptions
about the structure of a preference relation, one can also try to use the data for
identifying this structure (Section 3.3). Finally, local estimation techniques à la
nearest neighbor can be used, which mostly leads to aggregating preferences in
one way or the other (Section 3.4).

3.1 Learning Utility Functions

As mentioned previously, an established approach to modeling preferences re-
sorts to the concept of a utility function. Such a function assigns an abstract
degree of utility to each alternative under consideration. From a machine learn-
ing point of view, an obvious problem is to learn utility functions from given
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training data. Depending on the underlying utility scale, which is typically ei-
ther numerical or ordinal, the problem becomes one of regression learning or
ordinal classification. Both problems are well-known in machine learning. How-
ever, utility functions often implicate special requirements and constraints that
have to be taken into consideration such as, for example, monotonicity in certain
attributes (Dembczyński et al.).

Besides, as mentioned earlier, training data is not necessarily given in the
form of input/output pairs, i.e., alternatives (instances) together with their util-
ity degrees, but may also consist of qualitative feedback in the form of pair-
wise comparisons, stating that one alternative is preferred to another one and
therefore has a higher utility degree. More generally, certain types of preference
information can be formalized in terms of constraints on one or more underlying
utility functions. This idea forms the basis of the general framework presented
by Aiolli & Sperduti. Sometimes, of course, training data is less generic and
more application-specific. In collaborative filtering, for example, it simply con-
sists of an incomplete set of product ratings given by a set of users (see de
Gemmis et al. in this volume).

In the instance and object preferences scenario, a utility function is a map-
ping f : X → R that assigns a utility degree f(x) to each instance (object) x
and, hence, induces a complete order on X . In the label preferences scenario, a
utility function fi : X → R is needed for each of the labels yi (i = 1, . . . , k); alter-
natively, the functions can be summarized into a single function f : X ×Y → R
that maps instance/label tuples (x, y) to real-valued scores (see Aiolli & Sper-
duti).4 Here, fi(x) is the utility assigned to alternative yi by instance x. To ob-
tain a ranking for x, the alternatives are sorted according to these utility scores,
i.e., �x is such that yi �x yj ⇒ fi(x) ≥ fj(x).

In the setting of instance ranking, the training data consists of instances for
which the sought utility scores are given. Thus, the learning problem can in
principle be approached by means of classification or (ordinal) regression meth-
ods. As an important difference, however, note that the goal is not to maximize
classification accuracy but ranking performance. Thus, conventional learning al-
gorithms have to be adapted correspondingly. Approaches of this kind have, e.g.,
been proposed in [27, 33]. In this book, Waegeman & De Baets discuss ap-
proaches that are based on the optimization of an extension of the binary AUC
to a loss function for ordinal data.

In object and label ranking, training data typically originates from a kind
of indirect supervision. The learner is not given the target scores of the utility
function, but constraints on the function which are derived from comparative
preference information of the form “This object (or label) should have a higher
utility score than that object (or label)”. Thus, the challenge for the learner is to
find a function which is as much as possible in agreement with these constraints.

4 In a sense, this alternative is not just a formally equivalent rewriting. Instead, by
considering an instance/label pair as an object, it suggests a natural way to unify
the problems of object and label ranking.
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For object ranking approaches, this idea has first been formalized by Tesauro
under the name comparison training [44]. He proposed a symmetric neural net-
work architecture that can be trained with representations of two states and a
training signal that indicates which of the two states is preferable. The elegance
of this approach comes from the property that one can replace the two symmet-
ric components of the network with a single network, which can subsequently
provide a real-valued evaluation of single states. Later works on learning utility
function from object preference data include [46, 33, 24].

For the case of label ranking, a method for learning the functions fi(·)
(i = 1, . . . , k) has been proposed in the framework of constraint classifica-
tion [25, 26]. Here, the authors proceed from linear utility functions and find
a way to express a constraint of the form fi(x) − fj(x) > 0 (suggesting that
yi �x yj) in the form of a binary classification example in a newly constructed,
higher-dimensional space. In other words, the original label ranking problem is
transformed into a single binary classification problem. This problem is solved
by fitting a separating hyperplane, and from this hyperplane, the linear utility
functions (identified by corresponding weight vectors) can be reconstructed. An
alternative approach, so-called log-linear models for label ranking, has been pro-
posed in [14]. This approach is essentially equivalent to constraint classification,
as it also amounts to learning linear utility functions for all labels. Algorithmi-
cally, however, the underlying optimization problem is approached in a different
way, namely by means of a boosting-based algorithm that seeks to minimize
a (generalized) ranking error in an iterative way. In this book, Tsivtsivadze
et al. present an approach for learning a utility function for label ranking via
minimization of a loss function that is based on a least-squares approximation
of the ranking error.

3.2 Learning Preference Relations

The key idea of this approach is to learn a binary preference relation that com-
pares pairs of alternatives (e.g., objects or labels). The training of a model thus
becomes simpler, mainly because comparative training information (suggesting
that one alternative is better than another one) can be used directly instead of
translating it into constraints on a (latent) utility function. On the other hand,
the prediction step may become more difficult, since a binary preference relation
learned from data is not necessarily consistent in the sense of being transitive
and, therefore, does normally not define a ranking in a unique way.

Binary preference relations can be turned into a ranking by finding a ranking
that is maximally consistent with the corresponding pairwise preferences. The
difficulty of this optimization problem depends on the concrete criterion, though
many natural objectives (e.g., minimizing the number of object pairs whose ranks
are in conflict with their pairwise preference) lead to NP-hard problems [12]. For-
tunately, efficient techniques such as simple voting (known as the Borda count
procedure in social choice theory) often deliver good approximations, sometimes
even with provable guarantees [13]. Of course, one can also derive other, possibly
more complex preference structures from a preference relation, for example weak
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instead of strict linear orders. In [45], a linear order with ties (indifference be-
tween two alternatives) is called a bucket order (a total order of “buckets”, where
each bucket corresponds to an equivalence class), and a method is proposed to
find an order of this type which is maximally consistent with the data.

For object ranking problems, the relational approach has been pursued in
[12]. The authors propose to solve object ranking problems by learning a binary
preference predicate Q(x,x′), which predicts whether x is preferred to x′ or
vice versa. This predicate is trained on the basis of exemplary preferences of
the form x � x′. A final ordering is found in a second phase by deriving (an
approximation of) a ranking that is maximally consistent with these predictions.
Dembczyński et al. discuss this setting for rule learning and propose to combine
the predictions using the Net Flow method proposed in [4]. They also compare
this setting with an alternative approach that directly learns a utility function
based on the preferences and monotonicity constraints.

For label ranking problems, the pairwise approach has been introduced by
[18, 31], where it is referred to as ranking by pairwise comparison. The key idea is
to learn, for each pair of labels (yi, yj), a binary predicate Mi,j(x) that predicts
whether yi �x yj or yj �x yi for an input x. A label ranking is then derived from
these pairwise preferences via weighted voting (generalized Borda counting).

Pairwise learning techniques for instance ranking have been proposed in [19].
More specifically, two approaches were developed and compared in that paper,
one which trains binary models Mi,j , one for each pair of labels yi and yj , and
another one that trains modelsMi (i = 1, . . . , k−1) to separate classes y1, . . . , yi

from classes yi+1, . . . , yk. Given a new query instance x, both approaches submit
this instance to all models that have been learned and aggregate the correspond-
ing predictions into an overall score. A set of instances is then ranked according
these scores.

An overview of work on learning binary preference relations for label and
instance ranking is given by Fürnkranz & Hüllermeier.

3.3 Model-based Preference Learning

Another approach to learning ranking functions is to proceed from specific model
assumptions, that is, assumptions about the structure of the preference relations.
This approach is less generic than the previous ones, as it strongly depends on
the concrete assumptions made.

An example is the assumption that the target ranking of a set of objects
described in terms of multiple attributes can be represented as a lexicographic
order. Yaman et al. address the learning of lexicographic orders in the context
of object ranking. From a machine learning point of view, assumptions of the
above type can be seen as an inductive bias restricting the hypothesis space.
Provided the bias is correct, this is clearly an advantage, as it may simplify the
learning problem. In the case of lexicographic orders, for example, a complete
ranking of all objects is uniquely identified by a total order of the attributes plus
a total order of each of the attribute domains. For example, suppose objects to
be described in terms of (only) four binary attributes. Thus, there are 24 = 16
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objects and hence 16! ≈ 2 · 1013 rankings in total. However, only (24) · 4! = 384
of these rankings can be expressed in terms of a lexicographic order.

Needless to say, the bias induced by the assumption of a lexicographic order
is very strong and will be rarely justified in practical applications. In particular,
preferences on individual attribute values will normally not be independent of
each other. For example, red wine might be preferred as a beverage if the main
dish is meat, while white wine might be preferred in the case of fish. As mentioned
earlier, CP-nets [3] offer a language for expressing preferences on the values of
single attributes and provide a suitable formalism for modeling dependencies
of this type. A compact representation of a complex preference (partial order)
relation is achieved by making use of conditional independence relations between
such preferences (which are interpreted in terms of a ceteris paribus semantics),
in much the same way as Bayesian networks reduce complexity of probability
models by exploiting conditional independence between random variables. The
CP-net itself is a graphical representation of these (in)dependencies, and each
node (belonging to a single variable) is associated with a function that assigns
a preference relation on the values of that attribute to each combination of
values of the parent attributes. In this volume, Chevaleyre et al. discuss the
learnability of CP-networks, both in a passive and an active learning scenario.

If a ranking function is defined implicitly via an underlying utility (scoring)
function, the latter is normally also restricted by certain model assumptions.
For example, the approaches outlined in Section 3.1 make use of linear functions
to represent scores, although mostly for algorithmic reasons. There are other
approaches in which the choice of the underlying utility function is more intrin-
sically motivated and addressed in a more explicit way. For example, Giesen et
al. describe an approach for conjoint analysis, also called multi-attribute compo-
sitional models, which originated in mathematical psychology and is nowadays
widely used in the social sciences and operations research. Proceeding from the
description of objects in terms of a set of attributes, they assume that an under-
lying utility function can be decomposed into a linear sum of individual utility
functions, one for each attribute. These utility functions can then be learned
efficiently from the data.

Like in the case of lexicographic orders, this model assumption is obviously
quite restrictive. Torra presents a complementary and more general approach.
Starting with a discussion of general properties that aggregation operators for
attribute-based utility functions should fulfill, he surveys different approaches for
learning a complex aggregation operator in the form of a non-additive integral.

3.4 Local Aggregation of Preferences

Yet another alternative is to resort to the idea of local estimation techniques as
prominently represented, for example, by the nearest neighbor estimation princi-
ple: Considering the rankings observed in similar situations as representative, a
ranking for the current situation is estimated on the basis of these “neighbored”
rankings, typically using an averaging-like aggregation operator. This approach
is in a sense orthogonal to the previous model-based one, as it is very flexible
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and typically comes with no specific model assumption (except the regularity
assumption underlying the nearest neighbor inference principle).

For label ranking, the nearest neighbor (instance-based learning) approach
was first used in [9, 10]. Roughly speaking, the idea is to identify the query’s k
nearest neighbors in the instance space X , and then to combine the correspond-
ing rankings into a prediction using suitable aggregation techniques. In [11], this
approach was developed in a theoretically more sophisticated way, realizing the
aggregation step in the form of maximum likelihood estimation based on a sta-
tistical model for rank data. Besides, this approach is also able to handle the
more general case in which the rankings of the neighbored instances are only
partially known.

In the same paper, the authors propose to use this estimation principle for
decision tree learning, too, namely for aggregating the label rankings associated
with the instances grouped in a leaf node of the tree. Indeed, decision tree
learning can also be seen as a kind of local learning method, namely as a piecewise
constant approximation of the target function.5 In this book, Yu, Wan & Lee
propose a similar method. They grow a decision tree and propose two splitting
measures for label ranking data. The rankings that are predicted at the leaves
of the trees are derived by aggregating the rankings of all training examples
arriving at this leaf.

Aggregation techniques are also used for other types of preference learning
problems, including object ranking. For example, assume the rankings of several
subsets Xi of a reference set X to be given. The learning task is to combine
these rankings into a complete ranking of all objects in X . A practical applica-
tion of this setting occurs, e.g., in information retrieval, when different rankings
of search results originating from different search engines should be combined
into an overall ranking of all retrieved pages [16]. Amongst other things, the
learning problem may involve the determination of suitable weights for the in-
formation sources (search engines), reflecting their performance or agreement
with the preferences of the user [35]. Another example is the ranking of sports
teams or players, where individual tournament results with varying numbers of
participants have to be combined into an overall ranking [2], or where different
rankings by different judges have to be aggregated into an overall ranking of the
participants of a competition [23].

4 Applications of Preference Learning

Preference learning problems in general, and ranking problems in particular,
arise quite naturally in many application areas. For example, a search engine
should rank Web pages according to a user’s preferences. Likewise, cars can be
ranked according to a customer’s preferences on characteristics that discriminate
different models. Another example is the ranking of possible keywords according

5 More general approximations can be realized by labeling a leaf node with a non-
constant function, for example a linear function in regression learning.
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to their relevance for an article. A few more examples have already been given
in this article, and many more could be found.

In particular in the field of information retrieval, ranking applications occur
quite naturally. Two particularly interesting problems are learning to rank the
results of a query to a search engine, and learning to rank possible recommen-
dations for new products. We will briefly discuss research in these areas below.

4.1 Learning to Rank Search Results

A widely studied preference learning problem is the ranking of retrieval results of
a search engine. Roughly, the problem is the following: given a query q and a set
of documents D, find a ranking of the documents in D that corresponds to their
relevance with respect to q. This ranking is based on an unknown preference
relation �q, which ought to be learned from user feedback on past rankings of
retrieval results for different queries. An elaborate survey of current research in
this area can be found in [36].

Current research focuses particularly on suitable ways of characterizing the
queries that allow one to transfer the ranking from one query to another [20, 40].
In some sense, a query may be considered as a context for a ranking, and the task
is to learn a function that allows one to transfer the ranking from one context
to the other. Much of the research is conducted on the LETOR (LEarning TO
Rank for information retrieval) collection, a package of datasets containing a
wide variety of queries with user feedback in several domains.6

Users can provide explicit feedback by labeling the retrieved pages with their
degree of relevance. However, users are only willing to do this for a limited
number of pages. It would be better if feedback could be collected in a way that is
transparent to the user. Radlinski & Joachims discuss a variety of techniques
that allow one to collect the user feedback implicitly via their clicking behavior.
Alternatively, Arens proposes the use of active learning techniques which help
minimizing the burden on the user by a careful automatic selection of suitable
training examples for the ranking algorithm. He illustrates his technique in an
application which learns a ranking function for the MEDLINE search engine for
biomedical literature.

4.2 Recommender Systems

Nowadays, recommender systems [43] are frequently used by on-line stores to
recommend products to their customers. Such systems typically store a data
table with products over users, which records the degree of preference of a user
for this product. A customer can provide this preference degree explicitly by
giving some sort of feedback (e.g., by assigning a rating to a movie) or implicitly
(e.g., by buying the DVD of the movie). The elegant idea of collaborative filtering
systems [21] is that recommendations can be based on user similarity, and that
user similarity can in turn be defined by the similarity of their recommendations.
6 http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Alternatively, recommender systems can also be based on item similarities, which
are defined via the recommendations of the users that recommended the items in
question. Yet other approaches try to learn models that capture the preference
information contained in the matrix. A very good comparison of these approaches
can be found in [8].

In this book, de Gemmis et al. given an extensive survey of recommender
systems. Subsequently, Karatzoglou & Weimer describe the use of ma-
trix factorization methods for compressing the information contained in the
user/product matrix into a product of two lower-dimensional matrices. The di-
mensions over which the product is computed may be viewed as hidden concepts
which can be used to categorize the interests of a user. Interestingly, only very
few (in the order of 10) such concepts are enough for a sufficiently accurate
representation of large numbers of users and products. Finally, Bellogin et al.
describe an approach that uses decision tree learning for identifying features of
recommendation models that influence the quality of the predicted preference
ranking.

5 Guide to the Book

In this introductory chapter, we have tried to give an overview of different ap-
proaches to preference learning, categorized by the learning task (label, instance,
or object ranking) and the learning technique (learning utility functions, learning
binary preference relations, learning preference models having a specific struc-
ture, or using local estimation and preference aggregating methods). In principle,
all task/technique combinations are conceivable and can be found in the litera-
ture. We also highlighted important application areas, in particular in ranking
search results and product recommendations.

Throughout the chapter, pointers to the remaining articles in this book were
given. They could be characterized along a variety of dimensions, including
all of those mentioned above. We have adopted a grouping that more or less
corresponds to the subsections in this survey. As the categorization is multi-
dimensional, most articles fit into several of these categories, and, in some cases,
the choice was not entirely clear. This is why we do not have separate parts on
learning of a utility function or a binary preference relation, for example. In fact,
almost all approaches presented in this book follow either of the two approaches.

We believe that the resulting grouping of the articles is quite coherent. Sev-
eral of these groups start with a survey chapter that tries to provide a broader
coverage of the area. Overall, we are quite confident that this book provides both
a broad coverage of the field of preference learning as well as a good guideline for
highlighting some of the most important current research directions. Hopefully,
the readers will agree!
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