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Abstract—Protein binding sites are often represented by
means of graphs capturing their most important geometri-
cal and physicochemical properties. Searching for structural
similarities and identifying functional relationships between
them can thus be reduced to matching their corresponding
graph descriptors. In this paper, we propose a method for
the structural analysis of protein binding sites that makes use
of such matching techniques to assess the similarity between
proteins independently of sequence or fold homology. More
specifically, we propose a similarity measure that generalizes
the commonly used maximum common subgraph measure in
two ways. First, using algorithms for so-called quasi-clique
detection, our measure is based on maximum ‘approximately’
common subgraphs, a relaxation of maximum common sub-
graphs which is tolerant toward edge mismatches. Second,
instead of focusing on equivalence, our measure is a com-
promise between a generalized equivalence and an inclusion
measure. An experimental study is presented to illustrate the
effectiveness of the method and to show that both types of
relaxation are useful in the context of protein structure analysis.

Keywords-protein binding sites; graphs; cliques; quasi-
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I. I NTRODUCTION

The progress in medicine and drug design largely hinges
on discoveries in bioinformatics. Indeed, with the expo-
nential growth of molecular data, computational techniques
are needed to extract, store and process this data. The
structural comparison of proteins is one of the main tasks
in bioinformatics, since it is well-known that functional
similarity does not necessarily come along with sequence
similarity [7].

Our focus in this paper will be on the special case of
protein binding sites derived from crystal structures. To
model such structures in a formal way, we resort to a
graph representation which is able to capture the most
important geometrical and physicochemical properties of a
binding site. For a long time, graphs have been used in
chemoinformatics for the modeling of chemical compounds
[4]. In bioinformatics, they are becoming more and more
important, too, due to their general versatility in modeling
complex structures such as proteins or interaction networks
[2]. It is hence not surprising that a number of methods has

been developed for comparing graphs representing protein
structures (e.g. [6, 10, 23]), and for computing related
similarity measures, for example based the concepts of max-
imum (minimum) common subgraph (supergraph) [18, 19]
or graph edit distance [15].

Considering the definition of the maximum common
subgraph, a drawback of this measure is its sensitivity toward
errors and small deviations. This becomes especially obvious
in the case of graphs with real-valued edge weights. Due
to mutations, molecular flexibility, and noise in the data,
one cannot expect to find exact matches in the context of
comparing protein binding sites. This may result in very
small common subgraphs that fail to capture the structural
similarities of two or more protein binding sites in a proper
way. To overcome this problem, we relax the condition of
exact matches and propose a method for detecting “ap-
proximately” common subgraphs, which is arguably more
appropriate to search for common substructures in biological
data. To this end, we employ the concept of a so-called
quasi-cliqueof a graph that has recently been studied in the
literature [1, 14, 16].

The remainder of the paper is organized as follow: In
Section 2, we introduce protein binding sites and their
graph representation. Section 3 discusses the problem of
finding a maximum common subgraph using clique detection
techniques. The concept of a quasi-clique and our novel sim-
ilarity measure are introduced in Section 4. An experimental
validation is presented in Section 5. Section 6 concludes the
paper.

II. GRAPH-BASED REPRESENTATION OFPROTEIN

BINDING SITES

To model protein binding sites as graphs, we build upon
CavBase [21, 22], a database developed for the purpose
of identifying and extracting putative protein binding sites
from structural data deposited in the protein database (PDB)
[3]. CavBase detects putative binding sites as cavities on
the surface of proteins by using the LIGSITE algorithm
[9]. The geometry of a protein binding site is internally
represented by a set of pseudocenters, spatial points that
represent the physico-chemical properties of a surface patch



within the binding site. Pseudocenters can be seen as a
compressed spatial representation of areas on the cavity
surface where certain protein-ligand interactions are experi-
enced. Currently, CavBase uses seven types of pseudocenters
(donor, acceptor, donor-acceptor, pi, aromatic, aliphatic and
metal) that account for different types of possible interac-
tions between residues of the binding site and the substrate
of the protein. These pseudocenters are derived from the
amino acid composition of the binding site.

To model such structures, we make use of node-labeled
and edge-weighted graphsG = (V,E, lV , lE) where V

is the set of nodes,E = V × V is the set of edges,
lV : V → {1,. . ., 7} assigns labels to nodes (each number
represents one physicochemical property), andlE : E → R

assigns weights to edges that represent the distance be-
tween the adjacent nodes.1 To reduce the complexity of the
representation and increase algorithmic efficiency, we use
an approximate representation in which edges exceeding a
certain length are ignored; in this regard, a threshold of 11
Ångstr̈om has proved to be a reasonable choice [6]. Despite
this approximation, our representation will produce graphs
that are rather dense, as approximately 20 percent of all pairs
of nodes are connected by an edge.

III. S IMILARITY BASED ON THEMAXIMUM COMMON

SUBGRAPH

A simple though intuitively appealing and frequently used
approach to graph comparison is to define the similarity
between two graphs in terms of the size (number of nodes)
of their maximum common subgraph (MCS). To obtain a
normalized variant of this measure, the size of the MCS
is often divided by the number of nodes of the larger of
the two graphs [8, 17]. This leads to a similarity measure
s : G × G → [0, 1], where 1 indicates that both graphs
are isomorphic and 0 that both graphs have nothing in
common. Before turning our attention to the problem of
finding (maximum) common subgraphs, we recall some
terms that will be needed in the further discussion.

Graph isomorphism::Given two graphs

G = (V,E, lV , lE), G′ = (V ′, E′, l′V , l′E),

a graph isomorphism is a bijectionf : V → V ′ satisfying
the following properties: For allu, v ∈ V ,

(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′.

Moreover, for node-labeled and edge-weighted graphs,
lV (u) = l′V (f(u)), lV (v) = l′V (f(v)) and lE(u, v) =
l′E(f(u), f(v)) must hold for allu, v ∈ V and (u, v) ∈ E.
G and G′ are called isomorphic,G ≈ G′, if there exists a
graph isomorphism between them. Obviously, isomorphism
is an equivalence relation on graphs.

1Since our edges are undirected, it would be more correct to usea subset
instead of a tuple representation. For convenience, however, we stick to the
simpler tuple notation, with the implicit understanding that(u, v) ∈ E
implies (v, u) ∈ E and lE((u, v)) = lE((v, u)).

Subgraph:: A graphGS = (VS , ES) is a subgraph of
a graphG = (V,E) if VS ⊆ V andES ⊆ E∩ (VS ×VS). It
is an induced subgraph ifVS ⊆ V andES = E∩(VS×VS).

Maximum common subgraph::Given two graphsG and
G′, Gcs is called a common subgraph ofG andG′ if there
is an induced subgraphGS of G and an induced subgraph
G′

S of G′ such thatGcs ≈ GS andGcs ≈ G′
S . A common

subgraph is called a maximum common subgraph (MCS) if
there is no other common subgraph ofG andG′ with more
nodes thanGcs.

Clique:: A clique in a graphG = (V,E) is an induced
subgraphGC = (VC , EC) which is fully connected, i.e.,
such that(u, v) ∈ EC for all u, v ∈ VC .

Product graph:: The product graphG• = (V•, E•) of
two graphsG = (V,E) andG′ = (V ′, E′) is defined by its
node setV• ⊆ V × V ′ and its edge setE• ⊆ V• × V• as
follows:

V• = { (vi, v
′
j) | lV (vi) = lV (v′

j) }

E• =
{ (

(vi, v
′
j), (vk, v′

l)
)

| lE(vi, vk) = lE(v′
j , v

′
l)

}

The product graph has a number of interesting properties,
one of them being especially important for our purpose:
A clique in the product graph of two graphsG and G′

corresponds to a common subgraph ofG and G′ [12].
Thus, to detect common subgraphs, one can simply search
for cliques in the product graphG• = G × G′, and
finding a maximum common subgraph amounts to finding
a maximal clique inG•. In other words, the problem of
finding a maximum common subgraph can be reduced to
the problem of clique detection, and any algorithm for the
latter can be used to solve the former. In this regard, it is
worth mentioning that clique detection is an NP-complete
problem [11]. Therefore, exact algorithms are feasible only
for very small graphs, while practically relevant problems
are usually solved in an approximate way by means of
heuristic algorithms.

Suppose thatVC is the set of nodes in a largest clique
found in G• and, hence, its cardinality the size of the
maximum common subgraph ofG and G′. The similarity
betweenG andG′ can then be defined as follows:

sim(G,G′) =
|VC |

max{|V |, |V ′|}
. (1)

IV. GRAPH SIMILARITY BASED ON QUASI-CLIQUES

Cliques are the densest form of subgraphs, since each pair
of nodes must be connected by an edge. Considering the
retrieval of the maximum common subgraph by searching
for cliques in the product graphG•, this means that all node
and edge labels must be equal. As mentioned previously, this
requirement is overly restrictive in the context of biological
data analysis, especially in the case of structure analysis
where edges are labeled with real-valued distances. An



obvious approach to introduce some tolerance is to define
the set of edgesE• ⊆ V• × V• in the product graphG• as

{
(

(vi, v
′
j), (vk, v′

l)
)

| ‖lE(vi, vk) − lE(v′
j , v

′
l)‖ ≤ ǫ},

which means that, in the maximum common subgraph,
the length of isomorphic edges is allowed to differ by at
most a constantǫ. We consider complete graphs and weight
”missing” edges with infinity. Furthermore we assume that
the distance between two such edges is always smallerǫ. Yet,
looking for cliques iG• still means that this condition must
hold for all pairs of edges in the MCS. Roughly speaking,
this approach is tolerant toward possibly numerous though
small (measurement) errors but not toward single though
exceptionally large deviations. To become flexible in this
regard, too, our idea is to replace the detection of cliques in
G• by the detection ofquasi-cliques.

A. Quasi-Cliques

Roughly speaking, quasi-cliques are “almost complete”
graphsG = (V,E). In the literature, different definitions of
quasi-cliques have been proposed. Some of them are based
on the degree of the nodes [14, 16], callingG a quasi-clique
if every node inV is adjacent to at leastγ · (|V | − 1) other
nodes, wheredeg(v) is the number of nodes adjacent tov.
This is the definition that we shall adopt in this paper. Yet,
other definitions do exist, for example referring to the edge
density: A graphG is a quasi-clique if|E| ≥ γ ·

(

|V |
2

)

[1].
In both cases,γ ∈]0, 1] is a relaxation parameter. Note that

the concept of aγ-quasi-clique is a proper generalization of
the concept of a cliques, since each clique is a1-quasi-
clique.

B. Quasi-Clique Detection

As mentioned earlier, the problem to find a maximum
clique in a graph is NP-complete [11]. Since quasi-cliques
are a generalization of cliques, it immediately follows that
finding a maximumγ-quasi-clique is an NP-complete prob-
lem, too. Therefore, to solve the problem, one has to resort
to heuristic algorithms.

Heuristic methods for clique detection typically exploit
a downward-closure property, namely that a supergraph of
a non-clique cannot be a clique either. Unfortunately, this
property does not hold for quasi-cliques, as one can easily
show by counter-examples. Instead, any subset of the set of
nodesV in a graphG = (V,E) may form aγ-quasi-clique.

Nevertheless, alternative heuristic methods for quasi-
clique detection have been developed. In our approach, we
make use of the method proposed in [13], which represents
all potentially maximalγ-quasi-cliques by its nodes in a set-
enumeration tree [20]. Thus, the search space is given by
the powerset of the set of nodesV . Searching for maximal
quasi-cliques is performed by means of a depth-first search
on the set-enumeration tree. Once a quasi-clique has been
discovered, it is stored in a prefix-tree, so that a maximal

γ-quasi-cliques is provably found in a leaf of the prefix-tree.
For technical details, we refer to [13].

C. Similarity Based on Quasi-Cliques

Finding a maximumγ-quasi-clique in the product graph
of two graphsG andG′ means finding a maximumapprox-
imately common subgraph (MACS) of these two graphs.
Fig. 1 illustrates this correspondence through a simple
example: In the upper part of the figure, two node labeled
and edge weighted graphs are shown. Note that both graph
share a roughly similar subgraph consisting of the five nodes
labeled A to E. From these graphs a product graph is
calculated (ǫ = 0.5) and the MCS and MACS are derived
by clique detection andγ-quasi-clique detection (γ = 0.5),
respectively. Obviously, theγ-quasi-clique detection is able
to capture all five nodes of the approximately common
subgraph.

The MACS computed by quasi-clique detection can in
turn be used to define a similarity degree via (1). Obviously,
the smallerγ is, i.e., the more tolerant the comparison,
the larger the MACS and, hence, the larger the degree of
similarity becomes.

Despite this obvious possibility, we opt for another type of
similarity measure. In fact, (1) may become problematic for
the comparison of structures of different size. For example,
since protein binding sites do not have a clear-cut boundary,
it often happens that a structure is larger than the actual
binding site. In such cases, where, for instance, one structure
is a subpocket of the other one containing the most important
catalytic residues (while the rest of the binding site is
functionally less important), it might be desirable to consider
G ⊆ G instead ofG = G′ as a sufficient condition for a
high similarity degree, a property which is not supported by
(1).

Our idea, therefore, is to express similarity in terms of
subset relations, proceeding from the following equivalence
known from set theory:

A = B ⇔ A ⊆ B ∧ B ⊆ A . (2)

Let G = (V,E) and G′ = (V ′, E′) be two graphs and let
QC = (VQC,, EQC) be the maximumγ-quasi-clique of their
product graphG• = G × G′. Then, the fraction

α =
|VQC |

|V |
∈ [0, 1]

can be considered as a degree to whichG is a subset ofG′.
Likewise,

β =
|VQC |

|V ′|
∈ [0, 1]

corresponds to the degree to whichG′ is a subset ofG.
Obviously, (1) is then given bymin{α, β}. An interesting
generalization to using the minimum operator for combining
the two degrees of inclusion has been proposed in [5],



Figure 1. Illustration of the correspondence between quasi-cliques and MACS.

namely the use of an Ordered Weighted Averaging (OWA)
operator [24]. In our special case, this leads to the measure

sim(G,G′) = ϕmin(α, β) + (1 − ϕ)max(α, β), (3)

where ϕ ∈ [0, 1] is a compromise parameter. Note that
ϕ = 1 recovers the original measure (1), which yields
sim(G,G′) = 1 only if G = G′, while ϕ = 0 corresponds
to a set inclusion measure for whichG ⊆ G′ or G′ ⊆ G is
sufficient to obtain a similarity degree of 1. Parameter values
0 < ϕ < 1 produce measures in-between these extreme
cases.

V. EXPERIMENTAL RESULTS

We conducted a performance study using a data set from
[6], namely a set of binding sites belonging to the two classes
of ATP- and NADH-binding proteins. For complexity rea-
sons, however, we removed from this data set all structures
whose size exceeded 200 nodes. In the construction of the
product graph, we have considered two edges as a match if
their lenghts differ by at most a theresholdǫ = 0.2 which
has proved to be a reasonable choice [6].

To assess the performance of our new similarity measure
based on quasi-cliques, we compare it to the standard clique
measure (1). In comparison with this measure, our approach
has two degrees of freedom, namely the parameterγ which
controls the relaxation of the clique concept for pattern
matching, and the parameterϕ that determines the type of
comparison and interpolates between a (generalized) equiv-
alence measure and a measure of inclusion. Note that (1)

corresponds to the most stringent type of measure obtained
for γ = ϕ = 1. Our conjecture is that less stringent variants,
obtained for0 < γ,ϕ < 1 will be more appropriate in the
context of protein structure analysis.

To assess the usefulness of a similarity measure, we
used it in the context ofk-nearest-neighbor classification.
The idea is that, the more suitable a similarity measure is,
the better is the performance of ak-NN classifier using
this measure for determining the nearest neighbors of a
query. We measured performance in terms of classification
accuracy (percent of correct classifications, PCC), which
in turn was estimated by means of a leave-one-out-cross-
validation.

Table I
ACCURACY OF THE CLIQUE-MEASURE DEPENDING ONϕ.

ϕ PCC (k=1) PCC (k=3) PCC (k=5)
0 65.68 75.49 75.49

0.1 67.64 74.50 74.50
0.2 67.64 75.49 74.50
0.3 68.62 74.50 74.50
0.4 69.60 74.50 75.49
0.5 78.43 76.47 79.41
0.6 74.50 76.47 75.49
0.7 74.50 79.41 71.56
0.8 71.56 73.52 74.50
0.9 65.68 71.56 74.50
1 64.70 64.70 67.64

mean PCC 69.86 74.23 74.32

Table 1 summarizes the results obtained for the standard
clique-measure whereγ = 1 for different values ofϕ and



different sizesk of the neighborhood ink-NN classification.
As can be seen, the best results are indeed achieved for
valuesϕ ≈ 0.5, suggesting that neither a pure equivalence
nor a pure inclusion measure is optimal. Instead, a mixture
of the two yields a good compromise and seems to produce
improved similarity degrees.

This result was confirmed by experiments with the quasi-
clique measure. Therefore, we fixed the valueϕ = 0.5 for
this measure which corresponds to the best results found
in the case of the clique measure and analyzed the effect of
the clique-parameterγ. The results are shown in Table 2. As
can be seen, medium-sized values ofγ ≈ 0.6 yield the best
results, which means that a relaxation of the clique concept
does indeed pay off. Compared to the strongest result of
the clique-measure (79.41%), the best performance of the
quasi-clique measure (89.21%) is significantly higher.

Table II
ACCURACY OF THE QUASI-CLIQUE-MEASURE DEPENDING ON

γ(ϕ = 0.5)

γ PCC (k=1) PCC (k=3) PCC(k=5)
0.1 55.88 55.88 57.84
0.2 69.60 72.54 74.50
0.3 74.50 75.49 78.43
0.4 78.43 79.41 81.37
0.5 84.31 85.29 85.29
0.6 84.31 85.29 89.21
0.7 83.33 80.39 83.33
0.8 80.39 77.45 81.37
0.9 78.43 76.47 79.41
1 78.43 76.47 79.41

These results confirm our conjecture that an increased
tolerance toward mismatches and minor differences due to
conformational flexibility or measurement errors allows for
the detection of a larger MACS of a pair of graphs and
thus leads to a more useful similarity measure for binding
pockets. Of course, it can also be seen that, as expected,
decreasingγ beyond a certain level is not meaningful. In
fact, for very smallγ, geometrical constraints are not only
relaxed but essentially ignored. For example, when we take
γ → 0, the similarity measure will only take the distribution
of physicochemical properties into account, without paying
any attention to the geometry of the binding site.

VI. CONCLUSION

Maximum common subgraphs have been used success-
fully as similarity measures for graphs. In this paper, how-
ever, we have argued that this measure is overly stringent
in the context of protein structure comparison, mainly since
graph descriptors of such structures are only approximate
models afflicted with noise and imprecision.

Therefore, we have proposed an alternative measure re-
laxing the MCS in two different ways. First, using algo-
rithms for quasi-cliquedetection, our measure is based on
maximum approximatelycommon subgraphs, a relaxation

of MCS which is tolerant toward edge mismatches. Sec-
ond, instead of focusing on equivalence, our measure is a
compromise between a generalized equivalence and an in-
clusion measure. First empirical studies, in which similarity
measures are used for the purpose of classification, suggest
that both types of relaxation are useful and lead to improved
measures of similarity between protein binding sites.
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