
Machine Learning manuscript No.
(will be inserted by the editor)

Preference-Based Reinforcement Learning:
A Formal Framework and a Policy Iteration Algorithm

Johannes Fürnkranz, Eyke Hüllermeier,
Weiwei Cheng, Sang-Hyeun Park

the date of receipt and acceptance should be inserted later

Abstract This paper makes a first step toward the integration of two subfields
of machine learning, namely preference learning and reinforcement learning
(RL). An important motivation for a preference-based approach to reinforce-
ment learning is the observation that in many real-world domains, numerical
feedback signals are not readily available, or are defined arbitrarily in order
to satisfy the needs of conventional RL algorithms. Instead, we propose an
alternative framework for reinforcement learning, in which qualitative reward
signals can be directly used by the learner. The framework may be viewed
as a generalization of the conventional RL framework in which only a partial
order between policies is required instead of the total order induced by their
respective expected long-term reward. Therefore, building on novel methods
for preference learning, our general goal is to equip the RL agent with qualita-
tive policy models, such as ranking functions that allow for sorting its available
actions from most to least promising, as well as algorithms for learning such
models from qualitative feedback. As a proof of concept, we realize a first sim-
ple instantiation of this framework that defines preferences based on utilities
observed for trajectories. To that end, we build on an existing method for
approximate policy iteration based on roll-outs. While this approach is based
on the use of classification methods for generalization and policy learning, we
make use of a specific type of preference learning method called label ranking.
Advantages of preference-based approximate policy iteration are illustrated by
means of two case studies.

Keywords reinforcement learning, preference learning

J. Fürnkranz · S.-H. Park
Department of Computer Science, TU Darmstadt
E-mail: {juffi, park}@ke.tu-darmstadt.de

E. Hüllermeier · W. Cheng
Department of Mathematics and Computer Science, Marburg University
E-mail: {eyke, cheng}@mathematik.uni-marburg.de

2

1 Introduction

Standard methods for reinforcement learning (RL) assume feedback to be spec-
ified in the form of real-valued rewards. While such rewards are naturally gen-
erated in some applications, there are many domains in which precise numer-
ical information is difficult to extract from the environment, or in which the
specification of such information is largely arbitrary. The quest for numerical
information, even if accomplishable in principle, may also compromise effi-
ciency in an unnecessary way. In a game playing context, for example, a short
look-ahead from the current state may reveal that an action a is most likely
superior to an action a′; however, the precise numerical gains are only known
at the end of the game. Moreover, external feedback, which is not produced
by the environment itself but, say, by a human expert (e.g., “In this situation,
action a would have been better than a′”), is typically of a qualitative nature,
too.

In order to make RL more amenable to qualitative feedback, we build upon
formal concepts and methods from the rapidly growing field of preference
learning (Fürnkranz and Hüllermeier 2010). Roughly speaking, we consider
the RL task as a problem of learning the agent’s preferences for actions in
each possible state, that is, as a problem of contextualized preference learning
(with the context given by the state). In contrast to the standard approach
to RL, the agent’s preferences are not necessarily expressed in terms of a
utility function. Instead, more general types of preference models, as recently
studied in preference learning, can be envisioned, such as total and partial
order relations.

Interestingly, this approach is in a sense in-between the two extremes that
have been studied in RL so far, namely learning numerical utility functions
for all actions (e.g., Watkins and Dayan 1992) and, on the other hand, di-
rectly learning a policy which predicts a single best action in each state (e.g.,
Lagoudakis and Parr 2003). One may argue that the former approach is un-
necessarily complex, since precise utility degrees are actually not necessary for
taking optimal actions, whereas the latter approach is not fully effectual, since
a prediction in the form of a single action does neither suggest alternative
actions nor offer any means for a proper exploration. An order relation on
the set of actions seems to provide a reasonable compromise, as it supports
the exploration of acquired knowledge (i.e., the selection of presumably op-
timal actions), but at the same time also provides information about which
alternatives are more promising than others.

The main contribution of this paper is a formal framework for preference-
based reinforcement learning. Its key idea is the observation that, while a
numerical reward signal induces a total order on the set of trajectories, a qual-
itative reward signal only induces a partial order on this set. This makes the
problem considerably more difficult, because crucial steps such as the com-
parison of policies, which can be realized in a numerical setting by estimating
their expected reward, are becoming more complex. In this particular case,
we propose a solution based on stochastic dominance between probability dis-

3

tributions on the space of trajectories. Once having defined preferences of
trajectories, we can also deduce preferences between states and actions. The
proposed framework is quite related to the approach of Akrour et al. (2011).
As we will discuss in more detail in Section 8, the main differences are that
their approach works with preferences over policies, and uses this information
to directly learn to rank policies, whereas we learn to rank actions.

We will start the paper with a discussion on the importance of qualitative
feedback for reinforcement learning (Section 2), which we motivate with an
example from the domain of chess, where annotated game traces provide a
source for feedback in the form of action and state preferences. We then show
how such preferences can be embedded into a formal framework for preference-
based reinforcement learning, which is based on preferences between trajec-
tories (Section 3). For a first instantiation of this algorithm, we build upon
a policy learning approach called approximate policy iteration, which reduces
the problem to iteratively learning a policy in the form of a classifier that pre-
dicts the best action in a state. We introduce a preference-based variant of this
algorithm by replacing the classifier with a label ranker, which is able to make
better use of the information provided by roll-out evaluations of all actions in
a state. Preference learning and label ranking are briefly recapitulated in Sec-
tion 4, and their use for policy iteration is introduced in Section 5. While the
original approach is based on the use of classification methods for generaliza-
tion and policy learning, we employ label ranking algorithms for incorporating
preference information. Advantages of this preference-based approximate pol-
icy iteration method are illustrated by means of two case studies presented in
Sections 6 and 7. In the last two sections, we discuss our plans for future work
and conclude the paper.1

2 Reinforcement Learning and Qualitative Feedback

In this section, we will informally introduce a framework for reinforcement
learning from qualitative feedback. We will start with a brief recapitulation of
conventional reinforcement learning (Section 2.1) and then discuss our alterna-
tive proposal, which can be seen as a generalization that does not necessarily
require a numerical feedback signal but is also able to exploit qualitative feed-
back (Section 2.2). Finally, we illustrate this setting using the game of chess
as an example domain (Section 2.3).

2.1 Reinforcement Learning

Conventional reinforcement learning assumes a scenario in which an agent
moves through a (finite) state space by taking different actions. Occasionally,
the agent receives feedback about its actions in the form of a reward signal.
The goal of the agent is to choose its actions so as to maximize its expected

1 A preliminary version of this paper appeared as (Cheng et al. 2011).

4

total reward. Thus, reinforcement learning may be considered to be half-way
between unsupervised learning (where the agent does not receive any form of
feedback) and supervised learning (where the agent would be told the correct
action in certain states).

The standard formalization of a reinforcement learning problem builds on
the notion of a Markov Decision Process (MDP; Puterman 2005) and consists
of

– a set of states S = {s1, . . . , sn} in which the agent operates; normally, a
state does not have an internal structure, though it may be described in
terms of a set of features (which allows, for example, functional represen-
tations of policies);

– a (finite) set of actions A = {a1, . . . ,ak} the agent can perform; sometimes,
only a subset A(si) ⊂ A of actions is applicable in a state si;

– a Markovian state transition function δ : S × A → P(S), where P(S) de-
notes the set of probability distributions over S; thus, τ(s,a, s′) = δ(s,a)(s′)
is the probability that action a in state s leads the agent to state s′.

– a reward function r : S × A → R, where r(s,a) is the reward the agent
receives for performing action a in state s; the concrete reward may depend
on the successor state, in which case r(s,a) is given by the expectation of
r(s,a, s′) with respect to δ(s,a).

The agent moves through the state space by repeatedly taking actions,
thereby generating a trajectory

σ =
(
s0,a0, s1, . . . , sn,an, s(n+1)

)
,

where s0 is the state the agent starts with, ai the action it takes in state si, and
si+1 the successor state produced by this action. The associated accumulated
reward

∑n
t=0 r(st,at) is an indicator of how appropriate the actions have been

chosen.
Learning from trajectories and accumulated rewards is natural in many

reinforcement learning settings. In robotics, for example, each action (for ex-
ample, a movement) of the robot may cause a certain cost, hence a negative
reward, and these cost values are accumulated until a certain goal state is
reached (for example, the robot finds itself in a desired spatial position). An-
other example is reinforcement learning in games, where each state-action
sequence is one game. This example is somewhat special in the sense that a
true (non-zero) reward signal only comes at the very end, indicating whether
the game was won or lost.

The most common task in RL is to learn a policy π : S → A that prescribes
the agent how to act optimally in each situation (state). More specifically, the
goal is often defined as maximizing the expected sum of rewards (given the
initial state s), with future rewards being discounted by a factor γ ∈ [0, 1]:

V π(s) = E

[∞∑
t=0

γtr(st,at) | s0 = s, at = π(st), st+1 = δ(st,at)

]
(1)

5

With V ∗(s) = supπ∈Π V
π(s) the best possible value that can be achieved

for (1), a policy is called optimal if it achieves the best value in each state
s. Thus, one possibility to learn an optimal policy is to learn an evaluation
of states in the form of a value function (Sutton 1988), or to learn a so-
called Q-function that returns the expected reward for a given state-action
pair (Watkins and Dayan 1992).

2.2 Learning from Qualitative Feedback

Existing algorithms for reinforcement learning possess interesting theoretical
properties and have been used successfully in a number of applications. How-
ever, they also exhibit some practical limitations, notably regarding the type
of feedback they can handle.

On the one hand, these methods are rather demanding with regard to the
training information requested by the learner. In order to learn a value function
or a Q-function, feedback must be specified in the form of real-valued rewards.
It is true that, in some applications, information of that type is naturally
generated by the environment; for example, the waiting time of people in
learning elevator control (Crites and Barto 1998), or the distance covered by
a robot learning to walk. In general, however, precise numerical information is
difficult to extract from the environment, and designing the reward function is
part of framing the problem as a reinforcement learning problem. Sometimes,
this may become difficult and largely arbitrary—as a striking though telling
example, to which we shall return in Section 7, consider assigning a negative
reward of −60 to the death of the patient in a medical treatment (Zhao et al.
2009). Likewise, in (robot) soccer, a corner ball is not as good as a goal but
better than a throw-in; again, however, it is difficult to quantify the differences
in terms of real numbers.

The main objective of this paper is to define a reinforcement learning frame-
work that is not restricted to numerical, quantitative feedback, but also able
to handle qualitative feedback expressed in the form of preferences over states,
actions, or trajectories. Feedback of this kind is more natural and less difficult
to acquire in many applications. As will be seen later on, comparing pairs of
actions, states or trajectories instead of evaluating them numerically does also
have a number of advantages from a learning point of view. Before describing
our framework more formally in Section 3, we discuss the problem of chess
playing as a concrete example for illustrating the idea of qualitative feedback.

2.3 Example: Qualitative Feedback in Chess

In games like chess, reinforcement learning algorithms have been successfully
employed for learning meaningful evaluation functions (Baxter et al. 2000;
Beal and Smith 2001; Droste and Fürnkranz 2008). These approaches have
all been modeled after the success of TD-Gammon (Tesauro 2002), a learn-
ing system that uses temporal-difference learning (Sutton 1988) for training a

6

Fig. 1 An annotated chess game (screen-shot taken from http://chessbase.com/).

game evaluation function (Tesauro 1992). However, all these algorithms were
trained exclusively on self-play, entirely ignoring human feedback that is read-
ily available in annotated game databases.

Chess games are recorded in standardized notation (Edwards 1994), which
provides a multitude of options for annotating chess games. Figure 1 shows an
example. In addition to textual annotations, many moves are annotated with
normed symbols, which have been popularized by the Chess Informant book
series. The most important symbols are the following:

– Qualitative move evaluation: Each move can be annotated with a postfix
that indicates the quality of the move. Six symbols are commonly used,
representing different quality levels:
– blunder (??),
– bad move (?),
– dubious move (?!),
– interesting move (!?),
– good move (!),
– excellent move (!!).

– Qualitative position evaluation: Each position can be annotated with a
symbol that indicates the qualitative value of this position:
– white has decisive advantage (h),
– white has the upper hand (c),
– white is better (f),
– equal chances for both sides (j),
– black is better (g),
– black has the upper hand (e),

7

– black has decisive advantage (i),
– the evaluation is unclear (k).

For example, the left-hand side of Figure 1 shows the game position after
the 13th move of white. Here, black made a mistake (13...Qg6?), but he
is already in a difficult position. From the alternative moves, 13...a5?! is
somewhat better, but even here white has the upper hand at the end of the
variation (18.Rec1!c). On the other hand, 13...NXc2?? is an even worse
choice, ending in a position that is clearly lost for black (h).

It is important to note that this feedback is of qualitative nature, i.e., it
is not clear what the expected reward is in terms of, e.g., percentage of won
games from a position with evaluation c. However, it is clear that positions
with evaluation c are preferable to positions with evaluation f or worse (j,
g, e, i).

Also note that the feedback for positions typically applies to the entire
sequence of moves that has been played up to reaching this position. The
qualitative position evaluations may be viewed as providing an evaluation of
the trajectory that lead to this particular position, whereas the qualitative
move evaluations may be viewed as evaluations of the expected value of a
trajectory that starts at this point.

Note, however, that even though there is a certain correlation between
these two types of annotations (good moves tend to lead to better positions
and bad moves tend to lead to worse positions), they are not interchangeable.
A very good move may be the only move that saves the player from imminent
doom, but must not necessarily lead to a very good position. Conversely, a
bad move may be a move that misses a chance to mate the opponent right
away, but the resulting position may still be good for the player.

3 A Formal Framework for Preference-Based Reinforcement
Learning

In this section, we define our framework in a more rigorous way. To this end,
we first introduce a preference relation on trajectories. Based on this relation,
we then derive a preference order on policies, and eventually on states and
actions.

3.1 Preferences over Trajectories

Our point of departure is preferences over trajectories, that is, over the set
Σ of all conceivable trajectories that may be produced by an RL agent in a
certain environment.2 Thus, our main assumption is that, given two trajec-
tories σ,σ′ ∈ Σ (typically though not necessarily both starting in the same

2 Note that if S is countable and all trajectories are finite, then Σ is countable, too.

8

initial state), a user is able to compare them in terms of preference. In con-
ventional RL, this comparison is reduced to the comparison of the associated
(discounted) cumulative rewards: σ = (s0,a0, s1,a1, s2, . . .) is preferred to
σ′ = (s′0,a

′
0, s
′
1,a
′
1, s
′
2, . . .) if the rewards accumulated along σ are higher than

those accumulated along σ′, that is, if∑
t

γtr(st,at) >
∑
t

γtr(s′t,a
′
t)).

The comparison of trajectories in terms of cumulative rewards immediately
induces a total order on Σ. Given that our qualitative framework does not
necessarily allow for mapping trajectories to real numbers, we have to relax
the assumption of completeness, that is, the assumption that each pair of
trajectories can be compared with each other. Instead, we only assume Σ to
be equipped with a partial order relation w, where σ w σ′ signifies that σ is
at least as good as σ′. Since the weak preference relation w is only partial, it
allows for the incomparability of two trajectories. More specifically, it induces
a strict preference (A), an indifference (∼) and an incomparability (⊥) relation
as follows:

σ A σ′ ⇔ (σ w σ′) ∧ ¬(σ′ w σ)

σ ∼ σ′ ⇔ (σ w σ′) ∧ (σ′ w σ)

σ ⊥ σ′ ⇔ ¬(σ w σ′) ∧ ¬(σ′ w σ)

To illustrate the idea of incomparability, consider the case where an RL agent
pursues several goals simultaneously. This can be captured by means of a
vector-valued reward function measuring multiple instead of a single criterion,
a setting known as multiobjective reinforcement learning (Gábor et al. 1998;
Mannor and Shimkin 2004). An example of this kind will be studied in Sec-
tion 7 in the context of medical therapy planning. Since a trajectory σ can be
better than a trajectory σ′ in terms of one objective but worse with respect
to another, some trajectories may be incomparable in this setting.

3.2 Preferences over Policies

What we are eventually interested in, of course, is preferences over actions or,
more generally, policies. Note that a policy π (together with an initial state or
an initial probability distribution over states) induces a probability distribution
over the set Σ of trajectories. In fact, fixing a policy π means fixing a state
transition function, which means that trajectories are produced by a simple
Markov process.

What is needed, therefore, is a preference relation over P(Σ), the set of
all probability distributions over Σ. Again, the standard setting of RL is quite
reductionistic in this regard:

9

1. First, trajectories are mapped to real numbers (accumulated rewards), so
that the comparison of probability distributions over Σ is reduced to the
comparison of distributions over R.

2. This comparison is further simplified by mapping probability distributions
to their expected value. Thus, a policy π is preferred to a policy π′ if the
expected accumulated reward of the former is higher than the one of the
latter.

Since the first reduction step (mapping trajectories to real numbers) is
not feasible in our setting, we have to compare probability distributions over
Σ directly. What we can exploit, nevertheless, is the order relation w on Σ.
Indeed, recall that a common way to compare probability distributions on to-
tally ordered domains is stochastic dominance. More formally, if X is equipped
with a total order ≥, and P and P ′ are probability distributions on X, then
P dominates (is preferred to) P ′ if P (Xa) ≥ P ′(Xa) for all a ∈ X, where
Xa = {x ∈ X |x ≥ a}. Or, to put it in words, the probability to reach a or
something better is always as high under P as it is under P ′.

However, since w is only a partial order, stochastic dominance cannot be
applied immediately. What is needed, therefore, is a generalization of this
concept to the case of partial orders: What does it mean for P to dominate
P ′ if both distributions are defined on a partially ordered set? This question
is interesting and non-trivial, especially since both distributions may allocate
probability mass on elements that are not comparable. Somewhat surprisingly,
it seems that the generalization of stochastic dominance to distributions over
partial orders has not received much attention in the literature so far, with a
few notable exceptions.

We adopt a generalization proposed by Massey (1987). Roughly speaking,
the idea of this approach is to find a proper replacement for the (half-open)
intervals Xa that are used to define stochastic dominance in the case of total
orders. To this end, he makes use of the notion of an increasing set. For any
subset Γ ⊂ Σ, let

Γ ↑ = {σ ∈ Σ |σ w σ′ for some σ′ ∈ Γ}.

Then, a set Γ is called an increasing set if Γ = Γ ↑. Informally speaking, this
means that Γ is an increasing set if it is closed under addition of “better”
elements: For no element in Γ , there is an element which, despite being at
least as good, is not yet included.

The idea, then, is to say that a probability distribution P on Σ stochas-
tically dominates a distribution P ′, if P (Γ) ≥ P ′(Γ) for all Γ ∈ I(Σ), where
I(Σ) is a suitable family of increasing sets of Σ. One reasonable choice of such
a family, resembling the “pointwise” generation of (half-open) intervals Xa in
the case of total orders through the elements a ∈ X, is

I(Σ) = { {σ}↑ |σ ∈ Σ} ∪ {Σ, ∅}.

See Fig. 2 for a simple illustration.

10

A

B C

D

CB

A

D

A

CB

D

A

B C

D

A

B C

D

A

B C

D

CB

A

D

A

CB

D

A

B C

D

A

B C

D

„at least A“ „at least B“ „at least C“ „at least D“

0.1

0.5

0.2 0.2

0.4

0.1

0.1 0.4

1 0.7 0.7 0.5

1 0.5 0.2 0.1

Fig. 2 Illustration of generalized stochastic dominance: A partial order on a set of four
elements A, B, C, D (e.g., trajectories) is indicated by the corresponding Hasse diagram.
Suppose that a probability distribution P assigns, respectively, the probabilities 0.1, 0.2,
0.2, 0.5 to these elements (above), while a distribution P ′ assigns probabilities 0.4, 0.4, 0.1,
0.1 (below). Then, P dominates P ′, since the probabilities of all increasing sets (“at least
A”, “at least B”, “at least C”, “at least D”), as indicated in the framed boxes, are larger
under P than under P ′.

Recalling that policies are associated with probability distributions over Σ,
it is clear that a dominance relation on such distributions immediately induces
a preference relation � on the class Π of policies: π � π′ if the probability
distribution associated with π dominates the one associated with π′. It is also
obvious that this relation is reflexive and antisymmetric. An important ques-
tion, however, is whether it is also transitive, and hence a partial order. This
is definitely desirable, and in fact already anticipated by the interpretation of
� as a preference relation.

Massey (1987) shows that the above dominance relation is indeed tran-
sitive, provided the family I(Σ) fulfills two technical requirements. First, it
must be strongly separating, meaning that whenever σ 6w σ′, there is some
Γ ∈ I(Σ) such that σ′ ∈ Γ and σ 6∈ Γ (that is, if σ′ is not worse than σ,
then it can be separated from σ). The second condition is that I(Σ) is a de-
termining class, which, roughly speaking, means that it is sufficiently rich, so
that each probability measure is uniquely determined by its values on the sets
in I(Σ).

In summary, provided these technical conditions are met, the partial order
w on the set of trajectories Σ that we started with induces a partial order �
on the set of policies Π. Of course, since � is only a partial order, there is not
necessarily a unique optimal policy. Instead, optimality ought to be defined in
terms of (Pareto) dominance: A policy π∗ ∈ Π is optimal if there is no other
policy π′ such that π′ � π. We denote the set of all optimal policies by Π∗.

11

3.3 Preferences on States and Actions

From the preference relation � on policies, a preference relation on actions can
be deduced. For an action a and a state s, denote by Π(s,a) the set of policies
π such that π(s) = a. It is then natural to say that a is an optimal action
in state s if Π(s,a) ∩Π∗ 6= ∅, that is, if there is an optimal policy π∗ ∈ Π∗
such that π∗(s) = a. Again, note that there is not necessarily a unique optimal
action.

The above condition only distinguishes between optimal and non-optimal
actions in a given state. Of course, it might be desirable to discriminate be-
tween non-optimal actions in a more granular way, that is, to distinguish dif-
ferent levels of non-optimality. This can be done by applying the above choice
principle in a recursive manner: With Π∗∗ denoting the non-dominated policies
in Π\Π∗, the “second-best” actions are those for which Π(s,a)∩Π∗∗ 6= ∅. Pro-
ceeding in this way, that is, successively removing the optimal (non-dominated)
policies and considering the optimal ones among those that remain, a Pareto
ranking (Srinivas and Deb 1995) on the set of actions is produced. As men-
tioned earlier, this relation might be weak, i.e., there might be ties between
different actions.

In the same way, one can derive a (weak) linear order on states from the
preference relation w on trajectories. Let Σ(s) ⊂ Σ denote the set of tra-
jectories originating in state s, and let Σ∗ be the set of trajectories that are
non-dominated according to w. Then, a state is optimal (i.e., has Pareto rank
1) if Σ(s) ∩Σ∗ 6= ∅, second-best (Pareto rank 2) if Σ(s) ∩Σ∗∗ 6= ∅, with Σ∗∗

the set of non-dominated trajectories in Σ \Σ∗, etc.

An important theoretical question, which is, however, beyond the scope
of this paper, concerns the mutual dependence between the above preference
relations on trajectories, states and actions, and a simple characterization of
these relations. An answer to this question is indeed a key prerequisite for
developing qualitative counterparts to methods like value and policy iteration.
For the purpose of this paper, this point is arguably less relevant, since our
approach of preference-based approximate policy iteration, to be detailed in
Section 5, is explicitly based on the construction and evaluation of trajectories
through roll-outs. The idea, then, is to learn the above linear order (ranking) of
actions (as a function of the state) from these trajectories. A suitable learning
method for doing so will be introduced in Section 5.

Finally, we note that learning a ranking function of the above kind is also a
viable option in the standard setting where rewards are numerical, and policies
can therefore be evaluated in terms of expected cumulative rewards (instead
of being compared in terms of generalized stochastic dominance). In fact, the
case study presented in Section 6 will be of that type.

12

4 Preference Learning and Label Ranking

The topic of preference learning has attracted considerable attention in ma-
chine learning in recent years (Fürnkranz and Hüllermeier 2010). Roughly
speaking, preference learning is about inducing predictive preference models
from empirical data, thereby establishing a link between machine learning and
research fields related to preference modeling and decision making.

4.1 Utility Functions vs. Preference Relations

There are two main approaches to representing preferences, namely in terms
of

– utility functions evaluating individual alternatives, and
– preference relations comparing pairs of competing alternatives.

The first approach is quantitative in nature, in the sense that a utility function
is normally a mapping from alternatives to real numbers. This approach is in
line with the standard RL setting: A value V (s) assigned to a state s by a value
function V can be seen as a utility of that state. Likewise, a Q-function assigns
a degree of utility to an action, namely, Q(s,a) is the utility of choosing action
a in state s. The second approach, on the other hand, is qualitative in nature,
as it is based on comparing alternatives in terms of qualitative preference
relations.3 The main idea of our paper is to exploit such a qualitative approach
in the context of RL.

From a machine learning point of view, the two approaches give rise to two
kinds of learning problems: learning utility functions and learning preference
relations. The latter deviates more strongly than the former from conventional
problems like classification and regression, as it involves the prediction of com-
plex structures, such as rankings or partial order relations, rather than single
values. Moreover, training input in preference learning will not, as it is usually
the case in supervised learning, be offered in the form of complete examples but
may comprise more general types of information, such as relative preferences
or different kinds of indirect feedback and implicit preference information.

4.2 Label Ranking

Among the problems in the realm of preference learning, the task of “learning
to rank” has probably received the most attention in the machine learning
literature so far. In general, a preference learning task consists of some set of
items for which preferences are known, and the task is to learn a function that
predicts preferences for a new set of items, or for the same set of items in a
different context. The preferences can be among a set of objects, in which case
we speak of object ranking (Kamishima et al. 2010), or among a set of labels

3 Although the valuation of such relations is possible, too.

13

that are attached to a set of objects, in which case we speak of label ranking
(Vembu and Gärtner 2010).

The task of a policy is to pick one of a set of available actions for a given
state. This setting can be nicely represented as a label ranking problem, where
the task is to rank a set of actions (labels) in dependence of a state description
(object). More formally, assume to be given an instance space X and a finite
set of labels Y = {y1, y2, . . . , yk}. In label ranking, the goal is to learn a “label
ranker” in the form of an X → SY mapping, where the output space SY is
given by the set of all total orders (permutations) of the set of labels Y . Thus,
label ranking can be seen as a generalization of conventional classification,
where a complete ranking of all labels

yτ−1
x (1) �x yτ−1

x (2) �x . . . �x yτ−1
x (k)

is associated with an instance x instead of only a single class label. Here, τx
is a permutation of {1, 2, . . . , k} such that τx(i) is the position of label yi in
the ranking associated with x.

The training data E used to induce a label ranker typically consists of a
set of pairwise preferences of the form yi �x yj , suggesting that, for instance
x, yi is preferred to yj . In other words, a single “observation” consists of an
instance x together with an ordered pair of labels (yi, yj).

4.3 Learning by Pairwise Comparison

Several methods for label ranking have already been proposed in the literature;
we refer to (Vembu and Gärtner 2010) for a comprehensive survey. In this
paper, we chose learning by pairwise comparison (LPC; Hüllermeier et al.
2008), but other choices would be possible. The key idea of LPC is to train
a separate model Mi,j for each pair of labels (yi, yj) ∈ Y × Y , 1 ≤ i <
j ≤ k; thus, a total number of k(k − 1)/2 models is needed. At prediction
time, a query x is submitted to all models, and each prediction Mi,j(x) is
interpreted as a vote for a label. More specifically, assuming scoring classifiers
that produce normalized scores fi,j = Mi,j(x) ∈ [0, 1], the weighted voting
technique interprets fi,j and fj,i = 1−fi,j as weighted votes for classes yi and
yj , respectively, and orders the labels according to the accumulated voting
mass F (yi) =

∑
j 6=i fi,j .

Note that the total complexity for training the quadratic number of classi-
fiers of the LPC approach is only linear in the number of observed preferences
(Hüllermeier et al. 2008). More precisely, the learning complexity of LPC is
O(n × d), where n is the number of training examples, and d is the average
number of preferences that have been observed per state. In the worst case
(for each training example we observe a total order of the labels), d can be
as large as k · (k − 1)/2 (k being the number of labels). However, in many
practical problems, it is considerably smaller.

Querying the quadratic number of classifiers can also be sped up consid-
erably so that the best label y∗ = arg maxy F (y) can be determined after

14

querying only approximately k · log(k) classifiers (Park and Fürnkranz 2012).
Thus, the main obstacle for tackling large-scale problems with LPC is the
memory required for storing the quadratic number of classifiers. Neverthe-
less, Loza Menćia et al. (2010) have shown that it is applicable to multilabel
problems with up to half a million examples and up to 1000 labels.

We refer to (Hüllermeier et al. 2008) for a more detailed description of LPC
in general and a theoretical justification of the weighted voting procedure in
particular. We shall use label ranking techniques in order to realize our idea of
preference-based approximate policy iteration, which is described in the next
section.

5 Preference-Based Approximate Policy Iteration

In Section 3, we have shown that qualitative feedback based on preferences
over trajectories may serve as a theoretical foundation of preference-based
reinforcement learning. More specifically, our point of departure is a preference
relation on trajectories: σ A σ′ indicates that trajectory σ is preferred to
σ′, and we assume that preference information of that kind can be obtained
from the environment. From preferences over trajectories, we then derived
preferences over policies and preferences over actions given states.

Within this setting, different variants of preference-based reinforcement
learning are conceivable. For example, tracing observed preferences on trajec-
tories back to preferences on corresponding policies, it would be possible to
search the space of policies directly or, more specifically, to train a ranking
function that sorts policies according to their preference as in (Akrour et al.
2011).

Here, we tackle the problem in a different way. Instead of learning prefer-
ences on policies directly, we seek to learn (local) preferences on actions given
states. What is needed, therefore, is training information of the kind a �s a

′,
suggesting that in state s, action a is better than a′. Following the idea of
approximate policy iteration (Section 5.1), we induce such preferences from
preferences on trajectories via simulation (called “roll-outs” later on): Taking
s as an initial state, we systematically compare the trajectories generated by
taking action a first (and following a given policy thereafter) with the trajecto-
ries generated by taking action a′ first; this is possible thanks to the preference
relation A on trajectories that we assume to be given (Section 5.3).

The type of preference information thus produced, a �s a
′, exactly corre-

sponds to the type of training information assumed by a label ranker (Section
4.2). Indeed, our idea is to train a ranker of that kind, that is, a mapping
from states to rankings over the set of actions (Section 5.2). This can be seen
as a generalization of the original approach to approximate policy iteration,
in which a classifier is trained that maps states to single actions. As will be
shown later on, by replacing a classifier with a label ranker, our preference-
based variant of approximate policy iteration enjoys a number of advantages
compared to the original version.

15

Algorithm 1 Rollout(E, s1, γ, π,K,L): Estimation of state values
Require: generative environment model E, sample state s1, discount factor γ, policy π,

number of trajectories/roll-outs K, max. length/horizon of each trajectory L

for k = 1 to K do
s← s1, Q̃k ← 0, t← 1
while t < L and ¬TerminalState(s) do

(s′, r)← Simulate(E, s, π(s))
Q̃k ← Q̃k + γtr
s← s′, t← t+ 1

end while
end for

Q̃ = 1
K

∑K
k=1 Q̃k

return Q̃

5.1 Approximate Policy Iteration

Instead of determining optimal actions indirectly through learning the value
function or the Q-function, one may try to learn a policy directly in the form
of a mapping from states to actions. We will briefly review such approaches
in Sections 8.1 and 8.2. Our work is based on approximate policy iteration
(Lagoudakis and Parr 2003; Dimitrakakis and Lagoudakis 2008). The key idea
of this approach is to iteratively train a policy using conventional machine
learning algorithms. This approach assumes access to a generative model E
of the underlying process, i.e., a model which takes a state s and an action a
as input and returns a successor state s′ and the reward r(s,a). The key idea,
then, is to use this generative model to perform simulations—so-called roll-
outs—that in turn allow for approximating the value of an action in a given
state (Algorithm 1). To this end, the action is performed, resulting in a state
s1 = δ(s,a). The value of this state is estimated by This is repeated K times,
and the average reward over these K roll-outs is used to approximate the Q-
value Q̃π(s0,a) for taking action a in state s0 (leading to s1) and following
policy π thereafter.

These roll-outs are used in a policy iteration loop (Algorithm 2), which
iterates through each state in a set of sample states S′ ⊂ S, simulates all
actions in this state, and determines the action a∗ that promises the highest
Q-value. If a∗ is significantly better than all alternative actions in this state,
(indicated with the symbol >L in line 10), a training example (s,a∗) is added
to a training set E . Eventually, E is used to directly learn a mapping from
states to actions, which forms the new policy π′. This process is repeated
several times, until some stopping criterion is met (e.g., if the policy does not
improve from one iteration to the next).

The choice of the sampling procedure to generate the state sample S′ is
not a trivial task as discussed in (Lagoudakis and Parr 2003; Dimitrakakis and
Lagoudakis 2008). Choices of procedures range from simple uniform sampling
of the state space to sampling schemes incorporating domain-expert knowledge
and other more sophisticated schemes. We emphasize that we do not contribute

16

Algorithm 2 Multi-class variant of Approx. Policy Iteration with Roll-Outs
(Lagoudakis and Parr 2003)

Require: generative environment model E, sample states S′, discount factor γ, initial (ran-
dom) policy π0, number of trajectories/roll-outs K, max. length/horizon of each trajec-
tory L, max. number of policy iterations p

1: π′ ← π0, i← 0
2: repeat
3: π ← π′, E ← ∅
4: for each s ∈ S′ do
5: for each a ∈ A do
6: (s′, r)← Simulate(E, s,a) # do (possibly off-policy) action a
7: Q̃π(s,a)← Rollout(E, s′, γ, π,K,L) + r # estimate state-action value
8: end for

9: a∗ ← arg maxa∈A Q̃
π(s,a)

10: if Q̃π(s,a∗) >L Q̃
π(s,a) for all a ∈ A,a 6= a∗ then # please see text for >L

11: E ← E ∪ {(s,a∗)}
12: end if

13: end for
14: π′ ← learn(E), i← i+ 1
15: until StoppingCriterion(E, π, π′, p, i)

to this aspect and will use in this work rather simple sampling schemes, which
will be described in detail in the experimental sections.

We should note some minor differences between the version presented in
Algorithm 2 and the original formulation (Lagoudakis and Parr 2003). Most
notably, the training set here is formed as a multi-class training set, whereas in
(Lagoudakis and Parr 2003) it was formed as a binary training set, learning a
binary policy predicate π̂ : S ×A→ {0, 1}. We chose the more general multi-
class representation because, as we will see in the following, it lends itself to
an immediate generalization to a ranking scenario.

5.2 Preference-Based Approximate Policy Iteration

Following our idea of preference-based RL, we propose to train a label ranker
instead of a classifier : Using the notation from Section 4.2 above, the instance
space X is given by the state space S, and the set of labels Y corresponds
to the set of actions A. Thus, the goal is to learn a mapping S → SA, which
maps a given state to a total order (permutation) of the available actions. In
other words, the task of the learner is to learn a function that is able to rank
all available actions in a state. The training information is provided in the
form of binary action preferences of the form (s,ak � aj), indicating that in
state s, action ak is preferred to action aj .

Algorithm 3 shows a high-level view of the preference-based approximate
policy iteration algorithm PBPI. Like Algorithm 2, it starts with a random
policy π0 and continuously improves this policy by collecting experience on a
set of sample states S′ ⊂ S. However, in each state s, PBPI does not evaluate
each individual action a, but pairs of preferences (ak,aj). For each such pair of

17

Algorithm 3 Preference-Based Approximate Policy Iteration.

Require: sample states S′, initial (random) policy π0, max. number of policy iterations
p, procedure EvaluatePreference for determining the preference between a pair of
actions for a given policy in a given state.

1: π′ ← π0, i← 0
2: repeat
3: π ← π′, E ← ∅
4: for each s ∈ S′ do
5: for each (ak,aj) ∈ A×A do
6: EvaluatePreference(s,ak,aj , π)
7: if ak �s aj then
8: E ← E ∪ {(s,ak � aj)}
9: end if

10: end for
11: end for
12: π′ ← LearnLabelRanker(E), i← i+ 1
13: until StoppingCriterion(π, π′, p, i)

preferences, we then call a routine EvaluatePreference which determines
whether ak � aj holds in state s or not. If it holds, the training example
(s,ak � aj) is added to the training set E . If all states in S′ have been evaluated
in that way, a new policy in the form of a label ranker is learned from E . This
process is iterated until the policies converge or a predetermined number p of
iterations has been reached.

Note that in practice, looping through all pairs of actions may not be
necessary. For example, in our motivating chess example, preferences may only
be available for a few action pairs per state, and it might be more appropriate
to directly enumerate the preferences. Thus, the complexity of this algorithm
is essentially O(|S′| ·d), where d is the average number of observed preferences
per state (the constant number of iterations is hidden in the O(.) notation).
This complexity directly corresponds to the complexity of LPC as discussed
in Section 4.3. If a total order of actions is observed in each state (as is the
case in the study in Section 6), the complexity may become as bad as linear in
the number of visited states and quadratic in the number of actions. However,
if only a few preferences per state can be observed (as is e.g., the case in
our motivating chess example), the complexity is only linear in the number of
visited states |S′| and essentially independent of the number of actions (e.g.
if we only compare a single pair of actions for each state). Of course, in the
latter case, we might need considerably more iterations to converge, but this
cannot be solved with the choice of a different label ranking algorithm. Thus,
we recommend the use of LPC for settings where very few action preferences
are observed per state. Its use is not advisable for problems with very large
action spaces, because the storage of a quadratic number of classifiers may
become problematic in such cases.

18

5.3 Using Roll-out-based Preferences

The key point of the algorithm is the implementation of EvaluatePrefer-
ence, which determines the preference between two actions in a state. We
follow the work on approximate policy iteration and choose a roll-out based
approach. Recall the scenario described at the end of Section 5.1, where the
agent has access to a generative model E, which takes a state s, and an action
a as input and returns a successor state s′ and the reward r(s,a). Lagoudakis
and Parr (2003) use this setting for generating training examples via roll-outs,
i.e., by using the generative model and the current policy π for generating a
training set E , which is in turn used for training a multi-class classifier that
can be used as a policy. Instead of training a classifier on the optimal action
in each state, we can instead use the PBPI algorithm to train a label ranker
on all pairwise comparisons of actions in each state.

Note that generating roll-out based training information for PBPI is no
more expensive than generating the training information for API, because in
both cases all actions in a state have to be run for a number of iterations. On
the contrary, we argue that from a training point of view, a key advantage
of this approach is that pairwise preferences are much easier to elicit than
examples for unique optimal actions. Our experiments in Sections 6 and 7
utilize this in different ways.

The preference relation over actions can be derived from the roll-outs in
different ways. In particular, we can always reduce the conventional utility-
based setting to this particular case by defining the preference ak �s aj as “in
state s, policy π gives a higher expected reward for ak than for aj”. This is
the approach that we evaluate in Section 6.

An alternative approach is to count the success of each of the two actions
ak and aj in state s, and perform a sign test for determining the overall
preference. This approach allows to entirely omit the aggregation of utility
values and instead only aggregates preferences. In preliminary experiments,
we noted essentially the same qualitative results as those reported below. The
results are, however, not directly comparable to the results of approximate
policy iteration, because the sign test is more conservative than the t-test,
which is used in API. However, the key advantage of this approach is that
we can also use it in cases of non-numerical rewards. This is crucial for the
experiments reported in Section 7, where we take this approach.

Section 6 demonstrates that a comparison of only two actions is less difficult
than “proving” the optimality of one among a possibly large set of actions, and
that, as a result, our preference-based approach better exploits the gathered
training information. Indeed, the procedure proposed by Lagoudakis and Parr
(2003) for forming training examples is very wasteful with this information.
An example (s,a∗) is only generated if a∗ is “provably” the best action among
all candidates, namely if it is (significantly) better than all other actions in
the given state. Otherwise, if this superiority is not confirmed by a statistical
hypothesis test, all information about this state is ignored. In particular, no
training examples would be generated in states where multiple actions are

19

optimal, even if they are clearly better than all remaining actions.4 For the
preference-based approach, on the other hand, it suffices if only two possible
actions ak and aj yield a clear preference (either ak � aj or aj � ak) in
order to obtain (partial) training information about that state. Note that a
corresponding comparison may provide useful information even if both actions
are suboptimal.

In Section 7, an example will be shown in which actions are not necessarily
comparable, since the agent seeks to optimize multiple criteria at the same
time (and is not willing to aggregate them into a one-dimensional target).
In general, this means that, while at least some of the actions will still be
comparable in a pairwise manner, a unique optimal action does not exist.

Regarding the type of prediction produced, it was already mentioned ear-
lier that a ranking-based reinforcement learner can be seen as a reasonable
compromise between the estimation of a numerical utility function (like in
Q-learning) and a classification-based approach which provides only informa-
tion about the optimal action in each state: the agent has enough information
to determine the optimal action, but can also rely on the ranking in order
to look for alternatives, for example to steer the exploration towards actions
that are ranked higher. We will briefly return to this topic at the end of the
next section. Before that, we will discuss the experimental setting in which we
evaluate the utility of the additional ranking-based information.

6 Case Study I: Exploiting Action Preferences

In this section, we compare three variants of approximate policy iteration
following Algorithms 2 and 3. They only differ in the way in which they use
the information gathered from the performed roll-outs.

Approximate Policy Iteration (API) generates one training example (s,a∗) if
a∗ is the best available action in s, i.e., if Q̃π(s,a∗) >L Q̃π(s,a) for all
a 6= a∗. If there is no action that is better than all alternatives, no training
example is generated for this state.

Pairwise Approximate Policy Iteration (PAPI) works in the same way as API,
but the underlying base learning algorithm is replaced with a label ranker.
This means that each training example (s,a∗) of API is transformed into
a− 1 training examples of the form (s,a∗ � a) for all a 6= a∗.

Preference-Based Approximate Policy Iteration (PBPI) is trained on all avail-
able pairwise preferences, not only those involving the best action. Thus,
whenever Q̃π(s,ak) >L Q̃

π(s,al) holds for a pair of actions (ak,al), PBPI
generates a corresponding training example (s,ak � al).

Note that, in the last setting, an example (s,ak � al) can be generated
although ak is not the best action. In particular, in contrast to PAPI, it is

4 In the original formulation as a binary problem, it is still possible to produce negative
examples, which indicate that the given action is certainly not the best action (because it
was significantly worse than the best action).

20

Fig. 3 Comparing actions in terms of confidence intervals on expected rewards: Although
a best action cannot be identified uniquely, pairwise preferences like a1 � a3 and a2 � a4

can still be derived.

not necessary that there is a clear best action in order to generate training
examples. Consequently, from the same roll-outs, PBPI will typically generate
more training information than PAPI or API (see Figure 3). This is actually an
interesting illustration of the increased flexibility of preference-based training
information: Even if there might be no obvious “correct” alternative, some
options may still be preferred to others.

The problems we are going to tackle in this section do still fall into the
standard framework of reinforcement learning. Thus, rewards are numerical,
trajectories are evaluated by accumulated rewards, and policies by expected
cumulative discounted rewards. The reason is that, otherwise, it is not possible
to compare with the original approach to approximate policy iteration. Nev-
ertheless, as will be seen, preference-based learning from qualitative feedback
can even be useful in this setting.

6.1 Application Domains

Following (Dimitrakakis and Lagoudakis 2008), we evaluated these variants
on two well-known problems, inverted pendulum and mountain car. We will
briefly recapitulate these tasks, which were used in their default setting, unless
stated otherwise.

In the inverted pendulum problem, the task is to push or pull a cart so that
it balances an upright pendulum. The available actions are to apply a force
of fixed strength of 50 Newton to the left (−1), to the right (+1) or to apply
no force at all (0). The mass of the pole is 2 kg and of the cart 9 kg. The
pole has a length of 0.5 m and each time step is set to 0.1 seconds. Following
(Dimitrakakis and Lagoudakis 2008), we describe the state of the pendulum
using only the angle and angular velocity of the pole, ignoring the position
and the velocity of cart. For each time step, where the pendulum is above
the horizontal line, a reward of 1 was given, else 0. A policy was considered
sufficient, if it is able to balance the pendulum longer than 1000 steps (100 sec).
The random samples S in this setting were generated by simulating a uniform
random number (max 100) of uniform random actions from the initial state
(pole straight up, no velocity for cart and pole). If the pendulum fell within
this sequence, the procedure was repeated.

In the mountain car problem, the task is to drive a car out of a steep
valley. To do so, it has to repeatedly go up on each side of the hill, gaining

21

momentum by going down and up to the other side, so that eventually it can
get out. Again, the available actions are (−1) for left or backward and (+1)
for right or forward and (0) for a fixed level of throttle. The states or feature
vectors consist of the horizontal position and the current velocity of the car.
Here, the agent received a reward of −1 in each step until the goal was reached.
A policy which needed less than 75 steps to reach the goal was considered as
sufficient. For this setting, the random samples S were generated by uniform
sampling over valid horizontal positions (excluding the goal state) and valid
velocities.

6.2 Experimental Setup

In addition to these conventional formulations using three actions in each state,
we also used versions of these problems with 5, 9, and 17 actions, because
in these cases it becomes less and less likely that a unique best actions can
be found, and the benefit from being able to utilize information from states
where no clear winner emerges increases. The range of the original action set
{−1, 0, 1} was partitioned equidistantly into the given number of actions, for
e.g., using 5 actions, the set of action signals is {−1,−0.5, 0, 0.5, 1}. Also, a
uniform noise term in [−0.2, 0.2] was added to the action signal, such that
all state transitions are non-deterministic. For training the label ranker we
used LPC (cf. Section 4.2) and for all three considered variants simple multi-
layer perceptrons (as implemented in the Weka machine learning library (Hall
et al. 2009) with its default parameters) was used as (base) learning algorithm.
The discount factor for both settings was set to 1 and the maximal length
of the trajectory for the inverted pendulum task was set to 1500 steps and
1000 for the mountain car task. The policy iteration algorithms terminated if
the learned policy was sufficient or if the policy performance decreased or if
the number of policy iterations reached 10. For the evaluation of the policy
performance, 100 simulations beginning from the corresponding initial states
were utilized. Furthermore, for statistical testing unpaired t-tests assuming
equal variance (homoscedastic t-test) were used.

For each task and method, the following parameter settings were evaluated:

– five numbers of state samples |S| ∈ {10, 20, 50, 100, 200},
– five maximum numbers of roll-outs K ∈ {10, 20, 50, 100, 200},
– three levels of significance c ∈ {0.025, 0.05, 0.1}.

Each of the 5× 5× 3 = 75 parameter combinations was evaluated ten times,
such that the total number of experiments per learning task was 750. We tested
both domains, mountain car and inverted pendulum, with |A| ∈ {3, 5, 9, 17}
different actions each.

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06 1e+07 1e+08

su

cc
es

s
ra

te

actions

Inverted Pendulum, 3 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 1e+06 1e+07 1e+08 1e+09

su

cc
es

s
ra

te

actions

Mountain Car, 3 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06 1e+07 1e+08

su

cc
es

s
ra

te

actions

Inverted Pendulum, 5 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 1e+06 1e+07 1e+08 1e+09

su

cc
es

s
ra

te

actions

Mountain Car, 5 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06 1e+07 1e+08

su

cc
es

s
ra

te

actions

Inverted Pendulum, 9 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 1e+06 1e+07 1e+08 1e+09

su

cc
es

s
ra

te

actions

Mountain Car, 9 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06 1e+07 1e+08

su

cc
es

s
ra

te

actions

Inverted Pendulum, 17 Actions

API
PAPI
PBPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 1e+06 1e+07 1e+08 1e+09

su

cc
es

s
ra

te

actions

Mountain Car, 17 Actions

API
PAPI
PBPI

Fig. 4 Comparison of API, PAPI and PBPI for the inverted pendulum task (left) and the
mountain car task (right). The number of actions is increasing from top to bottom.

23

6.3 Evaluation

Our prime evaluation measure is the success rate (SR), i.e., the percentage of
learned sufficient policies. Following (Dimitrakakis and Lagoudakis 2008), we
plot a cumulative distribution of the success rates of all different parameter set-
tings over a measure of learning complexity, where each point (x, y) indicates
the minimum complexity x needed to reach a success rate of y. However, while
(Dimitrakakis and Lagoudakis 2008) simply use the number of roll-outs (i.e.,
the number of sampled states) as a measure of learning complexity, we use the
number of performed actions over all roll-outs, which is a more fine-grained
complexity measure. The two would coincide if all roll-outs are performed a
constant number of times. However, this is typically not the case, as some
roll-outs may stop earlier than others. Thus, we generated graphs by sort-
ing all successful runs over all parameter settings (i.e., runs which yielded a
sufficient policy) in increasing order regarding the number of applied actions
and by plotting these runs along the x-axis with a y-value corresponding to
its cumulative success rate. This visualization can be interpreted roughly as
the development of the success rate in dependence of the applied learning
complexity.

6.4 Complete State Evaluations

Figure 4 shows the results for the inverted pendulum and the mountain car
tasks. One can clearly see that for an increasing number of actions, PBPI
reaches a significantly higher success rate than the two alternative approaches,
and it typically also has a much faster learning curve, i.e., it needs to take
fewer actions to reach a given success rate. Another interesting point is that
the maximum success level decreases with an increasing number of actions for
API and PAPI, but it remains essentially constant for PBPI. Overall, these
results clearly demonstrate that the additional information about comparisons
of lower-ranked action pairs, which is ignored in API and PAPI, can be put
to effective use when approximate policy iteration is extended to use a label
ranker instead of a mere classifier.

Part of the problem is that API and PAPI are very wasteful with sample
states. The third column of Table 1 shows the fraction of states for which a
training example could be generated, i.e., for which one action turned out to
be significantly better than all other actions. It can be clearly seen that this
fraction decreases with the number of available actions in each problem (shown
in the second column). It is not surprising that the number of training states
from which PBPI could generate at least a training preference (column 5 of
Table 1) is higher than API and PAPI in all cases. PBPI can generate some
training information from a state when at least one pair of actions yields a
significant difference, whereas API and PAPI only uses a state if one action
is better than all other actions. Thus, this quantity is at least the amount
of API/PAPI. The result that this quantity for PBPI is non-decreasing for

24

Table 1 Training information generation for API, PAPI and PBPI. For each algorithm,
we show the fraction of training states that could be used, as well as the fraction of the
1
2
· |A| · (|A| − 1) possible preferences that could on average be generated from a training

state. Note that the values for PAPI are only approximately true (the measures are taken
from the API experiments and may differ slightly due to random issues).

API/PAPI PBPI
|A| States Preferences States Preferences

3 0.589± 0.148 0.393± 0.099 0.736± 0.108 0.631± 0.119
IP 5 0.400± 0.162 0.160± 0.065 0.759± 0.101 0.581± 0.128

9 0.273± 0.154 0.061± 0.034 0.776± 0.087 0.543± 0.124

3 0.316± 0.218 0.211± 0.145 0.453± 0.245 0.349± 0.229
MC 5 0.231± 0.181 0.093± 0.072 0.510± 0.263 0.311± 0.216

9 0.149± 0.125 0.033± 0.028 0.539± 0.273 0.281± 0.201

increasing number of actions may be explained by the fact that to some extent
a found preference for a given number of actions |A| for a particular state is
also existent in the next setting with a higher number of actions |A′|. Here,
the set of possible preferences of A is a subset of the possible preferences of
A′.

However, even if we instead look at the fraction of possible preferences that
could be used, we see that there is only a small decay for the PBPI. This decay
can be explained by the fact that the more actions we have in the mountain car
and inverted pendulum problems, the more similar they are to each other and
the more likely it is that we can detect actions pairs that have approximately
the same quality and cannot be discriminated via roll-outs. For API and PAPI,
on the other hand, the decay in the number of generated preferences is the
same as with the number of usable states, because each usable training state
produces exactly |A| − 1 preferences.5 Thus, the fourth column differs from
the third by a factor of |A|/2.

6.5 Partial State Evaluations

So far, based on the API strategy, we always evaluated all possible actions
at each state, and generated preferences from their pairwise comparisons. A
possible advantage of the preference-based approach is that it does not need to
evaluate all options at a given state. In fact, one could imagine to select only
two actions for a state and compare them via roll-outs. While such a partial
state evaluation will, in general, not be sufficient for generating a training
example for API, it suffices to generate a training preference for PBPI. Thus,
such a partial PBPI strategy also allows for considering a far greater number of
states, using the same number of roll-outs, at the expense that not all actions
of each state will be explored. Such an approach may thus be considered

5 Strictly speaking, only the best action for each state is generated and used within
API, but for the sake of comparison in terms of preferences this directly relates to |A| − 1
preferences involving the best action.

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06 1e+07 1e+08

su

cc
es

s
ra

te

actions

Inverted Pendulum, 5 Actions

PBPI
PBPI-1
PBPI-2
PBPI-3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

su

cc
es

s
ra

te

preferences

Inverted Pendulum, 5 Actions

PBPI
PBPI-1
PBPI-2
PBPI-3

Fig. 5 Comparison of complete state evaluation (PBPI) with partial state evaluation in
three variants (PBPI-1, PBPI-2, PBPI-3).

to be orthogonal to recent approaches for roll-out allocation strategies (cf.
Section 8.2).

In order to investigate this effect, we also experimented with three partial
variants of PBPI, which only differ in the number of states that they are
allowed to visit. The first (PBPI-1) allows the partial PBPI variant to visit
only the same total number of states as PBPI. The second (PBPI-2) adjusts

the number of visited sample states by multiplying it with |A|2 , to account for
the fact that the partial variant performs only 2 action roll-outs in each state,
as opposed to |A| action roll-outs for PBPI. Thus, the total number of action
roll-outs in PBPI and PBPI-2 is constant. Finally, for the third variant (PBPI-
3), we assume that the number of preferences that are generated from each

state is constant. While PBPI generates up to |A|(|A|−1)2 preferences from each
visited state, partial PBPI generates only one preference per state, and is thus

allowed to visit |A|(|A|−1)2 as many states. These modifications were integrated
into Algorithm 2 by adapting Line 2 to iterate only over two randomly chosen
actions and changing the number of considered sample states S to the values
as described above.

Figure 5 shows the results for the inverted pendulum with five different
actions (the results for the other problems are quite similar). The left graph
shows the success rate over the total number of taken actions, whereas the right
graph shows the success rate over the total number of training preferences.
From the right graph, no clear differences can be seen. In particular, the curves
for PBPI-3 and PBPI almost coincide. This is not surprising, because both
generate the same number of preference samples, albeit for different random
states. However, the left graph clearly shows that the exploration policies
that do not generate all action roll-outs for each state are more wasteful with
respect to the total number of actions that have to be taken in the roll-outs.
Again, this is not surprising, because evaluating all five actions in a state may
generate up to 10 preferences for a single state, or, in the case of PBPI-2, only
a total of 5 preferences if 2 actions are compared in each of 5 states.

26

Nevertheless, the results demonstrate that partial state evaluation is feasi-
ble. This may form the basis of novel algorithms for exploring the state space.
We will briefly return to this issue in Section 8.2.

7 Case Study II: Learning from Qualitative Feedback

In a second experiment, we applied preference-based reinforcement learning
to a simulation of optimal therapy design in cancer treatment, using a model
that was recently proposed in (Zhao et al. 2009). In this domain, it is arguably
more natural to define preferences that induce a partial order between states
than to define an artificial numerical reward function that induces a total order
between states.

7.1 Cancer Clinical Trials Domain

The model proposed in (Zhao et al. 2009) captures a number of essential
factors in cancer treatment: (i) the tumor growth during the treatment; (ii)
the patient’s (negative) wellness, measured in terms of the level of toxicity in
response to chemotherapy; (iii) the effect of the drug in terms of its capability
to reduce the tumor size while increasing toxicity; (iv) the interaction between
the tumor growth and patient’s wellness. The two state variables, the tumor
size Y and the toxicity X, are modeled using a system of difference equations:
Yt+1 = Yt + ∆Yt and Xt+1 = Xt + ∆Xt, where the time variable t denotes
the number of months after the start of the treatment and assumes values
t = 0, 1, . . . , 6. The terms ∆Y and ∆X indicate the increments of the state
variables that depend on the action, namely the dosage level D, which is a
number between 0 and 1 (minimum and maximum dosage, respectively):

∆Yt =
[
a1 ·max(Xt, X0)− b1 · (Dt − d1)

]
× 1(Yt > 0)

∆Xt = a2 ·max(Yt, Y0) + b2 · (Dt − d2)
(2)

These changing rates produce a piecewise linear model over time. We fix the
parameter values following the recommendation of (Zhao et al. 2009): a1 =
0.15, a2 = 0.1, b1 = b2 = 1.2 and d1 = d2 = 0.5. By using the indicator term
1(Yt > 0), the model assumes that once the patient has been cured, namely
the tumor size is reduced to 0, there is no recurrence. Note that this system
does not reflect a specific cancer but rather models the generic development
of the chemotherapy process.

The possible death of a patient in the course of a treatment is modeled
by means of a hazard rate model. For each time interval (t− 1, t], this rate is
defined as a function of tumor size and toxicity: λ(t) = exp (c0 + c1Yt + c2Xt),
where c0, c1, c2 are cancer-dependent constants. Again following (Zhao et al.
2009), we let c0 = −4, c1 = c2 = 1. By setting c1 = c2, the tumor size and
the toxicity have an equally important influence on patient’s survival. The

27

0

1

2

3

4

0 (1.0) 1 (0.7) 2 (0.1) 3 (0.7) 4 (1.0) 5 (0.7) 6

tumor size
toxicity

Fig. 6 Illustration of the simulation model showing the patient’s status during the treat-
ment. The initial tumor size is 1.5 and the initial toxicity is 0.5. On the x-axis is the month
with the corresponding dosage level the patient receives. The dosage levels are selected
randomly.

probability of the patient’s death during the time interval (t−1, t] is calculated
as

Pdeath = 1− exp

[
−
∫ t

t−1
λ(x) dx

]
.

7.2 A Preference-Based Approach

The problem is to learn an optimal treatment policy π mapping states (Y,X) to
actions in the form of a dosage level D (recall that this is a number between
0 and 1). In (Zhao et al. 2009), the authors tackle this problem by means
of RL, and indeed obtained interesting results. However, using standard RL
techniques, there is a need to define a numerical reward function depending on
the tumor size, wellness, and possibly the death of a patient. More specifically,
four threshold values and eight utility scores are needed, and the authors
themselves notice that these quantities strongly influence the results.

We consider this as a key disadvantage of the approach, since in a medical
context, a numerical function of that kind is extremely hard to specify and
will always be subject to debate. Just to give a striking example, the authors
defined a negative reward of −60 for the death of a patient, which, of course, is
a rather arbitrary number. As an interesting alternative, we tackle the problem
using a more qualitative approach.

To this end, we treat the criteria (tumor size, wellness, death) indepen-
dently of each other, without the need to aggregate them in a mathematical
way; in fact, the question of how to “compensate” or trade off one crite-
rion against another one is always difficult, especially in fields like medicine.
Instead, as outlined in Section 3, we proceed from a preference relation on
trajectories, that is, we compare trajectories in a qualitative way. More specif-
ically, trajectories σ and σ′ are compared as follows: σ w σ′ if the patient
survives under σ but not under σ′, and both policies are incomparable if the
patient does neither survive under σ nor under σ′. Otherwise, if the patient

28

survives under both policies, let CX denote the maximal toxicity during the 6
months of treatment under σ and, correspondingly, C ′X under treatment σ′.
Likewise, let CY and C ′Y denote the respective size of the tumor at the end of
the therapy. Then, we define preference via Pareto dominance as

σ w σ′ ⇔ (CX ≤ C ′X) and (CY ≤ C ′Y) (3)

It is important to remark that w thus defined, as well as the induced prefer-
ence order � on policies, are only partial order relations. In other words, it
is thoroughly possible that two trajectories (policies) are incomparable. For
our preference learning framework, this means that less pairwise comparisons
may be generated as training examples. However, in contrast to standard RL
methods as well as the classification approach of (Lagoudakis and Parr 2003),
this is not a conceptual problem. In fact, since these approaches are based on
a numerical reward function and, therefore, implicitly assume a total order
among policies (and actions in a state), they are actually not even applicable
in the case of a partial order.

7.3 Experimental Setup

For training, we generate 1000 patients at random. That is, we simulate
1000 patients experiencing the treatment based on model (2). The initial
state of each patient, Y0 and X0, are generated independently and uniformly
from (0, 2). Then, for the following 6 months, the patient receives a monthly
chemotherapy with a dosage level taken from one of four different values (ac-
tions) 0.1 (low), 0.4 (medium), 0.7 (high) and 1.0 (extreme), where 1.0 cor-
responds to the maximum acceptable dose.6 As an illustration, Fig. 6 shows
the treatment process of one patient according to model (2) under a randomly
selected chemotherapy policy. The patient’s status is clearly sensitive to the
amount of received drug. When dosage level is too low, the tumor size grows
towards a dangerous level, while with a very high dosage level, the toxicity
level will strongly affect the patient’s wellness.

Action preferences are generated via Pareto dominance relation (3) using
roll-outs. Essentially this means that for each pair of actions ak and aj in a
state s, we compute 10 pairs of trajectories and compare each pair in terms of
the above preference relation, i.e., the first trajectory is preferred to the second
one if the latter involves the death of the patient and the former not or, in case
the patient survives in both cases, we have a dominance relation in the sense of
(3). Then, we generate a preference for ak over aj if the number of comparisons
in favor of the former is significantly higher than the number of comparisons
in favor of the latter (according to a simple sign test at significance level 0.1)

We use LPC and choose a linear classifier, logistic regression, as the base
learner (again using the Weka implementation). The policy iteration stops

6 We exclude the value 0, as it is a common practice to let the patient keep receiving
certain level of chemotherapy agent during the treatment in order to prevent the tumor
relapsing.

29

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6

To
xi

ci
ty

Tumor Size

Fig. 7 Illustration of patients status under different treatment policies. On the x-axis is the
tumor size after 6 months. On the y-axis is the highest toxicity during the 6 months. From
top to bottom: Extreme dose level (1.0), high dose level (0.7), random dose level, learned
dose level, medium dose level (0.4), low dose level (0.1). The values are averaged from 200
patients.

when (i) the difference between two consequential learned policies is smaller
than a pre-defined threshold, or (ii) the number of policy iterations p reaches
10.

7.4 Results

For testing, we generate 200 new virtual patients. In Fig. 7, the average values
of the two criteria (CX , CY) are shown as points for the constant policies
low, medium, high, extreme (i.e., the policies prescribing a constant dosage
regardless of the state). As can be seen, all four policies are Pareto-optimal,
which is hardly surprising in light of the fact that toxicity and tumor size are
conflicting criteria: A reduction of the former tends to increase the latter, and
vice versa. The figure also shows the convex hull of the Pareto-optimal policies.

Finally, we add the results for two other policies, namely the policy learned
by our preference-based approach and a random policy, which, in each state,
picks a dose level at random. Although these two policies are again both
Pareto-optimal, it is interesting to note that our policy is outside the convex
hull of the constant policies, whereas the random policy falls inside. Recalling
the interpretation of the convex hull in terms of randomized strategies, this
means that the random policy can be outperformed by a randomization of the
constant policies, whereas our policy can not.

In a second evaluation, we focus on the death rate—which, after all, is
a function of toxicity and tumor size. In each test trial, we now compute a
patient’s probability to survive during the whole treatment. Averaging over
all patients, we rank the policies according to this criterion. The average ranks
of policies are shown in Fig. 8. As can be seen, the treatments produced by our
preference-based RL method have a lower death rate than the other polices.
In fact, the Nemenyi test even indicates that the differences are statistically
significant at a significance level of α = 0.05 (Dems̆ar 2006).

30

1 2 3 4 5 6

medium

random

learned extreme

low

high

CD

Fig. 8 Average ranks of the policies according to death rates. CD stands for the critical
difference of ranks derived from a Nemenyi test at α = 0.05.

8 Related Work

In this section, we give an overview of existing work which is, in one way
or the other, related to the idea of preference-based reinforcement learning
as introduced in this paper. In Section 8.1, we start with policy search ap-
proaches that use the reinforcement signal for directly modifying the policy.
The preference-based approach of Akrour et al. (2011) may be viewed in this
context. Preference-based policy iteration is, on the other hand, closer related
to approaches that use supervised learning algorithms for learning a policy
(Section 8.2). In Section 8.3, we discuss the work of Maes (2009), which tack-
les a quite similar learning problem, albeit in a different context and having
other goals in mind. Our work is also related to multi-objective reinforcement
learning, because in both learning settings, trajectories may not be comparable
(Section 8.4). Finally we also discuss alternative approaches for incorporating
external advice (Section 8.5) and for handling qualitative information (Sec-
tion 8.6).

8.1 Preference-based Policy Search

Akrour et al. (2011) propose a framework that is quite similar to ours. In their
architecture, the learning agent shows a set of policies to a domain expert who
gives feedback in the form of pairwise preferences between the policies. This
information is then used in order to learn to estimate the value of parametrized
policies in a way that is consistent with the preferences provided by the expert.
Based on the new estimates, the agent selects another set of policies for the
expert, and the process is repeated until a termination criterion is met.

Thus, just like in our approach, the key idea of Akrour et al. (2011) is
to combine preference learning and reinforcement learning, taking qualitative
preferences between trajectories as a point of departure.7 What is different,
however, is the type of (preference) learning problem that is eventually solved:
Akrour et al. (2011) seek to directly learn a ranking function in the policy
space from global preferences on the level of complete trajectories, whereas we

7 We assume here that policies are demonstrated to the user in the form of “representative”
trajectories, but this is not entirely clear from the description in (Akrour et al. 2011).

31

propose to proceed from training information in the form of local preferences
on actions in a given state. Correspondingly, they solve an object ranking
problem, with objects given by parametrized policies, making use of standard
learning-to-rank methods (Kamishima et al. 2010).

In a way, the approach of Akrour et al. (2011) may be viewed as a preference-
based variant of policy search. Just as so-called policy gradient methods search
for a good parameter setting in a space of parametrized policies by using the
reinforcement signal to derive the direction into which the policy should be cor-
rected, the above-mentioned approach uses a qualitative preference signal for
driving the policy learner towards better policies. Numerical policy gradients
can be computed in closed form from a parametrized policy (Ng and Jordan
2000), be estimated empirically from action samples of the policy (Williams
1992), or learned by regression (Kersting and Driessens 2008). In the actor-
critic framework, where algorithms learn both the value function (the critic)
and an explicit policy (the actor) simultaneously (Barto et al. 1983), the pol-
icy gradient can be estimated from the predicted values of the value function
(Konda and Tsitsiklis 2003; Sutton et al. 2000). A particularly interesting pol-
icy gradient approach is the natural actor-critic (Peters and Schaal 2008a).
The key idea of this approach is to fight the large variance in conventional
gradient approaches by the use of the natural gradient, i.e., the gradient that
does not assume that the parameter space is Euclidean but takes its structure
into account (Amari 1998; Kakade 2001). Good surveys of current work in this
area can be found in (Bhatnagar et al. 2009; Peters and Schaal 2008b).

Not all approaches to direct policy search use policy gradients. For example,
Mannor et al. (2003) suggest the use of the Cross Entropy for finding an
optimal policy. Other methods include EM-like methods (Peters and Schaal
2007; Kober and Peters 2011) or the generalized path integral control approach
(Theodorou et al. 2010).

8.2 Supervised Policy Learning

The above-mentioned approaches use the (qualitative or quantitative) rein-
forcement signal to directly optimize the policy, whereas preference-based ap-
proximate policy iteration is quite related to approaches that use supervised
learning algorithms to learn a policy. In particular, our work directly builds
upon approximate policy iteration (Lagoudakis and Parr 2003), which had the
goal of using modern classifiers to learn the policy. In general, the key idea of
such approaches is to learn a policy in the form of a P-function, which directly
maps states to optimal actions (Tadepalli et al. 2004). The P-function can
be represented in commonly used concept representations such as relational
decision trees (Džeroski et al. 2001), decision lists (Fern et al. 2006), support
vector machines (Lagoudakis and Parr 2003), etc. As the P-function needs to
capture less information than the Q-function (it does not need to perfectly fit
the Q-values), the hope is that it leads to more compact representations and
to a faster convergence.

32

A key issue for such approaches is the strategy used for generating examples
for the supervised learning algorithm. The original roll-out strategy proposed
by Lagoudakis and Parr (2003) is rather wasteful with respect to the performed
number of roll-outs, and several authors have tried to address this problem
(Dimitrakakis and Lagoudakis 2008; Gabillon et al. 2010). First, the number
of necessary roll-outs in a state, which we assumed to be a constant number
K, can be dynamically adjusted so that the roll-outs are stopped as soon as
a winning action clearly emerges. Hoeffding or Bernstein races can be used
to determine the best action with a minimal number of roll-outs (Heidrich-
Meisner and Igel 2009), elimination algorithms iteratively remove the worst
action until a single winner emerges (Even-Dar et al. 2003; Audibert et al.
2010), and the UCB algorithm, which trades off exploration and exploitation
in multi-armed bandit problems (Auer et al. 2002), can also be adapted to this
setting (Dimitrakakis and Lagoudakis 2008). Recently, Gabillon et al. (2011)
proposed to improve finite-horizon roll-out estimates by enhancing them with
a critic which learns to estimate the value of the iterations beyond the horizon.
All these approaches are, in a way, orthogonal to our approach, in that they all
focus on the best action. In all of them, additional pairwise comparisons can
emerge as a by-product of sampling for the best action, and the experiments
of Section 6 show that it can be beneficial to use them.

A second approach for optimizing the use of roll-outs is to define a state
exploration strategy. For example, it was suggested that a policy-based gen-
eration of states may be preferable to a random selection (Fern et al. 2006).
While this may clearly lead to faster convergence in some domains, it may also
fail to find optimal solutions in other cases (Lagoudakis and Parr 2003). Again,
such approaches can be straight-forwardly combined with our proposal. More-
over, preference-based approximate policy iteration provides a natural focus
on the comparison between pairs of actions instead of sets of actions. This
allows the use of fewer roll-outs for getting some information (one preference)
from a state, and thus allows to move more quickly from state to state. For
example, selecting a pair of actions and following the better one may be a
simple but effective way of trading off exploration and exploitation for state
sampling. Whether and how this additional flexibility can be used for more
efficient exploration strategies is subject of future work.

Finally, Lazaric et al. (2010) propose direct policy iteration, which im-
proves approximate policy iteration (Lagoudakis and Parr 2003), upon which
our work builds, by optimizing a loss function that is based on the differ-
ence between the roll-out estimate of the action chosen by a policy and the
maximum value obtainable by any action.

8.3 Reinforcement Learning for Structured Output Prediction

Maes (2009) solves a learning problem quite similar to ours, namely “policy
learning as action ranking”, and even makes use of pairwise learning tech-

33

niques. More specifically, he learns a function called “action-ranking function”
that ranks actions given states.

The context and the purpose of the approach, however, are quite different.
The idea is to tackle structured output prediction problems with reinforce-
ment learning: instead of predicting a structured output (such as a sequence
or a tree) right away, the output is constructed step by step. This stepwise
construction is modeled as following a path in a properly defined state space
and, thus, can be cast as a reinforcement learning problem.

Apart from this difference, Maes (2009) makes use of ranking methods
(instead of regression learning of action-value functions) for other reasons.
While still making use of quantitative information about the costs of actions
in a given state, he is mainly interested in facilitating the learning process and
making it more efficient.

8.4 Multi-Objective Reinforcement Learning

In multi-objective reinforcement learning (MORL), the agent seeks to achieve
two or more objectives at the same time, each with its own associated reward
signal. Thus, unlike in standard RL, where the reward is a scalar, it is now a
vector (Vamplew et al. 2011). Typically, the different objectives are in conflict
with each other and cannot easily be optimized simultaneously. Instead, a
policy must either optimize only one objective while neglecting the others,
or try to find a trade-off between the conflicting criteria. What is sought,
therefore, is a policy that is optimal in a Pareto sense.

MORL shares an important property with our approach to preference-
based reinforcement learning, namely the fact that trajectories (policies) are
not necessarily comparable with each other. On the other hand, the reward
signals in MORL are still numerical, thus making the problem amenable to
other types of learning algorithms. In other words, MORL can be seen as a
special case of our general framework; as such, it can be tackled by specialized
algorithms that are presumably more effective than general algorithms for
preference-based reinforcement learning.

8.5 External Advice and Off-Policy Learning

In addition to numerical reward functions, some authors have investigated
ways for incorporating other forms of feedback, most notably external advice.
For example, Maclin and Shavlik (1996) proposed an approach in which user-
generated advice in the form of rules is transferred to the same neural network
used by the reinforcement learning agent for learning the Q-function. Maclin
et al. (2005) propose user-provided advice in the form of preferences over
actions and use them for training a reinforcement learner via kernel-based
regression. The constraints compare two actions, but are still quantitative in
the sense of specifying a lower bound on the difference of the Q-values of two

34

actions. These constraints can then be directly incorporated into the kernelized
optimization algorithm. This form of advice has later been adapted for transfer
learning (Torrey et al. 2005). A good survey of transfer learning in RL and its
relation to advice-taking is given by Taylor and Stone (2009).

An alternative technique is to encode advice in the form of a reasonable
starting policy, which can then be used to generate training examples for a
relational reinforcement learner (Driessens and Džeroski 2004). Such examples
could, e.g., also be generated by a human controller. Auer et al. (1995) con-
sider the multi-armed bandit problem in the presence of experts, each of which
instructs the learner on a particular arm to pull. Langford and Zhang (2008)
consider a more general case where any contextual information can be consid-
ered in addition to the reward. For example, in a news recommender system,
the context could describe news articles and user information (Li et al. 2010).
Another approach for advice-taking with reinforcement learning has been tried
by Fürnkranz et al. (2000). The key idea of this paper is tuning the weights
of several advice-givers instead of the weights of an evaluation function.

The above is related to off-policy learning, where the learner does not have
to follow the policy it tries to optimize. In the simplest case, when the value
function is simply represented as a look-up table, off-policy learning is well
understood. In fact, Q-learning is an off-policy learner. In the general case,
however, when the state space is so complex that the value function has to
be approximated, off-policy learning is known to become unstable even for
linear function approximators (Precup et al. 2001; Maei et al. 2010). Recently,
Langford et al. (2008) discuss how policies can be evaluated using off-line
experience.

Preference-based reinforcement learning is also related to inverse reinforce-
ment learning (Ng and Russell 2000; Abbeel and Ng 2010). In this framework,
the idea is to learn a reward function from traces of a presumably optimal pol-
icy so that the reward is consistent with the observed policy traces. Preference-
based reinforcement learning follows a similar goal, but weakens some of the
assumptions: first, we do not assume that the learner has access to obser-
vations of an optimal policy but instead only require comparisons between
several, possibly suboptimal actions or trajectories. Second, the objective is
not necessarily to learn a reward signal, but it suffices to learn a policy that is
consistent with the observed trajectories. In that respect, the work is also re-
lated to early work in the area of behavioral cloning (Sammut 1996). Similarly,
learning player behavior from game traces is an important topic in computer
game research (Fürnkranz 2011).

8.6 Handling Qualitative Information

The exploitation of qualitative information in RL or, more generally, in MDPs,
has received less attention so far. Bonet and Pearl (2002) propose a qualita-
tive version of MDPs and POMDPs (Partially Observable MDPs) based on
a so-called order-of-magnitude representation of transition probabilities and

35

rewards. This approach is closely related to the work of Sabbadin (1999), who
models uncertainty in terms of possibility instead of probability distributions.
Epshteyn and DeJong (2006) present a framework which allows the expert to
specify imprecise knowledge of transition probabilities in terms of stochastic
dominance constraints.

Reyes et al. (2006) propose a method for learning qualitative MDPs. They
argue that, in complex domains, it is not always possible to provide a rea-
sonable state representation and transition model. Their approach is able to
automatically produce a state abstraction and can learn a transition function
over such abstracted states. A qualitative state, called q-state, is a group of
states with similar properties and rewards.

There are also connections to some other fields of AI research dealing with
qualitative knowledge. One such field is qualitative reasoning (Kuipers 1994),
where the learning of qualitative models has also been considered (Bratko and
Suc 2003; Zabkar et al. 2008), even though the focus here is less on control and
more on the modeling and simulation of dynamical systems. Another field is
qualitative decision making, in which qualitative variants of classical Bayesian
decision theory and expected utility theory have been developed (Brafman and
Tennenholtz 1997; Doyle and Thomason 1999; Dubois et al. 2003; Fargier and
Sabbadin 2005).

9 Current and Future Work

The work reported in this paper provides a point of departure for extensions
along several lines. First of all, there are several important theoretical ques-
tions regarding our formal framework in Section 3, many of which are relevant
for algorithmic approaches to preference-based reinforcement learning. For ex-
ample, to put our idea of learning preferences on actions given states on a firm
ground, it would be important to know under what conditions on the pref-
erence relation A (on trajectories) it is possible to guarantee that a globally
optimal policy can be reconstructed from local preferences on actions.

While the setting assumed in approximate policy iteration is not uncom-
mon in the literature, the existence of a generative model that can be used for
performing roll-out simulations is a strong prerequisite. In future work, we will
therefore focus on generalizing our approach toward an on-line learning set-
ting with on-policy updates. One of our goals is to develop a preference-based
version of Q-learning. The key missing link to achieve this goal is to find a
preference-based equivalent to the Bellman equation, which allows to transfer
information about action preferences from one state to the other.

A first step in that direction is to define and evaluate a ranking-based
exploration strategy. The results on partial state evaluations (Section 6.5) in-
dicate that an exploration strategy that is based on picking the better one of
a pair of actions may be an interesting approach to try. It seems clear that
information provided by a ranking gives more information than uninformed
exploration strategies like ε-greedy strategies, and we believe that the loss of

36

information that we suffer from only having a ranking instead of expected util-
ities or action probabilities is only minor. This, however, needs to be properly
evaluated.

We are currently working on applying preference-based reinforcement learn-
ing to the chess domain that we have used to motivate our framework in Sec-
tion 2.3. The main obstacle that we have to solve here is that preference-based
policy iteration as proposed in this paper is for on-line learning, whereas the
preferences that we want to learn from are only available off-line. An inter-
esting way for solving this strategy could be an integration of off-line advice
with on-line experience. This can be easily done in Algorithm 3 by merging
preferences from off-line data with preferences that have been generated via
roll-out analysis with the current policy. A problem here is that roll-out analy-
sis with imperfect policies tends to be considerably less reliable for chess than
for games like Go (Ramunajan et al. 2010; Arenz 2012), which is one of the
motivations for resorting to game annotations in this domain. We are also
aiming at lifting inverse reinforcement learning (Ng and Russell 2000; Abbeel
and Ng 2010) to a preference-based formulation.

10 Conclusions

The main contribution of this work is a framework for preference-based rein-
forcement learning, which allows for lifting RL into a qualitative setting, where
reward is not available on an absolute, numerical scale. Instead, comparative
reward functions can be used to decide which of two actions is preferable in a
given state, or, more generally, which of two trajectories is preferable.

To cope with this type of training information, we proposed an algorithm
for preference-based policy iteration, which only depends on the availability
of preference information between two actions. As a proof-of-concept, we in-
stantiated this algorithm into a version of approximate policy iteration, where
the preference information is determined via roll-outs. Whereas the original
algorithm essentially reduces reinforcement learning to classification, we tackle
the problem by means of a preference learning method called label ranking.
In this setting, a policy is represented by a ranking function that maps states
to total orders of all available actions.

To demonstrate the feasibility of this approach, we performed two case
studies. In the first study, we showed that additional training information
about lower-ranked actions can be successfully used for improving the learned
policies. The second case study demonstrated one of the key advantages of
a qualitative policy iteration approach, namely that a comparison of pairs of
actions is often more feasible than the quantitative evaluation of single actions.

Acknowledgments: We would like to thank the anonymous reviewers for their careful
reading of our manuscript and many suggestions that helped to improve the paper. We
also thank Robert Busa-Fekete for several useful comments and discussions, Jan Peters for
advice on policy search, and the Frankfurt Center for Scientific Computing for providing
computational resources. This research was supported by the German Science Foundation
(DFG).

37

References

Abbeel, P. and Ng, A. Y. (2010). Inverse reinforcement learning. In Sammut, C. and Webb,
G. I., editors, Encyclopedia of Machine Learning, pages 554–558. Springer-Verlag.

Akrour, R., Schoenauer, M., and Sebag, M. (2011). Preference-based policy learning. In
Gunopulos, D., Hofmann, T., Malerba, D., and Vazirgiannis, M., editors, Proceedings of
the European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD-11), Part I, pages 12–27, Athens, Greece. Springer.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276.

Arenz, O. (2012). Monte-Carlo Chess. Bachelor’s Thesis, Knowledge Engineering Group,
TU Darmstadt.

Audibert, J.-Y., Bubeck, S., and Munos, R. (2010). Best arm identification in multi-armed
bandits. In Kalai, A. T. and Mohri, M., editors, Proceedings of the 23rd Conference on
Learning Theory (COLT-10), pages 41–53, Haifa, Israel. Omnipress.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (1995). Gambling in a rigged
casino: The adversarial multi-arm bandit problem. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pages 322–331. IEEE Computer So-
ciety Press.

Barto, A. G., Sutton, R. S., and Anderson, C. (1983). Neuron-like elements that can solve
difficult learning control problems. IEEE Transaction on Systems, Man and Cybernet-
ics, 13:835–846.

Baxter, J., Tridgell, A., and Weaver, L. (2000). Learning to play chess using temporal
differences. Machine Learning, 40(3):243–263.

Beal, D. F. and Smith, M. C. (2001). Temporal difference learning applied to game playing
and the results of application to Shogi. Theoretical Computer Science, 252(1-2):105–119.
Special Issue on Papers from the Computers and Games 1998 Conference.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M. (2009). Natural actor-critic
algorithms. Automatica, 45(11):2471–2482.

Bonet, B. and Pearl, J. (2002). Qualitative mdps and pomdps: An order-of-magnitude
approximation. In Proc. 18th Conference in Uncertainty in Artificial Intelligence (UAI-
02), pages 61–68, Alberta, Canada.

Brafman, R. I. and Tennenholtz, M. (1997). Modeling agents as qualitative decision makers.
Artificial Intelligence, 94(1-2):217–268.

Bratko, I. and Suc, D. (2003). Learning qualitative models. AI Magazine, 24(4):107–119.
Cheng, W., Fürnkranz, J., Hüllermeier, E., and Park, S.-H. (2011). Preference-based pol-

icy iteration: Leveraging preference learning for reinforcement learning. In Gunopulos,
D., Hofmann, T., Malerba, D., and Vazirgiannis, M., editors, Proceedings of the Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases (ECML-
PKDD-11), Part I, pages 312–327, Athens, Greece. Springer.

Crites, R. and Barto, A. (1998). Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33:235–262.

Dems̆ar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30.

Dimitrakakis, C. and Lagoudakis, M. G. (2008). Rollout sampling approximate policy iter-
ation. Machine Learning, 72(3):157–171.

Doyle, J. and Thomason, R. (1999). Background to qualitative decision theory. AI Magazine,
20(2):55–68.

Driessens, K. and Džeroski, S. (2004). Integrating guidance into relational reinforcement
learning. Machine Learning, 57(3):271–304.

Droste, S. and Fürnkranz, J. (2008). Learning the piece values for three chess variants.
International Computer Games Association Journal, 31(4):209–233.

Dubois, D., Fargier, H., and Perny, P. (2003). Qualitative decision theory with preference
relations and comparative uncertainty: An axiomatic approach. Artificial Intelligence,
148(1–2):219–260.

38

Džeroski, S., De Raedt, L., and Driessens, K. (2001). Relational reinforcement learning.
Machine Learning, 43(1–2):7–52.

Edwards, S. J. (1994). Portable game notation. http://folk.uio.no/andreio/docs/

pgnspec.pdf.
Epshteyn, A. and DeJong, G. (2006). Qualitative reinforcement learning. In Cohen, W.

and Moore, A., editors, Proceedings of the 23rd International Conference on Machine
Learning (ICML-06), pages 305–312, Pittsburgh, Pennsylvania, USA.

Even-Dar, E., Mannor, S., and Mansour, Y. (2003). Action elimination and stopping con-
ditions for reinforcement learning. In Fawcett, T. and Mishra, N., editors, Proceedings
of the 20th International Conference on Machine Learning (ICML-03), pages 162–169,
Washington, DC. AAAI Press.

Fargier, H. and Sabbadin, R. (2005). Qualitative decision under uncertainty: back to ex-
pected utility. Artificial Intelligence, 164(1–2):245–280.

Fern, A., Yoon, S. W., and Givan, R. (2006). Approximate policy iteration with a pol-
icy language bias: Solving relational markov decision processes. Journal of Artificial
Intelligence Research, 25:75–118.

Fürnkranz, J. (2011). Machine learning and game playing. In Sammut, C. and Webb, G. I.,
editors, Encyclopedia of Machine Learning, pages 633–637. Springer-Verlag.

Fürnkranz, J. and Hüllermeier, E., editors (2010). Preference Learning. Springer-Verlag.
Fürnkranz, J., Pfahringer, B., Kaindl, H., and Kramer, S. (2000). Learning to use operational

advice. In Horn, W., editor, Proceedings of the 14th European Conference on Artificial
Intelligence (ECAI-00), pages 291–295, Berlin. IOS Press.

Gabillon, V., Lazaric, A., and Ghavamzadeh, M. (2010). Rollout allocation strategies for
classification-based policy iteration. In Auer, P., Kaski, S., and Szepesvàri, C., editors,
Proceedings of the ICML-10 Workshop on Reinforcement Learning and Search in Very
Large Spaces.

Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer, B. (2011). Classification-based
policy iteration with a critic. In Getoor, L. and Scheffer, T., editors, Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pages 1049–1056,
New York, NY, USA. ACM.

Gábor, Z., Kalmár, Z., and Szepesvàri, C. (1998). Multi-criteria reinforcement learning.
In Proceedings of the 15th International Conference on Machine Learning (ICML-98),
pages 197–205, Madison, WI. Morgan Kaufmann.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).
The weka data mining software: An update. SIGKDD explorations, 11(1):10–18.

Heidrich-Meisner, V. and Igel, C. (2009). Hoeffding and Bernstein races for selecting poli-
cies in evolutionary direct policy search. In Danyluk, A. P., Bottou, L., and Littman,
M. L., editors, Proceedings of the 26th International Conference on Machine Learning
(ICML-09), ACM International Conference Proceeding Series, pages 401–408, Montreal,
Canada.

Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K. (2008). Label ranking by learning
pairwise preferences. Artificial Intelligence, 172:1897–1916.

Kakade, S. (2001). A natural policy gradient. In Dietterich, T. G., Becker, S., and Ghahra-
mani, Z., editors, Advances in Neural Information Processing Systems 14 (NIPS-2001),
pages 1531–1538, Vancouver, British Columbia, Canada. MIT Press.

Kamishima, T., Kazawa, H., and Akaho, S. (2010). A survey and empirical comparison of
object ranking methods. In (Fürnkranz and Hüllermeier 2010), pages 181–201.

Kersting, K. and Driessens, K. (2008). Non-parametric policy gradients: a unified treatment
of propositional and relational domains. In Cohen, W. W., McCallum, A., and Roweis,
S. T., editors, Proceedings of the 25th International Conference on Machine Learning
(ICML 2008), pp. 456–463, Helsinki, Finland. ACM.

Kober, J. and Peters, J. (2011). Policy search for motor primitives in robotics. Machine
Learning, 84(1-2):171–203.

Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM Journal of
Control and Optimization, 42(4):1143–1166.

Kuipers, B. (1994). Qualitative Reasoning. MIT Press.
Lagoudakis, M. G. and Parr, R. (2003). Reinforcement learning as classification: Leveraging

modern classifiers. In Fawcett, T. E. and Mishra, N., editors, Proceedings of the 20th In-

39

ternational Conference on Machine Learning (ICML-03), pages 424–431, Washington,
DC, USA. AAAI Press.

Langford, J., Strehl, A. L., and Wortman, J. (2008). Exploration scavenging. In Cohen,
W. W., McCallum, A., and Roweis, S. T., editors, Proceedings of the 25th Interna-
tional Conference on Machine Learning (ICML-08), volume 307 of ACM International
Conference Proceeding Series, pages 528–535, Helsinki, Finland. ACM.

Langford, J. and Zhang, T. (2008). The epoch-greedy algorithm for multi-armed bandits
with side information. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T., editors,
Advances in Neural Information Processing Systems 20 (NIPS-21), Vancouver, Canada.
MIT Press.

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2010). Analysis of a classification-based
policy iteration algorithm. In Fürnkranz, J. and Joachims, T., editors, Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pages 607–614.
Omnipress.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach
to personalized news article recommendation. In Rappa, M., Jones, P., Freire, J., and
Chakrabarti, S., editors, Proceedings of the 19th International Conference on World
Wide Web (WWW-10), pages 661–670, Raleigh, North Carolina. ACM.

Maes, F. (2009). Learning in Markov Decision Processes for Structured Prediction. PhD
thesis, University Pierre et Marie Curie, Paris, France.

Loza Menćıa, E., Park, S.-H., and Fürnkranz, J. (2010). Efficient voting prediction for
pairwise multilabel classification. Neurocomputing, 73(7-9):1164–1176.

Maclin, R. and Shavlik, J. W. (1996). Creating advice-taking reinforcement learners. Ma-
chine Learning, 22(1-3):251–281.

Maclin, R., Shavlik, J. W., Torrey, L., Walker, T., and Wild, E. W. (2005). Giving advice
about preferred actions to reinforcement learners via knowledge-based kernel regression.
In Veloso, M. M. and Kambhampati, S., editors, Proceedings of the 20th National Con-
ference on Artificial Intelligence (AAAI-05), pages 819–824, Pittsburgh, Pennsylvania.
AAAI Press / The MIT Press.

Maei, H. R., Szepesvàri, C., Bhatnagar, S., and Sutton, R. S. (2010). Toward off-policy learn-
ing control with function approximation. In Fürnkranz, J. and Joachims, T., editors,
Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 719–726, Haifa, Israel. Omnipress.

Mannor, S., Rubinstein, R. Y., and Gat, Y. (2003). The cross entropy method for fast policy
search. In Fawcett, T. and Mishra, N., editors, Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 512–519, Washington, DC. AAAI
Press.

Mannor, S. and Shimkin, N. (2004). A geometric approach to multi-criterion reinforcement
learning. Journal of Machine Learning Research, 5:325–360.

Massey, W. A. (1987). Stochastic orderings for Markov processes on partially ordered spaces.
Mathematics of Operations Research, 12(2):350–367.

Ng, A. Y. and Jordan, M. I. (2000). Pegasus: A policy search method for large mdps
and pomdps. In Boutilier, C. and Goldszmidt, M., editors, Proceedings of the 16th
Conference in Uncertainty in Artificial Intelligence (UAI-00), pages 406–415, Stanford
University, Stanford, California. Morgan Kaufmann.

Ng, A. Y. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In Lang-
ley, P., editor, Proceedings of the 17th International Conference on Machine Learning
(ICML-00), pages 663–670, Stanford, CA. Morgan Kaufmann.

Park, S.-H. and Fürnkranz, J. (2012). Efficient prediction algorithms for binary decompo-
sition techniques. Data Mining and Knowledge Discovery, 24(1): 40–77.

Peters, J. and Schaal, S. (2007). Reinforcement learning by reward-weighted regression for
operational space control. In Ghahramani, Z., editor, Proceedings of the 24th Interna-
tional Conference on Machine Learning (ICML-07), pages 745–750, Corvallis, Oregon,
USA.

Peters, J. and Schaal, S. (2008a). Natural actor-critic. Neurocomputing, 71(7-9):1180–1190.
Peters, J. and Schaal, S. (2008b). Reinforcement learning of motor skills with policy gradi-

ents. Neural Networks, 21(4):682–697.

40

Precup, D., Sutton, R. S., and Dasgupta, S. (2001). Off-policy temporal difference learning
with function approximation. In Brodley, C. E. and Danyluk, A. P., editors, Proceedings
of the 18th International Conference on Machine Learning (ICML-01), pages 417–424,
Williams College, Williamstown, MA. Morgan Kaufmann.

Puterman, M. L. (2005). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 2nd edition.

Ramanujan, R., Sabharwal, A., and Selman B. (2010). On adversarial search spaces and
sampling-based planning.
In R.I. Brafman, H. Geffner, J. Hoffmann, and H.A. Kautz, editors Proceedings of 20th
International Conference on Automated Planning and Scheduling (ICAPS-10), pages
242–245, Toronto, Ontario, Canada.

Reyes, A., Ibarguengoytia, P., Sucar, L., and Morales, E. (2006). Abstraction and refinement
for solving continuous markov decision processes. In Proc. 3rd European Workshop on
Probabilistic Graphical Models, pages 263–270, Prague, Czech Republic.

Sabbadin, R. (1999). A possibilistic model for qualitative sequential decision problems
under uncertainty in partially observable environments. In Proc. UAI, 15th Conference
on Uncertainty in Artificial Intelligence, pages 567–574, Stockholm, Sweden.

Sammut, C. (1996). Automatic construction of reactive control systems using symbolic
machine learning. Knowledge Engineering Review, 11(1):27–42.

Srinivas, N. and Deb, K. (1995) Multiobjective optimization using nondominant sorting in
genetic algorithms. Evolutionary Computation, 2(3):221–248.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Solla, S. A., Leen,
T. K., and Müller, K.-R., editors, Advances in Neural Information Processing Systems
12 (NIPS-99), pages 1057–1063, Denver, Colorado, USA. The MIT Press.

Tadepalli, P., Givan, R., and Driessens, K. (2004). Relational reinforcement learning: an
overview. In Tadepalli, P., Givan, R., and Driessens, K., editors, Proceedings of the
ICML’04 Workshop on Relational Reinforcement Learning, pages 1–9.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10:1633–1685.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8:257–278.

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets. Artificial
Intelligence, 134(1-2):181–199. Special Issue on Games, Computers and Artificial Intel-
ligence.

Theodorou, E., Buchli, J, Schaal, S. (2010). A generalized path integral control approach
to reinforcement learning. Journal of Machine Learning Research, 11:3137–3181.

Torrey, L., Walker, T., Shavlik, J. W., and Maclin, R. (2005). Using advice to transfer knowl-
edge acquired in one reinforcement learning task to another. In Gama, J., Camacho, R.,
Brazdil, P., Jorge, A., and Torgo, L., editors, Proceedings of the 16th European Confer-
ence on Machine Learning (ECML-05), pages 412–424, Porto, Portugal. Springer.

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., and Dekker, E. (2010). Empirical evalu-
ation methods for multiobjective reinforcement learning algorithms. Machine Learning,
84(1-2):51–80.

Vembu, S. and Gärtner, T. (2010). Label ranking algorithms: A survey. In (Fürnkranz and
Hüllermeier 2010), pages 45–64.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8:229–256.
Zabkar, J., Bratko, I., and Mohan, A. (2008). Learning qualitative models by an autonomous

robot. In Proc. 22nd International Workshop on Qualitative Reasoning, Boulder, Col-
orado.

Zhao, Y., Kosorok, M., and Zeng, D. (2009). Reinforcement learning design for cancer
clinical trials. Statistics in Medicine, 28:3295–3315.

