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Abstract

In this paper, we introduce a new (meta) learning
technique for a preference learning problem called
label ranking. As opposed to existing meta tech-
niques, which mostly decompose the original prob-
lem into pairwise comparisons, our approach relies
on a labelwise decomposition. The basic idea is to
train one model per class label, namely a model that
maps instances to ranks. We propose a concrete
instantiation of this approach by choosing nearest
neighbor estimation as a base learner. In an exper-
imental study, we show that this approach is quite
competitive to state-of-the-art methods.

1 Introduction
Preference learning is an emerging subfield of machine learn-
ing, which deals with the induction of preference models
from observed or revealed preference information [7]. Such
models are typically used for prediction purposes, for exam-
ple, to predict context-dependent preferences of individuals
on various choice alternatives. Depending on the representa-
tion of preferences, individuals, alternatives, and contexts, a
large variety of preference models are conceivable, and many
such models have already been studied in the literature.

A specific type of preference learning problem is the prob-
lem of label ranking, namely the problem of learning a model
that maps instances to rankings (total orders) over a finite set
of predefined alternatives (labels). Several methods for la-
bel ranking have already been proposed in the literature [14].
Most of these methods are reduction techniques transforming
the original learning task into one or several binary classifi-
cation tasks. Moreover, all existing methods are relational in
so far as they seek to learn from relative or comparative pref-
erences, such as pairwise comparisons between alternatives
[12]. Since a ranking of alternatives, by its very nature, does
indeed inform about relative and not about absolute prefer-
ences, the prevalence of the relational approach is of course
completely understandable.

On the other hand, since the number of alternatives in a
label ranking problem is fixed, a ranking is uniquely defined
by the position (rank) of each of the alternatives, which can
be seen as absolute preference information. Admittedly, as

will be explained in more detail later on, this positional infor-
mation is not always readily available for training. Yet, it is
arguably a bit surprising that, to the best of our knowledge, an
approach focused on the learning and prediction of absolute
preferences has not even been tried so far.

In this paper, we introduce an approach of that kind,
namely a new meta-learning technique for label ranking,
which is based on a labelwise instead of a pairwise decom-
position. The basic idea is to train one model per class label,
namely a model that maps instances to ranks. In other words,
given a new query instance, the idea is to predict the rank of
each individual label right away. Unlike existing decomposi-
tion techniques, in which the reducts are binary classification
problems, this approach leads to a linear number of ordered
multi-class problems.

The paper is organized as follows. The next section pro-
vides some background of the label ranking problem, and
Section 3 reviews existing methods for tackling this problem.
Our new approach based on labelwise decomposition (LWD)
is introduced in Section 4. Section 5 is devoted to a general
discussion of similarities and differences between reduction
techniques for label ranking. In Section 6, we provide an
experimental study, in which LWD is compared with existing
decomposition techniques in a systematic way. The paper end
with some concluding remarks in Section 7.

2 Label Ranking
Let Y = {y1, . . . , yK} be a finite set of (choice) alternatives;
adhering to the terminology commonly used in supervised
machine learning, and accounting for the fact that label rank-
ing can be seen as an extension of multi-class classification,
the yi are also called class labels. We consider total order
relations � on Y , that is, complete, transitive, and antisym-
metric relations, where yi � yj indicates that yi precedes yj
in the order. Since a ranking can be seen as a special type of
preference relation, we shall also say that yi � yj indicates a
preference for yi over yj .

Formally, a total order � can be identified with a permu-
tation π̄ of the set [K] = {1, . . . ,K}, such that π̄(i) is the
position of yi in the order. We denote the class of permuta-
tions of [K] (the symmetric group of order K) by SK . By
abuse of terminology, though justified in light of the above
one-to-one correspondence, we refer to elements π̄ ∈ SK as
both permutations and rankings.



In the setting of label ranking, preferences on Y are “con-
textualized” by instances x ∈ X, where X is an underlying
instance space. Thus, each instance x is associated with a
ranking �x of the label set Y or, equivalently, a permuta-
tion π̄x ∈ SK . More specifically, since label rankings do
not necessarily depend on instances in a deterministic way,
each instance x is associated with a probability distribution
P(· |x) on SK . Thus, for each π̄ ∈ SK , P(π̄ |x) denotes the
probability to observe the ranking π̄ in the context specified
by x.

As an illustration, suppose X is the set of peo-
ple characterized by attributes such as sex, age, profes-
sion, and marital status, and labels are music genres:
Y = {Rock, Pop, Classic, Jazz}. Then, for x =
(m, 30, teacher,married) and π̄ = (2, 1, 4, 3), P(π̄ |x) de-
notes the probability that a 30 years old married man, who is
a teacher, prefers Pop music to Rock to Jazz to Classic.

2.1 The Label Ranking Problem
The goal in label ranking is to learn a “label ranker”, that is,
a model

M : X −→ SK
that predicts a ranking π̂ for each instance x given as an in-
put. More specifically, seeking a model with optimal predic-
tion performance, the goal is to find a risk (expected loss)
minimizer

M∗ ∈ argmin
M∈M

∫
X×SK

D(M(x), π̄) dP ,

where M is the underlying model class, P is the joint mea-
sure P(x, π̄) = P(x)P(π̄ |x) on X × SK and D is a loss
function on SK ; common choices of D will be introduced
below.

As training data D, a label ranker uses a set of instances
xn (n ∈ [N ]), together with information about the associated
rankings πn. Ideally, complete rankings are given as training
information, i.e., a single observation is a tuple of the form
(xn, πn) ∈ X × SK ; we call an observation of that kind a
complete example. From a practical point of view, however,
it is important to allow for incomplete information in the form
of a ranking of some but not all of the labels in Y:

yτ(1) �x yτ(2) �x . . . �x yτ(J) , (1)

where J < K and {τ(1), . . . , τ(J)} ⊂ [K]. For example,
for an instance x, it might be known that y2 �x y1 �x y5,
while no preference information is given about the labels y3
or y4.

In the following, we will write complete rankings π̄ with
an upper bar (as we already did above). If a ranking π is not
complete, then π(j) is the position of yj in the incomplete
ranking, provided this label is contained, and π(j) = 0 other-
wise; thus, if π̄ is a “completion” of π, then π̄(k) ≥ π(k) for
all k ∈ [K]. In the above example (1), π = (2, 1, 0, 0, 3). We
denote by |π| = {j |π(j) > 0} the size of the ranking; thus,
π is complete if |π| = K.

2.2 Prediction Accuracy
The prediction accuracy of a label ranker is assessed by com-
paring the true ranking π̄ with the prediction π̂, using a dis-
tance measure D on rankings. Among the most commonly

used measures is the Kendall distance, which is defined by
the number of inversions, that is, index pairs {i, j} ⊂ [K]
such that the order of yi and yj in π̄ is inverted in π̂:

D(π̄, π̂) =
∑

1≤i<j≤K

q
sign(π̄(i)−π̄(j)) 6= sign(π̂(i)−π̂(j))

y

(2)
The well-known Kendall rank correlation measure is an affine
transformation of (2) to the range [−1,+1]. Besides, the sum
of L1 or L2 losses on the ranks of the individual labels are
often used as an alternative distance measures:

D1(π̄, π̂) =

M∑
i=1

|π̄(i)− π̂(i)| (3)

D2(π̄, π̂) =

M∑
i=1

(π̄(i)− π̂(i))2 (4)

These measures are closely connected with two other well-
known rank correlation measures: Spearman’s footrule is
an affine transformation of (3) to the interval [−1,+1], and
Spearman’s rank correlation (Spearman’s rho) is such a trans-
formation of (4).

2.3 Label Ranking Methods
Several methods for label ranking have been proposed that
try to exploit, in one way or the other, the structure of the
output space SK . These include generalizations of standard
machine learning methods such as nearest neighbor estima-
tion [2] and decision tree learning [5], as well as statisti-
cal inference based on parametrized models of rank data [4].
Moreover, several reduction techniques have been proposed,
that is, meta-learning techniques that reduce the original label
ranking problem into one or several classification problems
that are easier to solve [9; 12].

3 Labelwise Decomposition
In this section, we introduce a new meta-learning technique
for label ranking, which is based on the idea of reducing the
original problem to standard classification problems in a la-
belwise manner.

3.1 Complete Training Information
If the training data D consists of complete examples (xn, π̄n),
then each such example informs about the rank π̄(k) of the
label yk in the ranking associated with xn. Thus, a quite
natural idea is to learn a model

Mk : X −→ [K]

that predicts the rank of yk, given an instance x ∈ X as an
input. Indeed, such a model can be trained easily on the data

Dk =
{

(xn, rn) | (xn, π̄n) ∈ D, rn = π̄n(k)
}
. (5)

The classification problem thus produced are multi-class
problems with K classes, where each class corresponds to
a possible rank. More specifically, since these ranks have a
natural order, we are facing an ordinal classification problem.
Thus, training of the modelsMk (k ∈ [K]) can in principle
be accomplished by any existing method for ordinal classifi-
cation.



3.2 Incomplete Training Information
As mentioned before, the original training data D is not nec-
essarily supposed to contain complete rank information; in-
stead, for a training instance xn, only an incomplete ranking
πn of a subset of the labels in Y might have been observed,
while the complete ranking π̄n is not given. In this case, the
above method is not directly applicable: If at least one label
is missing, i.e., |πn| < K, then none of the true ranks π̄n(k)
is precisely known; consequently, the training data (5) cannot
be constructed.

Nevertheless, even in the case of incomplete rankings, non-
trivial information can be derived about the rank π̄(k) for at
least some of the labels yk. In fact, if |π| = J and π(k) =
r > 0, then

π̄(k) ∈
{
r, r + 1, . . . , r +K − J

}
.

Of course, if π(k) = 0 (i.e., yk is not present in the ranking),
only the trivial information π̄(k) ∈ [K] can be derived. Yet,
more precise information can be obtained under additional
assumptions. For example, if π is known to be the top of the
ranking π̄, then{

π̄(k) = π(k) if π(k) > 0
π̄(k) ∈ {J + 1, . . . ,K} if π(k) = 0

. (6)

This scenario is highly relevant, since top-ranks are observed
in many practical applications.

In general, the type of training data that can be derived
for a label yk in the case of incomplete rank information are
examples of the form(

xn, Rn
)
∈ X× 2[K] , (7)

that is, an instance xn together with a set of possible ranks
Rn. The problem of learning from data with imprecise class
information has recently been studied in the literature, where
it is called learning from ambiguously labeled examples [11]
or learning from partial labels [8; 6].

3.3 Generalized Nearest Neighbor Estimation
As explained in [10], a reasonable approach to learning from
imprecise data is to combine model identification and data
disambiguation, that is, trying to fit an optimal model while
simultaneously finding the “true data”. Concretely, this can
be accomplished by means of generalized loss functions,
which, roughly speaking, compare a (point) prediction with
a set of possible “true” values in an optimistic way. In our
case, a loss function of that kind is of the form

L(R, r̂) = min
r∈R

`(r̂, r) , (8)

where R ⊆ [K] is a set of ranks, r̂ is the predicted rank, and
` : [K]2 → R is the original loss (comparing predicted and
true ranks). An example for `(r̂, r) = |r̂ − r|, i.e.,

L(R, r̂) = min
r∈R
|r̂ − r| , (9)

is shown in Figure 1. As can be seen, the generalized loss is
0 as long as r̂ ∈ R, that is, as long as r̂ possibly corresponds
to the true rank.
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Figure 1: Loss function `(r̂, r) = |r̂ − r| for r = 6 (dashed
line) and generalized version (9) for R = {4, 5, 6, 7}.

Now, consider a nearest neighbor approach to label rank-
ing: Given a new query instance x0, a prediction π̂ is obtained
by combining the (incomplete) rankings π1, . . . , πnn coming
from the nn nearest neighbors of x0 in the training data D.
Denote by Rk,n (k ∈ [K], n ∈ [nn]) the (possibly imprecise)
rank information for label yk provided by πn. Moreover, con-
sider a loss functionD on SK that is labelwise decomposable,
i.e., which can be written in the form

D(π̄, π̂) =

K∑
k=1

`(π̄(k), π̂(k)).

Obviously, theL1 andL2 loss (3) and (4) are both of this type.
Then, the empirical risk of π̂, i.e., the loss of this prediction
in the neighborhood of x0, is given by

nn∑
n=1

D(π̄n, π̂) =

nn∑
n=1

K∑
k=1

`(π̄n(k), π̂(k)) (10)

=

K∑
k=1

nn∑
n=1

`(π̄n(k), π̂(k)) (11)

=

K∑
k=1

Lk(π̄n(k), π̂(k)), (12)

where Lk(r) is the cost of putting label yk on position r. Tak-
ing into account that in general only incomplete rankings πn
are observed, the loss `(·) should be replaced by the general-
ized loss (8) and, therefore, Lk should be defined as

Lk(r) =

nn∑
n=1

L(Rk,n, r) .

Thus, an optimal solution would consists of assigning yk the
position π̂(k) = r for which Lk(r) is minimal. However,
noting that each position r ∈ [K] must be assigned at most
once, this approach is obviously not guaranteed to produce a
feasible solution. Instead, the minimization of (10) requires
the solution of an optimal assignment problem [3]:
• labels yk ∈ Y must be uniquely assigned to ranks r =
π̂(k) ∈ [K];
• assigning yk to rank r causes a cost of Lk(r);
• the goal is to minimize the sum of all assignment costs.



Assignment problems of that kind have been studied exten-
sively in the literature, and efficient algorithms for their so-
lution are available. The well-known Hungarian algorithm
[13], for example, solves the above problem in time O(K3).
Such algorithms can be used to produce a prediction π̂ that
minimizes

K∑
k=1

Lk(π̂(k)) ,

and therefore to realize our nearest neighbor approach to label
ranking. In the next section, we experimentally analyze this
approach with L given by (9).

4 Experiments
In this section, we experimentally compare our new method,
referred to as LWD, with another nearest neighbor approach
to label ranking. This approach is based on the (local) esti-
mation of the parameters of a probabilistic model called the
Plackett-Luce (PL) model [4]. It is known to achieve state-
of-the-art performance, not only among the nearest neighbor
approaches but among label ranking methods in general.

4.1 Data
We used several benchmark data sets for label ranking that
have also been used in previous studies [12]; these are semi-
synthetic data sets, namely label ranking versions of (real)
UCI multi-class data. Moreover, we used two real label rank-
ing data sets: The Sushi data1 consists of 5000 instances (cus-
tomers) described by 11 features, each one associated with a
ranking of 10 types of sushis. The Students data [1] consists
of 404 students (each characterized by 126 attributes) with
associated rankings of five goals (want to get along with my
parents, want to feel good about myself, want to have nice
things, want to be different from others, want to be better
than others). See Table 1 for a summary of the data.

Two missing label scenarios were simulated, namely a
“missing-at-random” setting and the top-rank setting (6). In
the first case, a biased coin is flipped for every label in a rank-
ing to decide whether to keep or delete that label; the prob-
ability for a deletion is specified by a parameter p ∈ [0, 1].
Thus, p×100% of the labels will be missing on average. Sim-
ilarly, in the second case, only the J top-labels in a ranking
are kept, where J has a binomial distribution with parameters
K and 1− p.

4.2 Results
The results in Tables 2 and 3 are presented as averages of
5 × 10-fold cross validation in terms of the Kendall correla-
tion measure; other measures such as (3) and (4) led to similar
results. The number of nearest neighbors (see column nn in
Table 1) was determined through internal cross-validation us-
ing the PL method in the full ranking setting; the same num-
ber was then adopted for LWD.2 As a distance measure on X,
the standard Euclidean distance was used.

1http://kamishima.new/sushi/
2Thus, any bias will be more in favor of PL than LWD.

Table 1: Properties of the data sets.

data set # inst. (N) # attr. (d) # labels (K) nn
authorship 841 70 4 10
glass 214 9 6 5
iris 150 4 3 5
pendigits 10992 16 10 10
segment 2310 18 7 5
vehicle 846 18 4 10
vowel 528 10 11 5
wine 178 13 3 10
sushi 5000 11 10 100
students 404 126 5 100

These results clearly support the conclusion that, while
LWD and PL are quite en par in the complete ranking case,
the latter is much more sensitive toward missing label infor-
mation than the former. In fact, the performance of LWD
is comparably stable, and its drop in performance due to
missing label information is less pronounced than in the case
of PL; this observation is especially clear in the missing-at-
random setting, whereas the differences in performance are
less visible in the top-rank setting (see Figures 2 and 3).

5 Summary and Conclusion
In this paper, we introduced labelwise decomposition (LWD)
as a new meta-learning technique for label ranking, and re-
alized this technique for the specific case of nearest neigh-
bor estimation as an underlying base learner. In contrast to
existing techniques, which are mostly based on decompos-
ing training information into comparative preferences, this
approach is based on absolute preference information in the
form of ranks. The idea is quite simple: For each individual
label, a model is learned that, given a query instance as an
input, predicts the rank of the label in the associated rank-
ing. Since these predictions need to guarantee that each rank
is assigned exactly once, the individual predictions must be
aggregated appropriately—as we have shown, the problem of
finding an overall (empirical) risk minimizing prediction can
be formalized as an optimal assignment problem.

Comparing LWD with a state-of-the-art nearest neighbor
approach to label ranking, we found clear improvements in
terms of prediction performance, notably in the case of miss-
ing label information.



Table 2: Performance in terms of Kendall’s tau on synthetic data: missing-at-random (above) and top-rank setting (below).
complete ranking 30% missing labels 60% missing labels

LWD PL LWD PL LWD PL
authorship .933±.016 .936±.015 .925±.018 .833±.030 .891±.021 .601±.054
glass .840±.075 .841±.067 .819±.078 .669±.064 .721±.072 .395±.068
iris .960±.036 .960±.036 .932±.051 .896±.069 .876±.068 .787±.111
pendigits .940±.002 .939±.002 .924±.002 .770±.004 .709±.005 .434±.007
segment .953±.006 .950±.005 .914±.009 .710±.013 .624±.020 .381±.020
vehicle .853±.031 .859±.028 .836±.032 .753±.032 .767±.037 .520±.050
vowel .876±.021 .851±.020 .821±.022 .612±.027 .536±.034 .327±.033
wine .938±.050 .947±.047 .933±.054 .919±.059 .921±.062 .863±.094
authorship .933±.016 .936±.015 .932±.017 .927±.017 .923±.015 .886±.022
glass .840±.075 .841±.067 .838±.074 .809±.066 .815±.075 .675±.069
iris .960±.036 .960±.036 .956±.036 .926±.051 .932±.048 .868±.070
pendigits .940±.002 .939±.002 .933±.002 .918±.002 .837±.004 .794±.004
segment .953±.006 .950±.005 .943±.005 .874±.008 .844±.010 .674±.015
vehicle .853±.031 .859±.028 .851±.033 .838±.030 .818±.032 .765±.035
vowel .876±.021 .851±.020 .867±.021 .785±.020 .800±.021 .588±.024
wine .938±.050 .947±.047 .936±.049 .926±.061 .930±.059 .907±.066

Table 3: Performance in terms of Kendall’s tau on real-world data: missing-at-random (above) and top-rank setting (below).
sushi 0% 10% 20% 30% 40% 50% 60% 70%
LWD .323±.012 .322±.011 .320±.011 .319±.010 .315±.011 .308±.011 .296±.011 .277±.010
PL .321±.010 .320±.010 .318±.010 .311±.010 .298±.011 .278±.010 .246±.010 .203±.012
LWD .325±.012 .324±.011 .324±.011 .323±.011 .323±.011 .323±.011 .321±.011 .316±.011
PL .321±.010 .320±.010 .320±.011 .320±.011 .319±.010 .316±.010 .310±.010 .303±.011

students 0% 10% 20% 30% 40% 50% 60% 70%
LWD .641±.051 .641±.051 .640±.050 .640±.051 .638±.052 .637±.051 .633±.054 .626±.055
PL .386±.028 .384±.027 .382±.026 .377±.029 .365±.025 .350±.027 .327±.027 .274±.033
LWD .641±.051 .641±.051 .641±.051 .641±.051 .640±.051 .640±.052 .638±.050 .628±.052
PL .386±.028 .385±.028 .386±.028 .385±.027 .383±.029 .379±.026 .377±.026 .371±.028
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Figure 2: Performance of LWD (solid lines) and PL (dashed line) in the missing-at-random setting.
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Figure 3: Performance of LWD (solid lines) and PL (dashed line) in the top-rank setting.
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