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Abstract

We consider supervised learning of a ranking function, which is a map-
ping from instances to total orders over a set of labels (options). The training
information consists of examples with partial (and possibly inconsistent) in-
formation about their associated rankings. From these, we induce a ranking
function by reducing the original problem to a number of binary classification
problems, one for each pair of labels. The main objective of this work is to
investigate the trade-off between the quality of the induced ranking function
and the computational complexity of the algorithm, both depending on the
amount of preference information given for each example. To this end, we
present theoretical results on the complexity of pairwise preference learning.
We also carry out some controlled experiments investigating the predictive
performance of our method for different types of preference information,
such as top-ranked labels and complete rankings. The domain of this study
is the prediction of a rational agent’s ranking of actions in an uncertain envi-
ronment.

1 Introduction

The increasing trend to treat consumers, computer users and patients asindivid-
ualshas produced, among other things, user-adapted software and operating sys-
tems (Horvitz et al., 1998), e-commerce personalization of products and services
(Riecken, 2000), and systems for patient-centered medical care (Couch, 1998). A
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key prerequisite in all of these applications is the ability of discovering and captur-
ing an individual’spreferences, a problem often referred to aspreference elicita-
tion.

We consider the acquisition of preferences in the context of supervised learn-
ing. Roughly speaking, this means to generalize given examples to a “preference
structure-valued” function, that is, a function which assigns preference structures
to instances (computer users, customers, patients, ...). This problem, which can ob-
viously be seen as an extension of learning a classification function, will be referred
to aspreference learning. It should be distinguished from preference elicitation in
a more narrow sense, where the goal is to learn about the preferences of a single
individual, and where specific questions can be asked to that individual.1

The problem of learning with or from preferences has recently received a lot
of attention within the machine learning literature. The problem is particularly
challenging because it involves the prediction of complex structures, such as weak
or partial order relations, rather than single values. Moreover, training input will
not, as it is usually the case, be offered in the form of complete examples but
may comprise more general types of information, such as relative preferences or
different kinds of indirect feedback.

More specifically, the learning scenario that we will consider in this paper con-
sists of a collection of training examples which are associated with a finite set of
decision alternatives. Following the common notation of supervised learning, we
shall refer to the latter aslabels. However, contrary to standard classification, a
training example is not assigned a single label, but a set ofpairwise preferences
between labels, expressing that one label is preferred over another.

The goal is to use these pairwise preferences for predicting a total order, a
ranking, of all possible labels for a new training example. More generally, we
seek to induce aranking functionthat maps instances (examples) to rankings over
a fixed set of decision alternatives (labels), in analogy to aclassification function
that maps instances to single labels. To this end, we investigate the use ofround
robin learning or pairwise classification. As will be seen, round robin appears
particularly appealing in this context since it can be extended from classification to
preference learning in a quite natural manner.

The paper is organized as follows: In the next section, we introduce the learn-
ing problem in a formal way. The extension of pairwise classification to pairwise
preference learning and its application to ranking are discussed in section 3. Sec-
tion 4 provides some results on the computational complexity of pairwise prefer-
ence learning. Results of several experimental studies investigating the predictive

1Here, the major problem is to ask such questions in a clever way, so as to find a good approxi-
mation of the individual’s preference structure with an as small as possible number of questions.
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performance of our approach under various training conditions are presented in
section 5. We conclude the paper with an overview of related work in section 6 and
some complementary final remarks in section 7.

2 Learning Problem

We consider the following learning problem:

Given:

• a set oflabelsL = {λi | i = 1 . . . c}
• a set ofexamplesE = {ek | k = 1 . . . n}
• for each training exampleek:

– a set ofpreferencesPk ⊆ L × L, where(λi, λj) ∈ Pk indicates
that labelλi is preferred over labelλj for exampleek.

Find: a function that orders the labelsλi, i = 1 . . . c for any given example.

We will abbreviate(λi, λj) ∈ Pk with λi �k λj , or evenλi � λj if the
particular exampleek doesn’t matter or is clear from the context.

This setting has been previously introduced asconstraint classificationby Har-
Peled et al. (2002). As has been pointed out in their work, the above framework is
a generalization of several common learning settings, in particular (see ibidem for
a formal derivation of these and other results)

• ranking: Each training example is associated with a total order of the labels,
i.e., for each pair of labels(λi, λj) eitherλi � λj or λj � λi holds.

• classification: A single class labelλi is assigned to each example. This
implicitly defines the set of preferences{λi � λj | 1 ≤ j 6= i ≤ c}.

• multi-label classification:Each training exampleek is associated with a sub-
setSk ⊆ L of possible labels. This implicitly defines the set of preferences
{λi � λj |λi ∈ S, λj ∈ L \ S}.

As pointed out before, we will be interested in predicting a ranking (total order)
of the labels. Thus, we assume that for each instance, there exists a total order of
the labels, i.e., they form a transitive and asymmetric relation. For many practical
applications, this assumption appears to be acceptable at least for thetrue pref-
erences. Still, more often than not the observed orrevealedpreferences will be
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incomplete or inconsistent. Therefore, we do not require thedata to be consistent
in the sense that transitivity and asymmetry applies to thePk. In fact, this property
is not compulsory for our learning algorithm. Yet, we do make the reasonable as-
sumption thatPk is irreflexive (λi 6� λi) and anti-symmetric(λi � λj ⇒ λj 6� λi).
(Note that0 ≤ |Pk| ≤ c(c− 1)/2 as a consequence of the last two properties.)

3 Pairwise Preference Ranking

A key idea of our approach is to learn a separate theory for each of thec(c− 1)/2
pairwise preferences between two labels. More formally, for each possible pair
of labels(λi, λj), 1 ≤ i < j ≤ c, we learn a modelmij that decides for any
given example whetherλi � λj or λj � λi holds. The model is trained with all
examplesek for which eitherλi �k λj or λj �k λi is known. All examples for
which nothing is known about the preference betweenλi andλj are ignored.

At classification time, an example is submitted to allc(c − 1)/2 theories, and
each prediction is interpreted as a vote for a label. If classifiermij predictsλi � λj ,
we count this as a vote forλi. Conversely, the predictionλj � λi would be
considered as a vote forλj . The labels are ranked according to the number of votes
they receive from all modelsmij . Ties are first broken according to the frequency
of the labels in the top rank (the class distribution in the classification setting) and
then randomly.

We refer to the above technique aspairwise preference rankingor round robin
ranking. It is a straight-forward generalization of pairwise or one-against-one clas-
sification, aka round robin learning, which solves multi-class problems by learning
a separate theory for each pair of classes. In previous work, Fürnkranz (2002)
showed that, for rule learning algorithms, this technique is preferable to the more
commonly used one-against-all classification method, which learns one theory for
each class, using the examples of this class as positive examples and all others as
negative examples. Round robin has also been successfully used in other fields,
in particular in the area of support vector machines (Hsu and Lin, 2002, and ref-
erences therein). We refer to Section 8 of (Fürnkranz, 2002) for a brief survey of
related work on pairwise classification.

More importantly, however, F̈urnkranz (2002) showed that, despite its com-
plexity being quadratic in the number of classes, the algorithm is no slower than
the conventional one-against-all technique. We will generalize these results in the
next section.
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4 Complexity

Consider a learning problem withn training examples andc labels.

Theorem 4.1 The total number of training examples over allc(c − 1)/2 binary
preference learning problems is

n∑
k=1

|Pk| ≤ nmax
k
|Pk| ≤ n

(
c

2

)
= n

c(c− 1)
2

Proof: Each of then training examples will be added to all|Pk| binary training
sets that correspond to one of its preferences. Thus, the total number of training
examples is

∑n
k=1 |Pk|. As the number of preferences for each example is bounded

from above bymaxk |Pk|, this number is no larger thanmaxk |Pk|n, which in turn
is bounded from above by the size of a complete set of preferencesnc(c− 1)/2. 2

From this immediately follows a result of Fürnkranz (2002):

Corollary 4.2 For a classification problem, the total number of training examples
is only linear in the number of classes.

Proof: A class label expands toc − 1 preferences, therefore
∑n

k=1 |Pk| = (c −
1)n. 2

Note that we only considered the number of training examples, but not the
complexity of the learner that runs on these examples. For an algorithm with a
linear run-time complexityO(n) it follows immediately that the total run-time is
O(dn), whered is the maximum (or average) number of preferences given for
each training example. For a learner with a super-linear complexityO(na), a > 1,
the total run-time is much lower thanO((dn)a) because the training effort is not
spent on one large training set, but on many small training sets. In particular, for a
complete preference set, the total complexity isO(c2na), whereas the complexity
for d = c− 1 (round robin classification) is onlyO(cna) (Fürnkranz, 2002).

For comparison, the only other technique for learning in this setting that we
know of (Har-Peled et al., 2002) constructs twice as many training examples (one
positive and one negative for each preference of each example), and these exam-
ples are projected into a space that hasc times as many attributes as the original
space. Moreover, all examples are put into a single training set for which a sep-
arating hyper-plane has to be learned. Thus, under the (reasonable) assumption
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that an increase in the number of features has approximately the same effect as a
corresponding increase in the number of examples, the total complexity becomes
O((cdn)a) if the algorithm for finding the separating hyper-plane has complexity
O(na) for a two-class training set of sizen.

In summary, the overall complexity of pairwise constraint classification de-
pends on the (maximum or average) number of preferences that are given for each
training example. While being quadratic in the number of labels if a complete
ranking is given, it is only linear for the classification setting. In any case, it is
more efficient than the technique proposed by Har-Peled et al. (2002). However, it
should be noted that the price to pay is the large number of classifiers that have to
be stored and tested at classification time.

5 Empirical Results

The previous sections have shown that an extended version of round robin learn-
ing can induce a ranking function from a set of preferences instead of a single
label. Yet, it turned out that computational complexity might become an issue. Es-
pecially, since a ranking induces a quadratic number of pairwise preferences, the
complexity for round robin ranking becomes quadratic in the number of labels. In
this context, one might ask whether it could be possible to improve efficiency at
the cost of a tolerable decrease in performance: Could the learning process perhaps
ignore some of the preferences without decreasing predictive accuracy too much?
Apart from that, incomplete training data is clearly a point of practical relevance,
since complete rankings will rarely be observable.

The experimental evaluation presented in this section is meant to investigate
issues related to incomplete training data in more detail, especially to increase
our understanding about the trade-off between the number of pairwise preferences
available in the training data and the quality of the learned ranking function. For
a systematic investigation of questions of such kind, we need data for which, in
principle, a complete ranking is known for each example. This information allows
a systematic variation of the amount of preference information in the training data,
and a precise evaluation of the predicted rankings on the test data. Since we were
not aware of any suitable real-world datasets, we decided to conduct our experi-
ments with synthetic data.

5.1 Synthetic Data

We consider the problem of learning the ranking function of an expected utility
maximizing agent. More specifically, we proceed from a standard setting of ex-

6



pected utility theory:A = {a1, . . . , ac} is a set of actions the agent can choose
from andΩ = {ω1, . . . , ωm} is a set of world states. The agent faces a problem of
decision under riskwhere decision consequences are lotteries: Choosing actai in
stateωj yields a utility ofuij ∈ R, where the probability of stateωj is pj . Thus,
theexpected utilityof actai is given by

E(ai) =
m∑
j=1

pj · uij . (1)

Expected utility theory justifies (1) as a criterion for ranking actions and, hence,
gives rise to the following preference relation:

ai � aj ⇔ E(ai) > E(aj). (2)

Now, suppose the probability vectorp = (p1, . . . , pm) to be a parameter of the
decision problem (whileA,Ω and the utility matrix matrixU = (uij) are fixed).
We denote by�p the ranking of actions induced by the vectorp according to (2).

The above decision-theoretic setting can be used for generating synthetic data
for preference learning. The set of instances corresponds to the set of probability
vectorsp, which are generated at random according to a uniform distribution over
{p ∈ Rm | p ≥ 0, p1 + . . . + pm = 1}. The ranking function associated with an
exampleek is given by the ranking�ek as defined in (2). Thus, an experiment
is characterized by the following parameters: The number of actions/labels (c),
the number of world states (m), the number of examples(n), and the utility ma-
trix which is generated at random through independent and uniformly distributed
entriesuij ∈ [0, 1].

5.2 Experimental Setup

In the following, we will report on results of experiments with ten different states
(m = 10) and various numbers of labels (c = 5, 10, 20). For each of the three
configurations we generated ten different data sets, each one originating from a
different randomly chosen utility matrixU . The data sets consisted of 1000 training
and 1000 test examples. For each example, the data sets provided the probability
vectorp ∈ Rm and a complete ranking of thec possible actions.2 The training
examples were labeled with a subset of the complete set of pairwise preferences
as imposed by the ranking in the data set. The subsets that were selected for the
experiments are described one by one for the experiments.

2The occurrence of actions with equal expected utility has probability 0.
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We used the decision tree learner C4.5 (Quinlan, 1993) in its default settings3 to
learn a model for each pairwise preference. For instances in the test set we obtained
a final ranking using simple voting (and tie breaking) as described in section 3.
The predicted ranks were then compared with the actual ranks on the test set, and
evaluation measures were computed as follows: Denote by(ρ1

k, . . . , ρ
c
k) the true

ranking of a test exampleek, whereρ1
k is the top-ranked label (action). Likewise,

denote by(τ1
k , . . . , τ

c
k) the predicted ranking, again withτk1 being the label that has

been assigned the top rank. Further, we userk(λi) to denote the true rank of label
λi for exampleek. The following four evaluation metrics were computed:

Error, the percentage of examples for which thetop rankwas incorrect:

1
n

n∑
k=1

δ(τ1
k , ρ

1
k)× 100%,

whereδ(i, j) = 1 if i 6= j and0 if i = j.

Average Deviation, the average of the (average absolute) deviation of the pre-
dicted rank from the true rank:

1
cn

n∑
k=1

c∑
r=1

|r − rk(τ rk )|

Maximum Deviation, the average of the maximum (absolute) deviations of the
predicted rank from the true rank of each example:

1
n

n∑
k=1

max
r=1..c

|r − rk(τ rk )|

Correlation, the average Spearman rank correlation coefficient:

1
n

n∑
k=1

1−
6
∑c

r=1 (r − rk(τ rk ))2

c(c2 − 1)
(3)

Note that this coefficient assumes values between−1 (for reversed rankings)
and+1 (for identical rankings).

3Our choice of C4.5 as the learner was solely based on its versatility and wide availability. If we
aimed at maximizing performance on this particular problem, we would resort to algorithms that can
directly represent the separating hyperplanes for each binary preference.
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Table 1: Comparison of ranking (a complete set of preferences is given) vs. clas-
sification (only the preferences for the top rank are given). Also shown are the
results for the complementary setting (all preferences for the top rank are omitted).

c prefs error avg dev. max dev. rank corr.

ranking 13.380± 8.016 0.295± 0.096 0.663± 0.201 0.907± 0.038

5 classification 14.400± 8.262 0.567± 0.234 1.236± 0.537 0.783± 0.145

complement 32.650± 14.615 0.401± 0.120 0.864± 0.248 0.872± 0.051

ranking 15.820± 8.506 0.594± 0.121 1.823± 0.293 0.940± 0.018

10 classification 16.670± 9.549 1.559± 0.312 4.103± 0.757 0.711± 0.108

complement 24.310± 9.995 0.617± 0.116 1.858± 0.287 0.937± 0.018

ranking 24.030± 4.251 1.012± 0.057 3.461± 0.204 0.966± 0.004

20 classification 26.370± 5.147 3.320± 0.389 10.526± 1.125 0.697± 0.066

complement 32.300± 3.264 1.026± 0.055 3.479± 0.191 0.966± 0.004

5.3 Ranking vs. Classification

Figure 1 shows experimental results for the cases where pairwise preferences are
selected as follows: First, when using the full set ofc(c−1)/2 pairwise preferences.
Second, for the classification setting which uses only thec − 1 preferences that
involve the top label. Third, for the complementary setting that uses the(c −
1)(c− 2)/2 preferences that donot involve the top label.

There are several interesting things to note for these results. First, the difference
between the error rates of the classification and the ranking setting is comparably
small. Thus, if we are only interested in the top rank,4 it may often suffice to use
the pairwise preferences that involve the top label. The advantage in this case is
of course the reduced complexity which becomes linear in the number of labels.
On the other hand, the results also show that the complete ranking information can
be used to improve classification accuracy, at least if this information is available
for each training example and if one is willing to pay the price of a quadratic
complexity.

The results for the complementary setting show that the information of the top
rank preferences is crucial: When dropping this information and using only those
pairwise preferences that do not involve the top label, the error rate on the top rank
increases considerably, and is much higher than the error rate for the classification

4It should be noted that there is nothing special about the top rank. We expect that the same type
of results can be observed if we focus on any arbitrary rank (e.g., the bottom rank or the median
rank).
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setting. This is a bit surprising if we consider that in the classification setting, the
average number of training examples for learning a modelmij is much smaller
than in the complementary setting. Interestingly, the effective number of training
examples for the top labels might nevertheless decrease. In fact, in our learning
scenario we will often have a fewdominatingactions whose utility degrees are
systematically larger than those of other actions. In the worst case, the same action
is optimal for all probability vectorsp, and the complementary set will not contain
any information about it. While this situation is of course rather extreme, the class
distribution is indeed very unbalanced in our scenario. For example, we determined
experimentally forc = m = 10 andn = 1000 that the probability of having the
same optimal action for more than half of the examples is≈ 2/3, and that the
expected Gini-index of the class distribution is≈ 1/2.

With respect to the prediction of complete rankings, the performance for learn-
ing from the complementary set of preferences is almost as good as the perfor-
mance for learning from the complete set of preferences, whereas the performance
of the ranking induced from the classification setting is considerably worse. This
time, however, the result is hardly surprising and can easily be explained by the
amount of information provided in the two cases. In fact, the complementary set
determines the ranking ofc−1 among thec label, whereas the top label alone does
hardly provide any information about the complete ranking.

As another interesting finding note that the classification accuracy decreases
with an increasing number of labels, whereas the rank correlation increases (this
is also revealed by the curves in Figure 2 below). In other words, the quality of
the predicted rankings increases, even though the quality of the predictions for the
individual ranks decreases. This effect can first of all be explained by the fact that
the (classification) error is much more affected by an increase of the number of
labels. As an illustration, consider random guessing: The chances of guessing the
top label correctly are1/m, whereas the expected value of the rank correlation
(3) is 0 regardless ofm. Moreover, one might speculate that the importance of a
correct vote of each individual learnermij decreases with an increasing number of
labels. Roughly speaking, incorrect classifications of individual learners are better
compensated on average.5 This conjecture is also supported by an independent ex-
periment in which we simulated a set of homogeneous learnersmij through biased
coin flipping with a prespecified error rate. It turned out that the quality mea-
sures for predicted rankings tend to increase if the number of labels becomes large
(though the dependence of the measures on the number of labels is not necessarily
monotone, see Fig. 1).

5This gives some intuitive support to the interpretation of round robin learning as an ensemble
learning technique (F̈urnkranz, 2003).
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Figure 1: Expected Spearman rank correlation as a function of the number of
labels if all learnersmij have an error rate ofε (curves are shown forε =
0.1, 0.2, 0.3, 0.4, 0.5).

5.4 Missing Preferences

While the previous results shed some light on the trade-off between utility and
costs for two special types of preference information, namely top-ranked labels
and complete rankings, they do not give a satisfactory answer for the general case.
The selected set of preferences in the classification setting is strongly focused on a
particular label for each example, thus resulting in a very biased distribution. In the
following, we will look at the quality of predicted rankings when selecting subsets
of pairwise preferences from the full sets with equal right.

Figure 2 shows the curves for the classification error in the top rank and the
average Spearman rank correlation of the predicted and the true ranking over the
number of preferences. To generate these curves, we started with the full set of
preferences, and ignored increasingly larger numbers of them. This was imple-
mented with a parameterpi that caused any given preference in the training data to
be ignored with probabilitypi (100× pi is plotted on thex-axis).

The similar shape of the three curves (for 5, 10, and 20 labels) suggests that the
decrease in the ranking quality can be attributed solely to the missing preferences
while it seems to be independent of the number of labels. In particular, one is
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p

Figure 2: Average error rate (left) and Spearman rank correlation (right) for various
percentages of ignored preferences. The error bars indicate the standard deviations.
The vertical dotted lines on the right indicate the number of preferences for classifi-
cation problems (for 5,10, and 20 classes), those on the left are the complementary
sizes.
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inclined to conclude that—contrary to the case where we focused on the top rank—
it is in generalnot possible to reduce the number of training preferences by an
order of magnitude (i.e., from quadratic to linear in the number of labels) without
severely decreasing the ranking quality. This can also be seen from the three dotted
vertical lines on the right. These lines indicate the percentage of preferences that
were present in the classification setting for 5, 10, and 20 labels (from inner-most
to outer-most). A comparison of the error rates, given by the intersection of a line
with the corresponding curve, to the respective error rates in Figure 1 shows an
extreme difference between the coincidental selection of pairwise preferences and
the systematic selection which is focused on the top rank.

Nevertheless, one can also see that about half of the preferences can be ignored
while still maintaining a reasonable performance level. Even though it is quite
common that learning curves are concave functions of the size of the training set,
the descent in accuracy appears to be remarkably flat in our case. One might be
tempted to attribute this to the redundancy of the pairwise preferences induced by
a ranking: In principle, a rankingρ could already be reconstructed from thec − 1
preferencesρ1 � ρ2, . . . , ρc−1 � ρc, which means that only a small fraction of
the pairwise preferences are actually needed. Still, one should be careful with this
explanation. First, we are not trying to reconstruct a single ranking but rather to
solve a slightly different problem, namely to learn a ranking function. Second, our
learning algorithm does actually not “reconstruct” a ranking as suggested above.
In fact, our simple voting procedure does not take the dependencies between in-
dividual learnersmij into account, which means that these learners do not really
cooperate. On the contrary, what the voting procedure exploits is just the redun-
dancy of preference information: The top rank is the winner only because it is
preferred inc− 1 out of thec(c− 1)/2 pairwise comparisons.

Finally, note that the shape of the curves probably also depends on the num-
ber of training examples. We have not yet investigated this issue because we were
mainly interested in the possibility of reducing the complexity by more than a con-
stant factor without losing too much of predictive accuracy. It would be interesting,
for example, to compare (a) usingp% of the training examples with full preferences
and (b) using all training examples withp% of the pairwise preferences.

5.5 Mislabeled Preferences

Recall that our learning scenario assumes preference structures to be complete
rankings of labels, that is transitive and asymmetric relations. As already pointed
out, we do not make this assumption forobservedpreferences: First, we may not
have access to complete sets of preferences (the case studied in the previous sec-
tion). Second, the process generating the preferences might reproduce the underly-
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Figure 3: Average Spearman rank correlation over various percentages of random
preferences. The error bars indicate the standard deviations. The solid thin lines
are the curves for ignored preferences (Figure 2).

ing total order incorrectly and, hence, produce inconsistent preferences. The latter
problem is quite common, for example, in the case of human judgments.

To simulate this behavior, we adopted the following model: Proceeding from
the pairwise preferences induced by a given ranking, a preferenceλi � λj was
kept with probability1 − ps, whereas with probabilityps, one of the preferences
λi � λj andλj � λi was selected by a coin flip. Thus, in approximatelyps/2
cases, the preference will point into the wrong direction.6 For ps = 0, the data
remain unchanged, whereas the preferences in the training data are completely
random forps = 1.

Figure 3 shows the average Spearman rank correlations that were observed
in this experiment. Note that the shape of the curve is almost the same as the
shape of the curves for ignored preferences. It is possible to directly compare these
two curves because in both graphs a level ofn% means that100 − n% of the
preferences are still intact. The main difference is that in Figure 2, the remaining
n% of the preferences have been ignored, while in Figure 3 they have been re-

6In fact, we implemented the procedure by selectingps/2 preferences and reversing their sign.
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assigned at random. To facilitate this comparison, we plotted the curves for ignored
preferences (the same ones as in Figure 2) into the graph (with solid, thin lines).

It is interesting to see that in both cases the performance degrades very slowly
at the beginning, albeit somewhat steeper than if the examples are completely ig-
nored. Roughly speaking, completely omitting a pairwise preference appears to
be better than including a random preference. This could reasonably be explained
by the learning behavior of a classifiermij : If mij does already perform well, an
additional correct example will probably be classified correctly and thus improve
mij only slightly (in decision tree induction, for example,mij will even remain
completely unchanged if the new example is classified correctly). As opposed to
this, an incorrect example will probably be classified incorrectly and thus produce a
more far-reaching modification ofmij (in decision tree induction, an erroneous ex-
ample might produce a completely different tree). All in all, the “expected benefit”
of mij caused by a random preference is negative, whereas it is 0 if the preference
is simply ignored.

From this consideration one may conclude that a pairwise preference should
better be ignored if it is no more confident than a coin flip. This can also be grasped
intuitively, since the preference does not provide any information in this case. If it
is more confident, however, it clearly carries some information and it might then be
better to include it, even though the best way of action will still depend on the num-
ber and reliability of the preferences already available. Note that our experiments
do not suggest any strategy for deciding whether or not to include anindividual
preference, given information about the uncertainty of that preference. In our case,
each preference is equally uncertain. Thus, the only reasonable strategies are to
include all of them or to ignore the complete sample. Of course, the first strat-
egy will be better as soon as the probability of correctness exceeds1/2, and this
is also confirmed by the experimental results. For example, the correlation coef-
ficient remains visibly above 0.8 even if 80% of the preferences are assigned by
chance and, hence, the probability of a particular preference to be correct is only
0.6. One may conjecture that pairwise preference ranking is particularly robust to-
ward noise, since an erroneous example affects only a single classifiermij which
in turn has a limited influence on the eventually predicted ranking.

6 Related Work

As pointed out before, especially relevant for our work is the framework ofcon-
straint classification, introduced as an extension of standard classification by Har-
Peled et al. (2002). The learning method proposed in this work constructs two
training examples for each preferenceλi � λj , where the originald-dimensional
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training examples are mapped into acd-dimensional space. The positive example
copies the original training vector into the componentsd(i − 1) + 1 . . . di and its
negation into the componentsd(j − 1) + 1 . . . dj of a vector in the new space. The
remaining entries are filled with 0, and the negative example has the same elements
with reversed signs. In thiscd-dimensional space, the learner tries to find a separat-
ing hyperplane. For classifying a new examplee, the labels are ordered according
to the response resulting from multiplyinge with thei-th d-element section of the
hyperplane. This technique also compares favorably to a one-against-all approach.

There has also been some recent work on ranking algorithms. For example,
Crammer and Singer (2003) consider a variety of on-line learning algorithms for
the problem of ranking possible labels in a multi-label text categorization task.
However, we are only aware of one work that actually uses acompleteranking
of the available labels for each example for training or evaluation: Brazdil et al.
(2003) investigate the meta-learning task of ranking learning algorithms according
to their suitability for a new dataset, based on the characteristics of this dataset.

Some authors have investigated the problem of preference elicitation in a more
narrow sense, that is, the learning of one single preference function. For example,
Cohen et al. (1999) propose a two-step approach for ranking a set of objects (and
not a set of labels associated with the objects as in our approach) given feedback
in the form of preference judgments. Similarly, Haddawy et al. (2003) assume
training data to be available in the form of pairwise comparisons of objects. Given
such data, they train an artificial neural network that takes as input two objects and
outputs either 0 or 1, depending on whether or not the first object is preferred to the
second one. (A somewhat similar approach has already been proposed by Wang
(1994)). Joachims (2002) analyzes “click-through data” in order to rank documents
retrieved by a search engine according to their relevance. This is a nice example
of a kind of indirect preference information. Using this information, learning of a
retrieval function is accomplished by training a support vector machine.

The problem of learning a preference relation over a set of labelsL can also
be approached in a somewhat indirect way, namely through learning a value or
utility function that assigns a utility degree to each label. Note that the preference
relation induced by a utility function is necessarilycomplete(linear) in the sense
that all tuples of labels are assumed to be comparable. Moreover, note that learning
a utility function can be considered a more difficult problem than learning a (linear)
preference relation, since the latter subsumes the former but not vice versa.

Depending on the underlying utility scale one can distinguish between learning
a numeric function and learning a function that maps into an ordinal (ordered cate-
gorical) scale. These two cases involve, respectively, a problem of standard regres-
sion and ordinal regression (also called ordinal classification). Ordinal regression
has been investigated thoroughly in statistics and econometrics (McCullagh and
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Nelder, 1983) and has recently also received attention in machine learning. For
example, a method for ordinal regression based on a modification of regression
tree learning has been proposed by Kramer et al. (2001). Frank and Hall (2001)
suggest a method for translating an ordinal regression problem into a set of ordi-
nary (binary) classification problems. In (Herbich et al., 2000), ordinal regression
is approached in the context of support vector machines, using a special type of
loss function suitable for comparing predictions on an ordered categorical scale.

The problem of learning (eliciting)real-valuedutility functions has been in-
vestigated in fields such as decision theory and economics for a long time, and
has more recently become a topic of research in AI and machine learning as well.
A particularly elegant approach is due to Tesauro (1989), who proposes a sym-
metric network architecture that can be trained with representations of two states
and a training signal that indicates which of the two states is preferable. The el-
egance of thiscomparison trainingapproach comes from the property that one
can replace the two symmetric parts of the network with a single network, which
can subsequently provide a real-valued evaluation of single states. More recently,
Chajewska et al. (1998) simplify the elicitation of utility functions by clustering
exemplary utility functions, deriving prototypes from the clusters, and inducing a
decision tree whose inner nodes are associated with properties of utility functions
(questions that can be asked to a person) and whose leaf nodes are identified with
the prototypes. The idea of Chajewska et al. (1999) is to simplify elicitation by
exploiting theadditive independenceof variables. Given a database of exemplary
utility functions, statistical learning (model selection) methods are used in order to
induce a factorization of utility functions into additive subutility functions. Cha-
jewska et al. (2000) accomplish learning of a utility function by treating utility as
a random variable. Starting with some prior distribution (derived from analyzing a
database of available utility functions), the model is incrementally updated based
on information elicited from the user. In order to decide on which questions should
be asked next to the user, the authors fall back on the principle underlying thevalue
of information. Chajewska et al. (2001) study the problem of learning the utility
function that determines the behavior of an agent which is rational in the sense of
expected utility theory. The approach proposed by the authors proceeds from a
prior probability distribution over a class of utility functions having a certain (lin-
ear) structure. The agent’s decisions are then used for defining constraints on its
true utility function (see (Ng and Russell, 2000) for a quite similar approach). Fi-
nally, these constraints are employed in order to turn the prior distribution over the
class of utility functions into a posterior distribution.

Learning preferences is also a key topic in recommender systems and collab-
orative filtering (Goldberg et al., 1992; Resnick and Varian, 1997; Kautz, 1998).
Methods proposed in this field are closer to learning utility functions, but are of-
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ten specifically adjusted to commercial applications where the set of alternatives
(labels) to be recommended is usually very large. The method of choice is quite
often a case-based or memory-based approach, where the basic idea is to estimate
a user’s preferences from the preferences of other users that appear to besimilar
(see e.g. Ha and Haddawy (2003); Nakamura and Abe (1998); Billsus and Pazzani
(1998)).

7 Concluding Remarks

We have introduced pairwise preference learning as an extension of pairwise clas-
sification to constraint classification, a learning scenario where training examples
are labeled with a preference relation over all possible labels instead of a single
class label as in the conventional classification setting. From this information, we
also learn one model for each pair of classes, but focus on learning a complete
ranking of all labels instead of only predicting the most likely label. Our main
interest was to investigate the trade-off between ranking quality and the amount of
training information (in terms of the number of preferences that are available for
each example). We experimentally investigated this trade-off by varying parame-
ters of a synthetic domain that simulates a decision-theoretic agent which ranks its
possible actions according to an unknown utility function. Roughly speaking, the
results show that large parts of the information about pairwise preferences can be
ignored in round robin ranking without losing too much predictive performance. In
the classification setting, where one is only interested in predicting the top label, it
also turned out that using the full ranking information rather than restricting to the
pairwise preferences involving the top label does even improve the classification
accuracy, suggesting that the lower ranks do contain valuable information. For rea-
sons of efficiency, however, it might still be advisable to concentrate on the smaller
set of preferences, thereby reducing the size of the training set raises by an order
of magnitude.

The main limitation of our technique is probably the assumption of having
enough training examples for learning each pairwise preference. For data with a
very large number of labels and a rather small set of preferences per example, our
technique will hardly be applicable. In particular, it is unlikely to be successful in
collaborative filtering problems (Goldberg et al., 1992; Resnick and Varian, 1997;
Breese et al., 1998), although these can be mapped onto the constraint classification
framework in a straightforward way. A further limitation is the quadratic number
of theories that has to be stored in memory and evaluated at classification time.
However, the increase in memory requirements is balanced by an increase in com-
putational efficiency in comparison to the technique of Har-Peled et al. (2002). In
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addition, pairwise preference learning inherits many advantages of pairwise clas-
sification, in particular its implementation can easily be parallelized because of its
reduction to independent subproblems.

There are several directions for future work. First of all, it is likely that the pre-
diction of rankings can be improved by combining the individual learners’ votes
in a more sophisticated way. Several authors have looked at more sophisticated
ways for combining the predictions of pairwise theories into a final ranking of
the available options. Proposals include weighting the predicted preferences with
the classifiers’ confidences (Fürnkranz, 2003) or using an iterative algorithm for
combining pairwise probability estimates (Hastie and Tibshirani, 1998). However,
none of the previous works have evaluated their techniques in a ranking context,
and some more elaborate proposals, like error-correcting output decoding (Allwein
et al., 2000), organizing the pairwise classifiers in a tree-like structure (Platt et al.,
2000), or using a stacked classifier (Savicky and Fürnkranz, 2003) are specifically
tailored to a classification setting. Taking into account the fact that we are explic-
itly seeking a ranking could lead to promising alternatives. For example, we are
thinking about selecting the ranking which minimizes the number of predicted pref-
erences that need to be reversed in order to make the predicted relation transitive.
Departing from the counting of votes might also offer possibilities for extending
our method to the prediction of preference structures more general than rankings
(total orders), such as weak preference relations where some of the labels might
not be comparable.

Apart from theoretical considerations, an important aspect of future work con-
cerns the practical application of our method and its evaluation using real-world
problems. Unfortunately, real-world data sets that fit our framework seem to be
quite rare. In fact, currently we are not aware of any data set of significant size that
provides instances in attribute-value representation plus an associated complete
ranking over a limited number of labels.
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