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Abstract. Even though instance-based learning performs well in prac-
tice, it might be criticized for its neglect of uncertainty: An estimation is
usually given in the form of a predicted label, but without characterizing
the confidence of this prediction. In this paper, we propose an instance-
based learning method that allows for deriving “credible” estimations,
namely set-valued predictions that cover the true label of a query object
with high probability. Our method is built upon a formal model of the
heuristic inference principle underlying instance-based learning.

1 Introduction

The name instance-based learning (IBL) stands for a family of machine learn-
ing algorithms, including well-known variants such as memory-based learning,
exemplar-based learning and case-based reasoning [14, 10, 8]. As the term sug-
gests, in instance-based algorithms special importance is attached to the concept
of an instance [2]. An instance, also called a case, an observation or an example,
can be thought of as a single experience, such as a pattern (along with its classifi-
cation) in pattern recognition or a problem (along with a solution) in case-based
reasoning.

As opposed to inductive, model-based machine learning methods, IBL pro-
vides a simple means for realizing transductive inference [15], that is inference
“from specific to specific”: Rather than inducing a general model (theory) from
the data and using this model for further reasoning, the data itself is simply
stored. The processing of the data is deferred until a prediction (or some other
type of query) is actually requested, a property which qualifies IBL as a lazy
learning method [1]. Predictions are then derived by combining in one way or
the other the information provided by the stored examples, especially by those
objects which are similar to the new query.

In fact, the concept of similarity plays a central role in IBL whose underlying
inference principle corresponds to the well-known nearest-neighbor rule, suggest-
ing that “similar objects have similar labels”. This assertion, which we shall
occasionally call the “IBL assumption”, is apparently of heuristic nature: It is
a rule of thumb that works in most situations but is not guaranteed to do so in
every case. This clearly reveals the necessity of taking the aspect of uncertainty
in IBL into account [4]. Especially, this is true for sensitive applications such as
medical diagnosis or legal reasoning and all the more if decisions (classifications)
must be made on the basis of sparse experience.



In this paper, we shall propose an instance-based learning method that allows
for deriving “credible” predictions. The way in which this approach takes the
aspect of uncertainty into account takes its inspiration from statistical methods:
The basic idea is to derive a kind of credible set1 for the value (label) to be
estimated, that is a subset of values which is likely to contain the true one.

The remaining part of the paper is organized as follows: After some prelimi-
naries, we introduce the concepts of a similarity profile and a similarity hypoth-
esis (Sections 3–4). These concepts will allow us to propose a formal model of
the IBL assumption as well as an instance-based inference scheme that derives
predictions in the form of a set of potential labels. Then, a method for learn-
ing similarity hypotheses from a memory of cases will be presented, along with
theoretical and empirical results on the validity of predictions derived from such
hypotheses (Section 5). Finally, in Section 6, we consider the problem of adapting
the involved similarity measures so as to optimize our algorithm’s performance.

2 Preliminaries

Throughout the paper we proceed from the following setting: X denotes the
instance space, where an instance corresponds to the description x of an object
(usually in attribute–value form). X is endowed with a reflexive and symmetric
similarity measure, σX . L is a set of labels, also endowed with a reflexive and
symmetric similarity measure, σL. We assume that σX and σL are normalized
such that both measures return similarity degrees between 0 and 1, where 1
stands for complete similarity. D denotes a sample (memory, case base) that
consists of n labeled instances (cases) 〈xı, λxı〉 ∈ X × L, 1 ≤ ı ≤ n. Finally, a
novel instance x0 ∈ X (a query) is given, whose label λx0 is to be estimated.

We do not make any assumptions on the cardinality of the label set L. In
fact, we do not even distinguish between the performance tasks of classification
(estimating one among a finite set of class labels) and regression (estimating a
real-valued output), which means that L might even be infinite. As concerns
classification, however, it deserves mentioning that our method is more suit-
able for problems involving many labels. This does hardly diminish its practical
relevance, since there are enough problems of this type. For example, consider
case-based problem solving where an instance corresponds to a problem descrip-
tion, e.g. a set of requirements a technical system has to meet, and the label
corresponds to a solution of that problem, e.g. the assemblage of primitive com-
ponents into a complete technical system [5]. Having to build a new system, one
will usually try to exploit experience that has been gained from building systems
for similar requirements, relying on the assumption that “similar problems have
similar solutions”. As another example, consider a problem somewhat more dif-
ficult than classification: Rather than predicting one among n labels, we seek a
full ranking of these labels, that is a complete order relation [3]. Since n “ba-

1 This term is also common in Bayesian statistics. A related concept in classical statis-
tics is that of a confidence region.



sic” labels can be arranged to n! different rankings, the actual set of potential
predictions can be huge.

Finally, note that no kind of transitivity is assumed for the similarity mea-
sures, which means that the structure of X and L is weaker than that of a metric
space. This excludes the application of several standard methods from statistics.

3 Similarity Profiles

A basic idea of our approach is to proceed from a formal model of the heuristic
IBL assumption, that is a formalization of this otherwise vague principle. As will
be seen later, this formalization provides the basis of a sound inference procedure
and will allow us to make assertions about the confidence of predictions.

To begin, suppose that the IBL hypothesis has the following concrete mean-
ing:

∀x1, x2 ∈ X : σX (x1, x2) ≤ σL (λx1 , λx2) . (1)

In words: The similarity between two labels is always lower-bounded by the
similarity between the corresponding instances, or, roughly speaking, the more
similar two instances are, the more similar are the corresponding labels.

If the similarity constraint (1) does indeed hold true for the application at
hand, then one can reason as follows: Given a query x0 and an observed case
〈x1, λx1〉 such that x1 is α1-similar to x0, the unknown label λx0 must be an
element of the α1-neighborhood of the label λx1 , i.e., of the set of labels λ such
that σL(λ, λx1 ) ≥ α1. Moreover, given a second case 〈x1, λx1〉, the same kind
of reasoning applies, and we can conclude that λx0 must be an element of a
certain α2-neighborhood of λx2 . And we can even come up with a more precise
prediction by combining the two constraints: λx0 must belong to the intersection
of the two neighborhoods (see Fig. 1).

x1

x2

x0

λx2

λx1

instance space X label space L

Fig. 1. Each case puts a constraint on the label λx0 by virtue of property (1).

Needless to say, the similarity constraint (1) will usually not be satisfied for
a practical application (and given similarity measures σX , σL). Therefore, let us



consider a relaxation of this constraint:

∀x1, x2 ∈ X : ζ
(
σX (x1, x2)

) ≤ σL (λx1 , λx2) , (2)

where ζ is a function A → [0, 1] with A =def {σX (x, x′) |x, x′ ∈ X}. This func-
tion assigns to each similarity degree between two instances, α, the largest sim-
ilarity degree β = ζ(α) such that the following property holds:

∀x1, x2 ∈ X : σX (x1, x2) = α ⇒ σL(λx1 , λx2) ≥ ζ(α).

We call ζ the similarity profile of the application at hand. More formally, ζ is
defined as follows: For all α ∈ A,

ζ(α) =def inf
x,x′∈X ,σX (x,x′)=α

σL
(
λx, λx′

)
.

Note that the similarity profile conveys a precise idea of the extent to which the
application at hand actually meets the IBL assumption. Roughly speaking, the
larger ζ is, the better this assumption is satisfied.

Using the relaxed constraint (2), we can perform the same kind of reasoning
as before. We only have to replace the αı-neighborhoods of the known labels λxı

by the corresponding βı-neighborhoods, where βı = ζ(αı). Thus, the following
inference scheme is obtained: λx0 ∈ C(x0) with C(x0) =def L if D = ∅ and

C(x0) =def

n⋂

ı=1

Nζ(σX (xı,x0))(λxı) (3)

otherwise, where the β-neighborhood of a label λ is given by

Nβ(λ) =def {λ′ ∈ L |σL(λ, λ′) ≥ β}. (4)

This inference scheme is obviously correct in the sense that C(x0) is guaranteed
to cover λx0 , a property that follows immediately from the definition of the
similarity profile ζ. We call C(x0) a credible label set, or simply a credible set.

Note that taking the intersection over k < n of the cases in D comes along
with a loss of precision but preserves correctness of the prediction (3). Since less
similar instances will often hardly contribute to the precision of predictions, it
might indeed be reasonable to derive C(x0) from the k 
 n instances maximally
similar to x0, all the more if computing the intersection of neighborhoods (4) is
computationally complex.

An apparent disadvantage of a similarity profile concerns its sensitivity to-
ward outliers or, say, “exceptional” cases. In fact, recall that ζ(α) is a lower
bound to the similarity of labels that belong to α-similar instances. Thus, the
existence of only one pair of α-similar instances having rather dissimilar labels
entails a small lower bound ζ(α). Small bounds in turn will obviously have a
negative effect on the precision of (3).

One way to avoid this problem is to maintain an individual similarity profile
for each case in the memory D. This approach is somehow comparable to the use



of local metrics in kNN algorithms and IBL, e.g., metrics which allow feature
weights to vary as a function of the instance [11]. The local similarity profile of
the ıth case 〈xı, λxı〉 is defined as follows:

ζı(α) =def inf
x∈X ,σX (x,xı)=α

σL
(
λx, λxı

)
,

where inf ∅ = 1 by definition. Thus, ζı(α) is a lower bound on the similarity
between λxı and the label λx0 of an instance x0 which is α-similar to xı. A local
profile indicates the validity of the IBL assumption for individual cases. The
inference scheme (3) now becomes

C(x0) =def

n⋂

ı=1

Nζı(σX (xı,x0))(λxı). (5)

As can be seen, a case with a poorly developed profile hardly contributes to
precise predictions. The local similarity profile might hence serve as a (perhaps
complementary) criterion for selecting “competent” cases to be stored in the
memory D [13].

4 Similarity Hypotheses

The application of the inference scheme (3) requires the similarity profile ζ to be
known, a requirement that will usually not be fulfilled. This motivates the related
concept of a similarity hypothesis, which is thought of as an approximation of a
similarity profile. A similarity hypothesis can thus be seen as a formal model of
the IBL assumption, adapted to the application under consideration.

Formally, a similarity hypothesis is identified with a function h : A → [0, 1].
The intended meaning of the hypothesis h is that

∀x1, x2 ∈ X : σX (x1, x2) = α ⇒ σL(λx1 , λx2) ≥ h(α). (6)

A hypothesis h is called stronger than a hypothesis h′ if h′ ≤ h and h �≤ h′. We
say that h is admissible if h(α) ≤ ζ(α) for all α ∈ A.

It is obvious that using an admissible hypothesis h in place of the true simi-
larity profile ζ within the inference scheme (3) leads to correct predictions. That
is, the estimation

Cest(x0) =def

n⋂

ı=1

Nh(σX (xı,x0))(λxı) (7)

is guaranteed to cover the unknown label λx0 . Indeed, h ≤ ζ implies

Nζ(σX (xı,x0))(λxı) ⊆ Nh(σX (xı,x0))(λxı)

for all cases 〈xı, λxı〉 and, hence, C(x0) ⊆ Cest(x0).
Yet, assuming the profile ζ to be unknown, one cannot guarantee the admis-

sibility of a hypothesis h and, hence, the correctness of (7). In other words, it



might happen that λx0 �∈ Cest(x0). In fact, we might even have Cest(x0) = ∅
(in which case the prediction is definitely incorrect). Nevertheless, taking for
granted that h is indeed a good approximation of ζ, it seems reasonable to de-
rive Cest(x0) according to (7) as an approximation of C(x0), that is, to realize
instance-based learning as a kind of approximate reasoning. Our results in the
next section, showing how to derive a suitable hypothesis from the data given and
how to estimate the probability that predictions obtained from such hypotheses
are correct, will provide a formal justification for this approach.

Before proceeding, let us note that an approximate version of the local in-
ference scheme (5) can of course be realized as well. In this case, an individual
hypothesis hı has to be specified (or induced from data) for each case 〈xı, λxı〉.

5 Learning Similarity Hypotheses

Our discussion so far has left open the question of how to specify a similarity
hypothesis in an appropriate way. An obvious idea in this connection is to induce
such a hypothesis from the observed cases. Before going into detail, note that
the method thus obtained can be seen as a combination of instance- and model-
based learning. In fact, adapting the similarity hypothesis is a kind of model-
based learning, since a similarity hypothesis is a model of the IBL assumption,
whereas storing new cases in the memory corresponds to instance-based learning.

Given a hypothesis space H, i.e. a class of functions h : A → [0, 1], learning
amounts to choosing one among these hypotheses on the basis of the given data.
But which of the hypotheses are interesting candidates? Of course, first of all
a hypothesis h should be consistent with the data given, that is, (6) should be
satisfied for all cases in D:

∀x, x′ ∈ D : σX (x, x′) = α ⇒ σL(λx, λx′) ≥ h(α). (8)

Denote byHC ⊆ H the set of hypothesis that are consistent in this sense. Among
two consistent hypothesis h and h′, where h is stronger than h′, we should prefer
the former since it leads to more precise predictions.2 Thus, we call a hypothesis
h∗ optimal if h∗ ∈ HC and if there is no hypothesis h ∈ HC such that h is
stronger than h∗. The following observation is very simple to prove:

Observation 1 Suppose the hypothesis space H to satisfy h ≡ 0 ∈ H and
(h, h′ ∈ H) ⇒ (h ∨ h′ ∈ H), where h ∨ h′ is the pointwise maximum x �→
max{h(x), h′(x)}. Then, a unique optimal hypothesis h∗ ∈ H exists, and HC is
given by the set {h ∈ H |h ≤ h∗}. �

Given the assumptions of this observation, IBL can be realized as a candidate-
elimination algorithm [9], where h∗ is a compact representation of the version
space, i.e., the subset HC of hypotheses from H which are consistent with the
training examples.
2 Note that the extreme hypothesis h ≡ 0 is always consistent but leads to the trivial

prediction Cest(x0) = L.



Note that (8) guarantees consistency in the “empirical” sense that λxı ∈
Cest(xı) for all 〈xı, λxı〉 ∈ D. One might think of further demanding a kind of
“logical” consistency, namely Cest(x) �= ∅ for all x ∈ X . Of course, this additional
requirement makes the testing of consistency more difficult and would greatly
increase the complexity of learning.

5.1 Hypotheses as step functions

A very simple representation of hypotheses, that will nevertheless turn out to
be very useful, is a step function

h : x �→
m∑

k=1

βk · IAk
(x), (9)

where Ak = [αk−1, αk) for 1 ≤ k ≤ m−1, Am = [αm−1, αm], and 0 = α0 < α1 <
. . . < αm = 1 defines a partition of [0, 1]. The classHstep of functions (9), defined
for a fixed partition, does obviously satisfy the assumptions of Observation 1.
The optimal hypothesis h∗ is defined by the values

βk =def min { σL(λx, λx′) | 〈x, λx〉, 〈x′, λx′〉 ∈ D, σX (x, x′) ∈ Ak } (10)

for 1 ≤ k ≤ m, where min ∅ = 1 by definition. We call h∗ the empirical similarity
profile.

Now, suppose that the case base is to be extended, i.e. that a newly observed
case 〈xn+1, λxn+1〉 is to be added to the current sampleD. Updating the empirical
similarity profile h∗ can then be accomplished by passing the iteration

βκ(xn+1,x) ← min
{

βκ(xn+1,x), σL(λxn+1 , λx)
}

(11)

for 1 ≤  ≤ n = |D|. The index 1 ≤ κ(x, x′) ≤ m is defined for instances
x, x′ ∈ X by κ(x, x′) = k ⇔ σX (x, x′) ∈ Ak. As can be seen, the time complexity
of updating the empirical profile is linear in the size of the memory.

5.2 The learning process

The updating scheme (11) suggests a process in which prediction and learning
are repeated alternately in the style of incremental supervised learning:

– At each point of time, we dispose of a sample D with an associated empirical
similarity profile h∗.

– Having to predict the label of a new instance x0, an estimation Cest(x0) is
derived from D and h∗ according to (7).

– The system learns the correct label λx0 from the teacher.
– 〈x0, λx0〉 is added as the (n+1)th case 〈xn+1, λxn+1〉 to the memory and the

empirical profile h∗ is updated.



Needless to say, the strategy of simply adding all observations to the current case
base D will usually not be efficient. In fact, much more sophisticated strategies
for maintaining a case base are often used in practice, including the possibility
of removing or replacing stored cases [12]. Still, the strategy above is sufficient
for our purpose here. Besides, it simplifies a theoretical analysis of the prediction
performance, as will be seen below.

For obvious reasons we call h∗ ∈ Hstep defined by the values

β∗
k =def inf { ζ(x) |x ∈ A ∩Ak } , (12)

1 ≤ k ≤ m, the optimal admissible hypothesis. Since admissibility implies con-
sistency, we have h∗ ≤ h∗. This inequality suggests that the empirical similarity
profile h∗ will usually overestimate the true profile ζ and, hence, that h∗ might
not be admissible. And indeed, the constraints imposed by the observed cases
will usually not “press” the step function h∗ below the profile ζ (see Fig. 2 for
an illustration). Of course, the fact that admissibility of h∗ is not guaranteed
seems to conflict with the objective of providing correct predictions and, hence,
gives rise to questions concerning the actual quality of the empirical profile as
well as the quality of predictions derived from that hypothesis. In the sequel, we
shall present first answers to these questions.

σX (xı, x)

σL(λxı , λx)

0
0

1

1

Fig. 2. Similarity profile (solid line) and empirical similarity profile (step function).
Each point is induced by a pair of observed cases. By the definition of the similarity
profile, all points are located above the graph of that function.

5.3 Properties of the learning process

We make the simplifying assumption that the instance space X is countable. Fur-
ther, we make the standard assumption that the query instances x0 (resp. the
new cases 〈x0, λx0〉) are chosen at random according to a fixed (not necessar-
ily known) probability distribution µ. In other words, the observed cases are



independent and identically distributed (i.i.d) random variables, i.e. D is an
i.i.d sample. Note that we can assume µ(x) > 0 for all x ∈ X without loss of
generality.

Now, denote by Dn the case base in the nth step of the above learning process,
that is the sample D such that |D| = n, and by hn the empirical similarity profile
derived from that sample. Since, according to our assumption, the observed cases
are random variables, the induced hypotheses hn are random variables (random
functions) as well. As a first important property of the above learning process
we can prove that the sequence of hypotheses h1, h2, . . . converges stochastically
toward the optimal admissible hypothesis h∗.3

Theorem 2 For the sequence (hn)n≥1 of empirical similarity profiles it holds
true that hn ↘ h∗ stochastically as n→∞. That is, hn ≥ h∗ for all n ∈ N and
Pr(|hN − h∗|∞ ≥ ε)→ 0 for all ε > 0. �

As concerns the quality of estimations, we are first of all interested in the
probability of incorrect predictions. Denote by

qn+1 =def Pr
(
λx0 �∈ Cest(x0) | Dn, hn

)
(13)

the probability that the (n + 1)th prediction, i.e. the prediction derived from
Dn and hn, is incorrect. In this connection, it should be noted that a prediction
might well be correct even if the involved empirical profile h∗ is not admissible:
Recall that the estimation (7) is derived from a limited number of constraints (4),
namely the βı-neighborhoods associated with known labels λxı . As we cannot
exclude that βı = hn(σX (xı, x0)) > ζ(σX (xı, x0)), it is true that each of these
neighborhoods might be “too small” and, hence, might remove some labels from
the credible set C(x0). Still, this unjustified removal does not necessarily concern
the correct label λx0 . An indeed, we can show the following interesting result:

Theorem 3 The following estimation holds true for the probability (13):

qn+1 ≤ 2m/ (1 + n) , (14)

where m is the size of the partition underlying Hstep. �

Corollary 4 The expected proportion of incorrect predictions in connection with
the above learning scheme converges toward 0. �

According to the above results, the probability of an incorrect prediction
becomes small for large memories, even if the hypotheses hn are not admissible.
In fact, this probability tends toward 0 with a convergence rate of order O(1/n).
In a statistical sense, the predictions Cest(x0) can indeed be seen as credible sets,
a justification for using this term not only for C(x0) but also for Cest(x0). Note
that the level of confidence guaranteed by Cest(x0) depends on the number of
observed cases and can hence be controlled.
3 All proofs, omitted here due to reasons of space, can be found in [6].



The upper bound established in Theorem 3 might suggest decreasing the
probability of an incorrect prediction by reducing the size m of the partition
underlying Hstep. Observe, however, that this will also lead to a less precise
approximation of ζ and, hence, to less precise predictions of labels. “Merging”
two neighbored intervals Ak and Ak+1, for instance, means to define a new
hypothesis h with h|(Ak ∪Ak+1) ≡ min{βk, βk+1}.

It is interesting to note that the confidence of a prediction does not depend
on the similarity measures σX and σL. In other words, our method works for any
pair of such measures. Yet, the similarity measures will strongly influence the
precision of predictions. Indeed, one cannot expect precise predictions if σX and
σL are not suitably defined (in which case the IBL hypothesis is hardly satisfied).
Therefore, the adaptation of these measures to the application at hand is clearly
advised. In this connection, an interesting idea is to take the empirical similarity
profile induced by the measures as an indicator of their suitability: Define σX
and σL such that the induced profile becomes “large” in a certain sense, since
large profiles yield precise predictions. This problem will be discussed in more
detail in Section 6 below.

Let us finally mention that results similar to the above theorems can also be
obtained for the case of local similarity profiles [6]. Usually, local profiles yield
predictions that are more precise but less confident. This finding can also be
grasped intuitively: The level of confidence decreases since one has to learn more
similarity profiles from the same amount of data, and the precision increases
because local profiles are much more tolerant toward outliers.

5.4 Examples

This section is meant to convey a first idea of the practical performance of our
method, without laying claim to providing an exhaustive experimental evalua-
tion. (As an aside, let us note that a comparison with standard IBL, or machine
learning methods in general, is difficult anyway. The main reason is that our
method provides a different type of prediction, namely credible label sets rather
than point-estimations.)

Artificial data. As a first example, let us consider a simple regression prob-
lem.4 More specifically, let the function to be learned be given by the poly-
nomial x �→ x2. Moreover, suppose n training examples 〈xı, λxı〉 to be given,
where the xı are uniformly distributed in [0, 1], and the λxı are normally dis-
tributed with mean (xı)2 and standard deviation 1/10. As a similarity mea-
sure for both instances (inputs) and labels (outputs) we employ the function
(u, v) �→ exp(−2|u− v|). Given a random sample D, we first induce a similarity
hypothesis for an underlying equi-width partition of size m = 5. Using this hy-
pothesis and the sample D, we derive a prediction λx for all instances x (resp. for
4 Strictly speaking, since our theoretical results above assume a countable instance

space, they do not apply to regression proper. They can be generalized to this case,
however.
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Fig. 3. Approximation of the function x �→ x2 in the form of a “confidence band”;
left: our instance-based approach, right: linear regression.

the discretization {0, 0.01, 0.02, . . . , 1}). Note that such a prediction is simply
an interval. Hence, what we obtain is a lower and an upper approximation of
the true mapping x �→ x2.
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Fig. 3 (left) shows a typical inference result for n = 25. According to our esti-
mation (14), the degree of confidence for n = 25 is 16/26. This, however, is only
a lower bound, and empirically (namely by averaging over 1,000 experiments)
we found that the level of confidence is almost 0.9 (see Fig. 4).

To draw a comparison with standard statistical techniques, Fig. 3 (right)
shows the 0.9-confidence band obtained from a linear regression estimation for
the same sample. In general, it turned out that linear regression yields slightly
more precise predictions. However, in this connection one should realize that
this method makes much more assumptions than our instance-based approach.
Especially, the type of function to be estimated must be specified in advance:
Knowing that this function is a polynomial of degree 2, we estimated the coeffi-
cients βı in the mapping x �→ β0 + β1x + β2x

2 in our example, but usually such



knowledge will not be available (results already become worse when estimating
a polynomial of degree k > 2). Moreover, the confidence band is valid only if the
error terms follow a normal distribution (as they do in our case).

The housing data. We also applied our method to several real-world data sets,
not fully discussed here due to reasons of space. For example, in connection with
the Housing Database,5 the problem is to predict the price of houses which are
characterized by 13 attributes. To apply our method, we simply defined similarity
as an affine-linear function of the distance between (real-valued) attribute values
(see Section 6 below for the acquisition of such similarity measures). For 30
randomly chosen sample cases we have learned corresponding local similarity
hypotheses, using 450 cases as training examples. Using these (local) hypotheses,
we derived predictions for the prices of the 56 houses that remain of the complete
data. The precision of the predictions was approximately 10,000 dollars with a
confidence level of 0.85. Taking the center of an interval as a point-estimation,
one thus obtains predictions of the form x± 5, 000 dollars. As can be seen, these
estimations are quite reliable but not extremely precise (the average price of a
house is approximately 22,500 dollars). In fact, this example clearly points out
the practical limits of an inference scheme built upon the IBL assumption: A
similarity-based prediction of prices cannot be confident and extremely precise
at the same time, simply because the housing data meets the IBL assumption
but moderately. Our approach takes these limits into account and makes them
explicit.
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Fig. 5. Distribution of the quality
of cases for the housing data, mea-
sured in terms of the integral of sim-
ilarity profiles.

In connection with the housing data, let us recall that a local similarity
profile can serve as an indicator of the “quality” of a case. For example, suppose
that we measure this quality by means of the integral of the profile (which
is easy to compute since the latter is a step-function, see Section 6 below).
Fig. 5 shows the distribution of this quality measure for the housing data in
the form of a histogram. As can be seen, there are a few cases of rather high
5 Available at http://www.ics.uci.edu/˜mlearn.



quality. The corresponding houses are “typical” in the sense that their prices are
representative of the prices for similar houses, and deriving predictions based on
these cases will usually be better than gathering a case base at random.

6 Adaptation of Similarity Measures

As already mentioned above, an intuitively reasonable principle for adapting the
similarity measures σX and σL is to define these functions such that the induced
(empirical) similarity profile becomes “large” in some sense. Of course, in order
to realize this idea one first has to clarify the meaning of “large”.

Recall that empirical profiles are specified as step functions for a given par-
tition of [0, 1]. This partition is determined through m+1 points 0 = α0 < α1 <
. . . < αm = 1. Since no complete order is defined on the class of step functions
Hstep in a natural way, such an order has to be imposed somehow. For example,
one possibility is to associate with each function h, specified through coefficients
β1, . . . , βm, its integral. We thus obtain the optimization criterion

I(h) =def

m∑

k=1

(αk − αk−1) · βk → max (15)

Instead of the width αk−αk−1 of the interval Ak = [αk−1, αk) other weights could
be used as well. For instance, a reasonable idea is to weigh βk by the probability
that the similarity between two instances lies in the interval Ak. This probability
can be estimated from the sample D by the corresponding relative frequency.

Needless to say, a suitable method for adapting similarity measures can be
developed only on the basis of some assumptions concerning the structure of
these measures. Here, we proceed from the following assumption which is often
satisfied in practice: Instances x are characterized by means of a fixed number
of attribute values, and the similarity σX is a convex combination of individual
similarity measures defined for the different attributes. The same assumption is
made for the measure σL:

σX = v1σ
1
X + v2σ

2
X + . . . + vpσ

p
X ,

σL = w1σ
1
L + w2σ

2
L + . . . + wqσ

q
L.

The task of adapting σX and σL can then be specified as determining the coef-
ficients vı and w in an optimal way.

Now, consider a sample D consisting of n cases 〈xı, λxı〉. We denote by
αk

ı = σk
X (xı, x) the similarity degree between the kth attribute values of xı

and x. Likewise, βk
ı = σk

L(λxı , λx) denotes the similarity degree between the
kth attribute values of the labels λxı and λx .

For the time being, suppose the measure σX to be given. The optimal adap-
tation of σL can then be formulated as a linear optimization problem: Choose
β1, . . . , βm and the coefficients w1, . . . , wq so as to maximize (15) subject to the



constraints

βκ(xı,x) ≤ w1β
1
ı + w2β

2
ı + . . . + wqβ

q
ı, (1 ≤ ı,  ≤ n)

w1 + w2 + . . . + wq = 1

w1 ≥ 0, . . . , wq ≥ 0

Again, the index κ(xı, x) specifies the interval of the underlying partition that
covers the similarity degree between xı and x: σX (xı, x) ∈ Aκ(xı,x). This
coefficient must be known for writing down the linear inequalities above, which
is the main reason why σX and σL cannot be optimized simultaneously. As can
be seen, however, an optimal σL can be found in a quite efficient way once σX
is given.6 This suggests an optimization procedure in which the adaptation of
σL is embedded as a sub-routine. For example, one could apply any local search
method that searches the space of similarity measures σX , that is the space of
admissible coefficients v1, . . . , vp. The quality of a measure σX , e.g. the fitness in
genetic algorithms, can then be computed by solving the above linear program,
i.e. by deriving the measure σL that complements σX in an optimal way.

7 Summary

We have proposed an instance-based learning method that allows for deriving an
estimation in the form of a credible label set rather than a single label. This set
provably covers the true label with high probability. Bearing in mind that the
IBL assumption might apply to an application in a limited scope, our inference
scheme does not pretend a precision or credibility of instance-based predictions
which is actually not justified. At a formal level, uncertainty is expressed by
supplementing (set-valued) predictions with a level of confidence.

From a statistical point of view, our method can be seen as a non-parametric
approach to estimating confidence regions, which makes it also interesting for
statistical inference (cf. the comparison with linear regression in Section 5.4). In
[7], an instance-based prediction method has been advocated as an alternative
to linear regression techniques. By deriving set-valued instead of point estima-
tions, our approach somehow combines advantages from both methods: Like the
instance-based approach it requires less structural assumptions than (paramet-
ric) statistical methods. Still, it allows for specifying the uncertainty related to
predictions by means of confidence regions.

A main concern in this paper was aimed at the correctness of predictions (3).
Still, it is also possible to obtain results related to the precision of predictions.
In [6], for instance, a result similar to the one in [7] has been shown: Provided
that the function x �→ λx mapping instances to labels satisfies certain continuity
assumptions, it can be approximated to any degree of accuracy. That is, for each
ε > 0 one can find a finite memory of cases D such that λx ∈ Cest(x) for all
x ∈ X and supx∈X diam(Cest(x)) < ε.
6 Despite its theoretical complexity, linear programming is rather efficient in practice.



Without going into detail, we have proposed the use of local similarity profiles
in order to overcome the problem that globally admissible hypotheses might be
too restrictive for some applications. In this connection, let us also mention a
further idea of weakening the concept of globally valid similarity bounds, namely
the use of probabilistic similarity hypotheses [4].
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