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Abstract

In recent years, a number of machine learning algorithms have been devel-

oped for the problem of ordinal classification. These algorithms try to exploit,

in one way or the other, the order information of the problem, essentially re-

lying on the assumption that the ordinal structure of the set of class labels is

also reflected in the topology of the instance space. The purpose of this paper

is to investigate, on an experimental basis, the validity of this assumption.

Moreover, we seek to answer the question to what extent existing techniques

and learning algorithms for ordinal classification are able to exploit order

information, and which properties of these techniques are important in this

regard.

Keywords: ordinal classification, binary decomposition, nested dichotomies,

pairwise classification.

1 Introduction

The problem of ordinal classification, also called ordinal regression in statistics, has

received increasing attention in the machine learning field in recent years (Frank and

Hall, 2001; Chu and Keerthi, 2005; Cardoso et al., 2005; Yu et al., 2006; Cardoso and

da Costa, 2007; Babaria et al., 2007). In ordinal classification, the set of class labels
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Figure 1: On the left, the distribution of classes in the instance space is in well

agreement with the class order y1 ≺ y2 ≺ y3 ≺ y4, while this is not the case in the

right situation.

Y = {y1 . . . ym} is endowed with a natural (total) order relation: y1 ≺ y2 ≺ · · · ≺ ym.

This distinguishes ordinal from conventional classification, where Y is unordered. As

examples, consider learning to predict the category of a hotel (from 1 to 5 stars),

the priority level of emails, or the customer satisfaction on a discrete scale ranging

from, e.g., poor to excellent.

From a learning point of view, the ordinal structure of Y is additional information

that a learner should of course try to exploit, and this is what existing methods

for ordinal classification essentially seek to do (Frank and Hall, 2001; Cardoso and

da Costa, 2007). The basic assumption in this regard is that the ordinal structure

of Y is also present in the instance space X , where it is reflected by the topology

of the class distributions. Or, stated differently, the ordinal class structure induces

an ordinal instance structure. Fig. 1 illustrates this idea: In the first scenario (left

picture), the topology of X is in well agreement with the ordinal structure of Y ,

which is not the case in the second situation (right picture).

The above assumption is most explicitly expressed by ordinal classification meth-

ods which are based on binary decomposition techniques, that is, techniques for

transforming a polychotomous problem involving m classes into a set of binary

problems: Given an ordinal instance structure, it is more reasonable and presum-

ably simpler to discriminate, for example, the “low” classes {y1 . . . yk} from the

“high” classes {yk+1 . . . ym} than to discriminate an arbitrary subset of Y from its

complement. More generally, it appears reasonable to restrict to “ordered” binary

decompositions, where a binary problem involving meta-classes Y1,Y2 ⊂ Y is or-

dered if yi ≺ yj for all (yi, yj) ∈ Y1 × Y2 or yi � yj for all (yj, yi) ∈ Y1 × Y2. One

may even argue that this property may provide the basis for a definition of the value

of ordinal structure: Roughly, the value of order information equals the (expected)

increase in performance when solving the problem for ordered instead of unordered

decompositions.

Of course, it is not at all self-evident that the assumption of an ordinal instance

structure will hold in practice and, therefore, that ordinal classification techniques

are actually effective. By effectiveness, we mean that these techniques are able to
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exploit the ordinal information, if any, contained in a problem. The purpose of this

paper is to investigate empirically whether or not ordinal classifiers are effective in

this sense. Our analysis is based on the following key idea: If an ordinal classifier

is effective in the above sense, then its expected performance on the true ordinal

problem should be better than its expected performance on a distorted problem in

which the label set is given by an arbitrary permutation (renaming) of Y .

In this regard, it is important to note that the effectiveness or, say, the degree to

which a classifier benefits from ordinal classification, is likely to depend on the flexi-

bility of the classifier. For example, for a linear classifier it is easy to separate classes

{y1, y2} from {y3, y4} in the first scenario in Fig. 1 but impossible in the second one.

Therefore, a linear classifier will strongly benefit from the ordinal instance structure.

The benefit of a decision tree, on the other hand, will be much smaller: Indeed, the

first problem is also simpler for this learner, but the second one is still feasible.

The above considerations give rise to the following conjectures that we shall try to

answer by means of suitable experiments:

• Knowledge about the ordinal structure of the label set Y is useful in a classi-

fication setting, and ordinal classifiers can effectively exploit this knowledge.

• The degree to which a learner benefits from an ordinal structure depends on its

flexibility: Complex methods producing models with flexible decision bound-

aries will benefit less than methods producing simple decision boundaries.

As mentioned previously, ordinal classifiers based on binary decomposition tech-

niques appear to be especially suitable for analyzing these hypotheses. Therefore,

we shall focus on these techniques, to be surveyed in Section 2. Our experimen-

tal setting will then be outlined in Section 3, and the results will be presented in

Section 4. The paper ends with a summary and discussion in Section 5.

2 Algorithms for Ordinal Classification

This section gives a brief introduction to the learning algorithms that we used in

the experiments. The main purpose is to convey the basic ideas underlying the

approaches. For more detailed information, we give pointers to the literature.

2.1 A Simple Approach To Ordinal Classification

A simple and intuitively appealing approach to ordinal classification has been pro-

posed by Frank and Hall (2001). The idea is to decompose the original problem

involving m classes Y = {y1 . . . ym} into m−1 binary problems. The i-th problem is
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defined by the meta-classes {y1 . . . yi} and {yi+1 . . . ym} playing the role, respectively,

of the negative and positive class in a binary problem.

Let Mi, i = 1 . . . m − 1, denote the model learned on the training data for the

i-th problem (i.e., considering examples with labels in {y1 . . . yi} as negative and

the others as positive examples). Given a query instance x, a prediction Mi(x) is

interpreted as an estimation of the probability that the class of x, denoted y(x), is in

{yi+1 . . . ym}, that is, an estimation of the probability Pr(y(x) � yi). Consequently,

the models must guarantee outputs in the unit interval.

From the above probabilities, a probability distribution on Y is then derived as

follows:

Pr(y(x) = y1) = 1 − Pr(y(x) � y1)

Pr(y(x) = yi) = max {Pr(y(x) � yi−1) − Pr(y(x) � yi), 0 }

Pr(y(x) = ym) = Pr(y(x) � ym−1)

Eventually, the class with the highest probability is predicted. As mentioned in the

introduction, this approach strongly exploits the idea that “reasonable” decompo-

sitions of the class labels are produced by ordinal splits partitioning Y into a lower

and an upper part.

2.2 Ensembles of Nested Dichotomies

A nested dichotomy is a binary tree that partitions the label set Y in a recursive

way. The root of the tree is associated with the whole set Y , while the leaf nodes

correspond to single classes. Moreover, each inner node is associated with a binary

classification problem, namely to discriminate between the two respective meta-

classes of the child nodes. The output of a corresponding model, for a query input

x, is interpreted as a conditional probability of the form

p = Pr(y(x) ∈ Y2 | y(x) ∈ Y1 ∪ Y2),

where Y1 and Y2 denote, respectively, the meta-classes of the two child nodes (and

hence Y1∪Y2 the meta-class of the inner node itself). Consequently, the probabilities

of the individual classes yi can be derived quite elegantly, namely by multiplying the

probabilities along the path from the root of the tree to the leaf node for yi. Nested

dichotomies have been investigated for a long time in statistics.

Obviously, there are many ways to partition Y in a recursive way, and indeed, the

prediction accuracy of a model may strongly depend on the choice of the concrete

dichotomy. Frank and Kramer (2004) have therefore combined nested dichotomies

with ensemble techniques. An ensembles of nested dichotomies (END) consists of a

set of randomly generated nested dichotomies, the predictions of which are combined
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Figure 2: Two ordinal dichotomy trees for a 3-class problem.

by averaging the respective probability distributions. For this approach, the authors

have reported excellent classification accuracy.

ENDs can be applied to conventional classification problems, and indeed, no restric-

tions are made for the splitting of label sets into subsets. In the case of ordinal

classification, however, it again seems reasonable to restrict to ordered splits; see

Fig. 2 for an example of an ordinal nested dichotomy.

Even though the number of different dichotomies is significantly smaller for the

ordinal than for the general case, it may still become huge for a large number of

classes m. More concretely, it can be shown by simple combinatorial arguments that

the number is (3m−(2m+1−1))/2 for the general case, which is reduced to (m3−m)/6

for the ordinal case. The computation of all dichotomies may thus become infeasible

for large m. Frank and Kramer (2004) found that averaging over 20 randomly

generated dichotomies is “sufficient to get close to optimum performance”. In our

experiments, we shall stick to this rule of thumb.

2.3 Pairwise Classification

Another popular binarization technique is the all-pairs approach, also called round

robin learning (Fürnkranz, 2002a,b), which trains a separate model Mi,j for each

pair of classes (yi, yj) ∈ Y ×Y , 1 ≤ i < j ≤ m; thus, a total number of m(m− 1)/2

models is needed. Mi,j is intended to discriminate between classes yi and yj. At

classification time, a query x is submitted to all models, and each prediction Mi,j(x)

is interpreted as a vote for a label. More specifically, assuming si,j = Mi,j(x) ∈ [0, 1],

the weighted voting techniques interprets si,j and 1−si,j as weighted votes for classes

yi and yj, respectively, and predicts the class with the highest sum of weighted votes.

For the following reason, pairwise classification is an interesting baseline in our

context: It produces binary problems that are (trivially) ordered and hence “rea-

sonable” from an ordinal classification point of view, and yet it does not exploit any

ordinal information. Fürnkranz (2002b) found that pairwise classification, using

decision trees as base learners, is indeed competitive to the approach of Frank and

Hall in terms of classification accuracy. As will be seen later on, our results are in
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agreement with this finding.

3 Experimental Setup

3.1 Classifiers

As learning algorithms, we used the three meta-techniques outlined in the previous

section, namely the approach by Frank and Hall (FH), ensembles of ordered nested

dichotomies (EOND), and round robin (RR). These techniques were instantiated,

respectively, with the following base learners: Decision trees (C4.5) (Quinlan, 1993),

logistic regression (LR), voted Perceptrons (VP) (Freund and Schapire, 1999), and

support vector machines (SVM) with linear and RBF kernels (Vapnik, 1999). Except

for ensembles of nested dichotomies, that we implemented by ourselves, all these

algorithms are available in the WEKA machine learning framework (Witten and

Frank, 2005) and were used in their default settings.1

3.2 Data Sets

Due to a lack of ordinal benchmark data, several previous studies, including (Frank

and Hall, 2001; Fürnkranz, 2002b), have resorted to discretized regression data for

experimental purposes. This is reasonable and has the advantage that, by changing

the discretization, ordinal data can be produced in a quite flexible manner, for

example with different numbers of classes. On the other hand, since regression data

is not only ordinal but even numerical, one may expect that its ordinal structure is

even stronger developed than for truly ordinal classification data. As this is critical

for the purpose of our study, we complemented this type of data with truly ordinal

classification data.

For the first part of the experiments we used the same 29 UCI regression data sets

that were used in (Frank and Hall, 2001; Fürnkranz, 2002b); see Table 3. To obtain

an ordinal class attribute, the numerical output attributes were discretized into m

classes using equi-frequency binning (thereby producing classes of equal size). We

only report results for m = 5 and m = 7, since other values for m (between 3 and

10) produced quite similar results. In addition, we collected 15 truly ordinal data

sets2; see Table 4. These data sets were collected from several repositories (Asuncion

and Newman, 2007; Meyer and Vlachos, 2007; David, 2008; Harvey, 2007; Bulloch,

2007; Barker, 2007; Townsend, 2007).

1For SVMs, the classification scores are transformed into (pseudo-)probabilities using a logistic

regression technique (Platt, 1999).
2The dataset Nursery 1k is a random sample of size 1000 from the Nursery data.
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3.3 Measuring the Value of Ordinal Information

As mentioned previously, the idea of our experimental study is to compare the

performance of a learner on the original classification problem with its performance

when being applied to a random permutation of the label set Y . By a random

permutation, we mean that the classes are re-numbered (from 1 to m) in a random

way. Assuming that the true class order does indeed contain important information,

and that the learner is able to exploit this information, the performance on the

original problem should be better than on the distorted ones, at least on average.

More specifically, we compare the performance, in terms of classification accuracy,

on the original problem with the performance on 10 random permutations (except

for the cases m = 3 and m = 4, where we consider all 2 and 11 possible permu-

tations, respectively).3 As a measure of effectiveness or, say, the value of order

information (VOI), we derive the rank r of the true class order in this set of prob-

lems, normalized to the range [0, 1]. More precisely, r is the percentage of random

class orders for which the learner produces results that are worse than for the true

order. In particular, r = 1 means that the best result was obtained for this order,

while r = 0 means that the true class order has yielded the worst performance.

Finally, we test the statistical (null) hypothesis that r ≤ 0.5 against the (alternative)

hypothesis r > 0.5, using a win/loss sign test according to Demšar (2006).

4 Experimental Results

The experiments were conducted by randomly splitting each dataset into 2/3 for

training and 1/3 for testing, and deriving the classification accuracy for each learner.

To obtain more accurate estimates of expected performance, this procedure was

repeated 50 times and the classification accuracy was averaged. Due to the high

computational complexity, we omitted SVM as base learners in the experiments on

regression data.

4.1 The Value of Order Information

For the regression data, the VOI as defined above is given in Tables 5–6. As can be

seen, the values are significantly higher than 0.5 throughout, which means that the

problems do indeed contain important order information, and that all learners are

able to exploit this information. Regarding the base learners, it can furthermore be

seen that LR gains more than C4.5 and VP. This provides strong evidence for our

second conjecture, since LR fits a linear model and, therefore, is less flexible than

3We ignore the reversal of a class order, as it gives the same result.
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C4.5 and VP. Finally, it is worth mentioning that FH seems to benefit stronger than

EOND, suggesting that the ordinal structure is even more important for the former

than for the latter technique. A likely explanation for this finding is that EOND

is an ensemble technique and, hence, additionally benefits from an averaging effect

which makes it less sensitive.

The VOI for the ordinal data sets is shown in Table 7. Even though the values

again exceed 0.5 most of the time, a significant gain is only observed for the linear

base learners. Again, this confirms our second conjecture. Moreover, since the VOI

values are obviously smaller than for the regression data, the results confirm our

presumption that discretized regression data exhibits an even stronger developed

ordinal structure than truly ordinal data.

4.2 Absolute Classification Accuracy

In the previous study, we looked at each learner separately and investigated to what

extent it benefits from order information. In a second study, we compared, in terms

of classification accuracy, the ordinal classification techniques (meta-classifiers) with

each other, though again separately for each base learner. Following Demšar (2006),

we first applied a Friedman test (Friedman, 1937, 1940) on the hypothesis that all

methods perform equally well. In case this hypothesis is rejected, a Nemenyi test

(Nemenyi, 1963) was applied as post-hoc test to find significant differences between

pairs of methods.

The classification accuracies for the regression data are given in Tables 8–9, with the

significance of differences indicated at the bottom. A first result is that, on average,

EOND seems to be the strongest meta-classifier. This result is hardly surprising in

light of the fact that, in comparison to the other techniques, nested dichotomies use

significantly more binary models (see Table 1). Again, however, there seems to be an

influence of the base learner: While EOND is especially strong for decision trees, it

is only en par with RR for logistic regression and voted perceptrons, and sometimes

RR is even better. The results for the ordinal data sets, given in Table 10, show

the same tendency. However, just like in the first study, they are less distinct. In

fact, the three meta classifiers are more or less en par, and the differences, if any,

are statistically not significant.

To make the comparison more fair, we considered two other versions of EOND

that use less than 20 dichotomies: EOND-1 uses only a single (random) dichotomy

and, therefore, exactly the same number of binary models as FH. By aggregating

over 4 dichotomies, EOND-4 uses approximately the same number of binary models

as RR; actually, it still uses slightly more on average. Note that the number of

models is only a rough indicator of the amount of training effort invested by the

learners. Alternatively, for example, one could count the total number of training

examples. This would be advantageous for RR, as it only trains on small problems
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m EOND FH RR

3 4 2 3

5 20 4 10

7 41 6 21

9 64 8 36

Table 1: The number of binary models used by the meta classifiers. Since for EOND,

this number depends on the random selection of the (maximally) 20 dichotomies,

we report empirical averages. Binary models occurring in more than one dichotomy

are only counted once.

C4.5 LR VP

EOND-1 vs FH 13:16 16:13 20:9

EOND-4 vs RR 23:6 11:18 10:19

Table 2: Win-loss statistics for variants of EOND.

(involving two classes) and disadvantageous for FH which always trains on the full

set of examples; EOND is in-between, as it trains on problems of different size.

The classification accuracies for the regression data (m = 5) are shown in Fig. 11

and the win-loss statistics are summarized in Table 2. As can be seen, EOND

is still superior for decision trees as base learners, but the situation reverses for

LR and VP. This observation might be explained by the flexibility of the base

learners in conjunction with the difficulty of the binary problems: RR only solves

“small” classification problems involving two classes yi, yj ∈ Y , whereas EOND has

to solve binary problems that involve more classes yi ∈ Y , and the problems of

FH even involve all classes. Now, since bigger meta-classes will usually call for

more complex models (decision boundaries), flexible classifiers such as decision trees

are advantageous for EOND, and even more so for FH. RR, on the other hand,

has to solve only simple problems and, therefore, has a comparative advantage

for less flexible base learners. Thus, RR has an “advantage of simplicity” which,

however, disappears for learners that are flexible enough. In that case, EOND

has an advantage, as it uses more training information (in terms of the number of

examples). Regarding the comparison between EOND and FH, the situation is just

reversed: FH uses even more training information but has to solve more difficult

problems, so it profits from flexible models to an even greater extent.
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5 Discussion and Conclusions

In summary, the results of our experimental studies confirm the conjectures that were

raised at the beginning of the paper. More specifically, we can draw the following

conclusions:

• Learning techniques for ordinal classification are indeed able to exploit order

information about classes.

• Yet, the value of this information is usually not as high for “truly” ordinal data

sets as it is for discretized regression data, which is often used in experimental

studies.

• Another important factor is the flexibility of the learner. Roughly speaking,

the less flexible a learner, the more it benefits from an ordinal structure.

As we have furthermore seen, the flexibility of the base learners is also important

for the effectiveness of the meta-techniques investigated in this paper. Roughly

speaking, these techniques produce binary problems of different complexity and,

therefore, profit from a flexible base learner to a greater or lesser extent. An impor-

tant implication is that meta-techniques cannot be compared independently of the

base learner.

Regarding the meta-techniques, the role of the all-pairs decomposition scheme (round

robin learning) seems to be especially interesting. This approach turned out to be

fully competitive, even though it does not explicitly exploit ordinal structure (and

even uses the smallest amount of training information in terms of the total number

of training examples). However, by training only on pairs of classes, it is trivially

consistent with each ordinal structure. On the one hand, one may say that it ex-

ploits ordinal structure in an implicit way whenever this is possible, but as its binary

problems are not explicitly tailored toward the assumption of an ordinal structure,

it does also not deteriorate when this assumption is invalid. On the other hand, one

may also argue that it is unable to exploit ordinal structure, simply because such

a structure does not become visible when looking only at pairs of classes. Anyway,

it is competitive to more sophisticated decomposition schemes, especially for simple

base learners, and therefore seems to be a good compromise.
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Dataset # inst. # num. # nom.

2D Planes 40768 10 0

Abalone 4177 7 1

Ailerons 13750 40 0

Auto MPG 398 4 3

Auto Price 159 14 1

Bank 32NH 8192 32 0

Bank 8FM 8192 8 0

Boston Housing 506 12 1

California Housing 20640 8 0

CPU Act 8192 21 0

CPU Small 8192 12 0

Delta Ailerons 7129 5 0

Delta Elevators 9517 6 0

Diabetes 43 2 0

Elevators 16599 18 0

Friedman Artificial 40768 10 0

House 16H 22784 16 0

House 8L 22784 8 0

Kinematics 8192 8 0

Machine CPU 209 6 0

MV Artificial 40768 7 3

Pole Telecom 15000 48 0

Pumadyn 32H 8192 32 0

Pumadyn 8NH 8192 8 0

Pyrimidines 74 27 0

Servo 167 0 4

Stocks 950 9 0

Triazines 186 60 0

Wisconsin Breast C. 194 32 0

Table 3: The 29 regression data sets used for the experiments. The second column

contains the number of instances, the third column the number of numeric and the

last column the number of nominal attributes (excluding the target to be predicted).
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Dataset # inst. # classes. # num. # nom.

Asbestos 83 3 1 2

Balance Scale 625 3 4 0

CMC 1473 3 2 7

Pasture Production 36 3 21 1

Postoperative 90 3 0 8

Squash (unstored) 52 3 20 3

Car 1728 4 0 6

Grub Damage 155 4 2 6

Nursery 1k 1000 4 0 9

SWD 1000 4 100 0

Bondrate 57 5 4 7

Eucalyptus 736 5 14 5

LEV 1000 5 40 0

ERA 1000 9 40 0

ESL 488 9 40 0

Table 4: The 15 data sets with a truly ordinal class attribute. The second column

contains the number of instances, the third column the number of numeric and the

last column the number of nominal attributes (excluding the target to be predicted).
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m = 5 EOND FH

Dataset C4.5 LR VP C4.5 LR VP

2D Planes 0.90 1.00 1.00 1.00 1.00 1.00

Abalone 0.30 1.00 0.60 1.00 1.00 0.90

Ailerons 1.00 1.00 0.10 1.00 1.00 0.70

Auto MPG 0.90 1.00 1.00 1.00 1.00 0.90

Auto Price 1.00 1.00 0.50 1.00 1.00 0.70

Bank 32NH 1.00 1.00 1.00 1.00 1.00 1.00

Bank 8FM 0.40 1.00 1.00 1.00 1.00 1.00

Boston Housing 0.90 1.00 0.80 1.00 1.00 0.10

California Housing 0.40 1.00 1.00 1.00 1.00 0.50

CPU Act 0.90 1.00 0.90 1.00 1.00 1.00

CPU Small 1.00 1.00 0.80 1.00 1.00 1.00

Delta Ailerons 0.00 0.90 0.50 0.50 1.00 0.20

Delta Elevators 0.60 1.00 0.80 0.90 1.00 1.00

Diabetes 0.50 0.40 0.90 0.40 0.80 0.80

Elevators 1.00 1.00 0.20 1.00 1.00 0.40

Friedman Artificial 1.00 1.00 1.00 1.00 1.00 1.00

House 16H 1.00 1.00 0.90 1.00 0.90 0.90

House 8L 1.00 0.90 0.90 1.00 1.00 0.30

Kinematics 1.00 1.00 0.90 1.00 1.00 1.00

Machine CPU 1.00 1.00 0.80 1.00 1.00 0.70

MV Artificial 0.00 1.00 0.70 1.00 1.00 0.60

Pole Telecom 1.00 0.00 1.00 1.00 0.80 0.90

Pumadyn 32H 0.40 1.00 0.90 1.00 0.90 0.30

Pumadyn 8NH 1.00 0.40 0.40 1.00 0.30 0.60

Pyrimidines 0.90 0.90 0.40 0.90 1.00 0.60

Servo 0.60 1.00 0.50 0.90 1.00 0.80

Stocks 0.00 1.00 0.60 1.00 1.00 1.00

Triazines 0.70 0.90 0.50 0.90 0.50 0.90

Wisconsin Breast C. 0.80 1.00 0.90 0.40 1.00 0.00

Average 0.73 0.91 0.74 0.93 0.94 0.72

Significance Level ++ +++ ++ +++ +++ ++

Table 5: The reversed normalized rank of the true class order in comparison to

random permutations (m = 5). A value of 1 (0) means that the true order was better

(worse) than all other permutations. Under the null-hypothesis of an irrelevant class

order, the expected rank is 0.5. The +, ++, +++ signs indicate, respectively, that

the null-hypothesis was rejected at a significance level of α = 0.1, α = 0.05, α = 0.01.
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m = 7 EOND FH

Dataset C4.5 LR VP C4.5 LR VP

2D Planes 1.00 1.00 1.00 1.00 1.00 1.00

Abalone 0.50 1.00 0.90 1.00 1.00 1.00

Ailerons 0.50 1.00 0.00 1.00 1.00 0.40

Auto MPG 1.00 1.00 1.00 1.00 1.00 0.80

Auto Price 1.00 1.00 0.80 1.00 1.00 0.80

Bank 32NH 1.00 1.00 1.00 1.00 1.00 1.00

Bank 8FM 0.60 1.00 1.00 1.00 1.00 1.00

Boston Housing 1.00 1.00 0.70 1.00 1.00 0.90

California Housing 0.60 1.00 0.90 1.00 1.00 0.80

CPU Act 0.90 1.00 0.90 1.00 1.00 1.00

CPU Small 1.00 1.00 0.90 1.00 1.00 1.00

Delta Ailerons 0.20 1.00 0.50 1.00 1.00 0.50

Delta Elevators 0.10 0.90 0.60 0.90 1.00 0.70

Diabetes 0.50 0.80 1.00 1.00 0.90 0.90

Elevators 1.00 1.00 0.80 1.00 1.00 0.60

Friedman Artificial 0.90 1.00 1.00 1.00 1.00 1.00

House 16H 0.80 1.00 0.90 1.00 0.90 0.60

House 8L 1.00 1.00 1.00 1.00 1.00 0.50

Kinematics 1.00 1.00 0.90 1.00 1.00 0.80

Machine CPU 0.90 1.00 1.00 1.00 1.00 0.70

MV Artificial 0.00 1.00 0.90 1.00 1.00 0.50

Pole Telecom 0.90 0.40 0.90 1.00 0.50 0.40

Pumadyn 32H 0.30 1.00 1.00 1.00 1.00 0.80

Pumadyn 8NH 0.90 0.30 0.80 1.00 0.60 0.90

Pyrimidines 0.70 1.00 1.00 1.00 1.00 1.00

Servo 0.70 1.00 1.00 1.00 1.00 1.00

Stocks 0.60 1.00 0.90 1.00 1.00 0.60

Triazines 1.00 1.00 0.90 1.00 0.80 1.00

Wisconsin Breast C. 0.00 0.70 0.10 1.00 0.80 0.70

Average 0.71 0.93 0.84 1.00 0.95 0.79

Significance Level ++ +++ +++ +++ +++ +++

Table 6: The reversed normalized rank of the true class order in comparison to

random permutations (m = 7). A value of 1 (0) means that the true order was better

(worse) than all other permutations. Under the null-hypothesis of an irrelevant class

order, the expected rank is 0.5. The +, ++, +++ signs indicate, respectively, that

the null-hypothesis was rejected at a significance level of α = 0.1, α = 0.05, α = 0.01.
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EOND FH

Dataset m C4.5 LR VP SVM-

LIN

SVM-

RBF

C4.5 LR VP SVM-

LIN

SVM-

RBF

Asbestos 3 0.50 0.00 1.00 0.50 0.50 0.00 0.50 1.00 0.00 1.00

Balance Scale 3 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00

CMC 3 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.50

Pasture Production 3 1.00 1.00 0.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50

Postoperative 3 0.50 0.50 0.00 1.00 1.00 0.50 1.00 0.00 1.00 1.00

Squash (unstored) 3 0.00 0.50 1.00 0.00 0.50 0.00 0.50 1.00 0.50 0.00

Car 4 0.91 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Grub Damage 4 0.45 1.00 0.27 1.00 0.91 0.73 0.91 0.18 1.00 0.82

Nursery 1k 4 0.00 0.36 0.91 0.64 1.00 1.00 1.00 0.82 0.73 0.18

SWD 4 0.55 0.36 0.55 0.55 0.55 1.00 0.82 1.00 0.91 0.91

Bondrate 5 0.20 0.70 0.80 0.70 0.20 0.40 1.00 0.70 1.00 0.90

Eucalyptus 5 1.00 1.00 0.30 1.00 1.00 1.00 1.00 0.10 1.00 1.00

LEV 5 0.40 1.00 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ERA 9 0.70 0.90 0.00 0.80 0.30 1.00 1.00 0.90 0.90 0.40

ESL 9 0.90 0.90 0.20 0.90 0.90 1.00 1.00 0.20 1.00 1.00

Average 0.47 0.74 0.45 0.81 0.76 0.64 0.92 0.63 0.87 0.75

Significance Level +++ +++ +++

Table 7: The reversed normalized rank of the true class order in comparison to

random permutations. A value of 1 (0) means that the true order was better (worse)

than all other permutations. Under the null-hypothesis of an irrelevant class order,

the expected rank is 0.5. The +, ++, +++ signs indicate, respectively, that the

null-hypothesis was rejected at a significance level α = 0.1, α = 0.05, α = 0.01.
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m=5 C4.5 LR VP

Dataset EOND FH RR EOND FH RR EOND FH RR

2D Planes 75.3 75.3 75.3 65.2 65.1 66.4 65.9 65.9 65.9

Abalone 49.5 48.4 49.2 52.2 51.4 52.4 48.5 45.7 49.4

Ailerons 58.9 57.5 57.3 61.3 61.0 61.1 24.6 23.2 26.3

Auto MPG 60.6 60.9 57.8 66.9 66.9 66.0 22.8 24.5 19.5

Auto Price 63.7 61.5 61.5 55.3 55.1 56.3 30.5 25.6 33.9

Bank 32NH 40.7 38.3 39.6 48.4 48.2 48.1 47.8 47.0 47.8

Bank 8FM 74.4 73.2 73.4 78.9 78.9 79.0 74.4 74.6 74.3

Boston Housing 61.8 60.5 61.0 64.9 64.9 64.5 39.2 31.3 39.3

California Housing 65.7 63.2 63.7 54.8 54.6 54.9 33.8 27.5 33.8

CPU Act 69.6 67.3 67.4 71.9 71.8 71.9 38.7 40.4 38.4

CPU Small 66.2 64.2 64.3 66.7 66.7 66.6 38.7 40.4 38.4

Delta Ailerons 56.2 54.7 55.9 56.4 55.7 56.8 46.7 38.6 48.1

Delta Elevators 48.9 47.7 48.7 49.4 49.3 49.4 39.7 38.4 40.5

Diabetes 26.9 24.6 25.2 25.0 26.6 25.3 29.4 28.4 26.2

Elevators 52.0 48.9 50.5 57.0 56.9 57.3 31.6 28.9 33.2

Friedman Artificial 67.6 65.6 65.4 55.5 55.4 55.4 55.2 54.7 55.5

House 16H 54.0 51.0 52.3 49.1 46.9 49.7 20.0 20.0 20.0

House 8L 54.2 52.4 52.9 49.6 47.6 50.5 20.5 20.3 20.1

Kinematics 48.9 46.2 46.6 41.6 41.7 40.5 40.8 38.4 41.1

Machine CPU 57.0 56.7 56.3 60.9 60.5 60.9 20.4 22.7 19.9

MV Artificial 99.1 99.0 99.0 89.8 88.3 91.4 49.7 31.3 57.1

Pole Telecom 94.7 94.3 94.3 82.0 80.8 82.7 81.5 80.4 80.5

Pumadyn 32H 65.9 64.7 64.7 38.5 38.9 37.8 39.1 28.2 37.8

Pumadyn 8NH 50.7 49.7 50.2 47.4 45.7 48.3 44.9 37.7 47.3

Pyrimidines 41.4 42.0 41.0 47.0 46.9 48.2 33.9 29.2 33.6

Servo 63.4 55.6 63.9 70.1 68.7 68.5 55.6 50.7 54.5

Stocks 84.9 84.5 84.1 81.5 77.8 82.2 59.4 49.9 60.8

Triazines 37.1 34.8 35.6 35.8 33.6 35.3 30.6 27.9 30.7

Wisconsin Breast C. 23.5 21.2 23.8 22.5 21.9 20.4 20.5 19.5 19.4

Average Rank (overall) 2.8 4.7 4.1 3.4 4.3 3.5 7.0 7.9 7.2

Average Rank (grouped) 1.2 2.6 2.3 1.7 2.5 1.8 1.8 2.4 1.8

Significance Level

EOND X +++ +++ X ++ X

FH - - - X - - X - - X

RR - - - X ++ X X

Table 8: Classification accuracies for the meta- and base-classifiers (m = 5). The

significance of the differences between the meta-classifier is indicated at the bottom

of the table.
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m=7 C4.5 LR VP

Dataset EOND FH RR EOND FH RR EOND FH RR

2D Planes 65.7 65.7 65.6 55.1 54.9 55.9 56.5 56.7 56.6

Abalone 37.7 36.1 37.3 40.4 40.3 40.3 35.4 32.8 36.4

Ailerons 49.7 47.9 48.2 52.0 51.3 51.7 18.8 14.8 22.2

Auto MPG 50.3 48.6 48.6 52.2 53.1 50.4 15.1 16.2 13.4

Auto Price 53.4 55.4 49.4 48.9 47.0 51.3 22.4 19.0 25.1

Bank 32NH 33.6 30.2 32.6 39.5 39.4 39.4 38.6 37.3 38.5

Bank 8FM 65.2 64.0 63.5 70.3 70.3 70.3 63.4 63.9 62.9

Boston Housing 50.4 49.4 48.6 52.2 51.5 50.8 27.5 25.0 28.8

California Housing 55.7 53.1 53.2 44.3 44.1 44.6 24.9 19.4 25.7

CPU Act 60.7 57.7 58.3 63.0 62.8 62.9 30.4 29.0 31.6

CPU Small 57.4 55.0 55.1 58.1 58.1 57.9 30.5 29.0 31.6

Delta Ailerons 47.2 45.0 46.7 47.3 46.9 47.4 36.4 29.3 37.8

Delta Elevators 43.0 40.8 42.7 43.3 43.3 43.6 34.2 31.9 35.5

Diabetes 24.3 22.1 26.1 20.0 18.1 19.5 22.8 21.5 20.7

Elevators 41.7 38.7 40.0 47.0 46.7 47.2 23.6 20.8 24.2

Friedman Artificial 57.1 54.9 54.3 44.3 44.1 44.2 43.6 42.7 43.9

House 16H 43.9 40.5 42.0 38.8 35.1 39.6 14.3 14.3 14.3

House 8L 44.0 41.4 42.9 39.6 37.5 40.7 14.9 14.8 14.3

Kinematics 38.2 35.0 36.2 31.9 32.2 31.1 30.6 26.9 31.4

Machine CPU 45.5 45.1 44.0 49.9 49.9 49.3 15.6 15.7 14.5

MV Artificial 98.7 98.6 98.6 90.5 87.7 92.0 39.7 18.1 42.3

Pole Telecom 93.4 92.9 92.6 81.6 80.6 82.2 81.2 78.3 80.4

Pumadyn 32H 56.0 54.4 54.9 30.5 30.7 29.4 30.4 18.5 29.3

Pumadyn 8NH 38.9 36.8 38.7 35.5 34.3 36.2 34.6 27.8 35.5

Pyrimidines 27.9 30.7 25.4 33.9 32.7 32.6 25.5 22.6 21.4

Servo 44.9 38.0 46.1 51.2 50.4 48.7 40.9 37.2 40.2

Stocks 80.7 79.1 78.8 73.9 68.6 74.8 47.1 32.4 52.1

Triazines 31.0 26.7 27.1 27.7 24.8 27.3 23.8 22.4 23.3

Wisconsin Breast C. 15.0 15.3 16.8 14.0 15.0 13.5 13.7 14.7 14.2

Average Rank (overall) 2.8 4.2 4.0 3.4 4.4 3.7 7.2 8.1 7.2

Average Rank (grouped) 1.2 2.5 2.3 1.6 2.5 1.9 1.8 2.5 1.7

Significance Level

EOND X +++ ++ X ++ X

FH - - - X - - X X -

RR - - X X + X

Table 9: Classification accuracies for the meta- and base-classifiers (m = 7). The

significance of the differences between the meta-classifier is indicated at the bottom

of the table.
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C4.5 LR VP SVM-LIN SVM-RBF

Dataset m EOND FH RR EOND FH RR EOND FH RR EOND FH RR EOND FH RR

Asbestos 3 72.0 70.2 71.7 73.6 74.1 73.4 54.2 54.2 54.2 73.1 72.1 73.2 75.7 76.3 74.8

Balance Scale 3 79.4 75.9 79.3 89.5 89.7 89.5 87.3 89.7 87.5 90.8 91.2 90.9 89.7 88.9 90.1

CMC 3 51.8 48.1 52.2 50.8 50.8 50.7 42.6 33.9 42.4 49.9 49.9 49.2 48.7 45.7 47.3

Pasture P. 3 73.1 74.0 70.0 67.1 61.4 68.9 36.1 36.4 38.6 69.0 71.0 69.0 73.4 72.4 74.4

Postoperative 3 70.0 70.0 70.1 59.0 62.3 58.7 66.7 65.2 67.3 62.8 64.0 62.5 57.4 58.3 56.8

Squash (unst.) 3 74.8 63.2 76.7 64.0 57.0 72.3 53.4 52.0 50.3 72.0 64.3 73.9 70.7 64.6 72.9

Car 4 92.4 90.2 92.9 93.4 93.1 93.8 90.1 89.4 89.5 92.8 92.1 93.1 90.7 91.1 89.7

Grub Damage 4 42.9 38.6 43.3 40.2 40.2 37.0 38.6 31.0 39.4 45.4 44.1 43.7 46.8 44.6 46.1

Nursery 1k 4 88.1 88.7 88.0 92.3 92.4 92.2 90.7 89.8 90.2 92.2 91.9 92.3 91.4 89.6 91.5

SWD 4 56.9 56.8 56.5 57.3 57.1 57.5 48.5 48.4 48.1 57.4 57.2 57.3 57.7 57.4 57.5

Bondrate 5 54.4 51.5 54.9 41.5 42.3 43.0 50.7 44.3 49.1 53.7 54.1 53.5 49.0 51.3 50.5

Eucalyptus 5 63.1 62.4 61.6 65.1 64.8 63.0 30.5 18.2 33.4 65.3 64.5 64.9 57.8 57.4 50.8

LEV 5 60.2 60.4 59.5 60.3 60.2 59.7 50.1 51.0 49.5 59.4 59.0 59.1 59.8 59.5 59.0

ERA 9 56.2 56.4 55.6 56.0 56.0 56.2 41.6 42.2 43.1 55.1 54.7 55.6 54.9 53.9 55.3

ESL 9 83.7 83.9 83.4 87.9 88.0 87.8 51.6 48.1 52.7 88.2 88.2 87.9 87.0 86.3 86.9

Avg. Rank (ov.) 6.5 8.4 7.3 6.4 6.7 6.9 12.1 12.7 12.3 5.4 6.6 5.7 6.9 8.3 7.3

Avg. Rank (gr.) 1.8 2.2 2.1 1.9 1.9 2.2 1.8 2.4 1.8 1.7 2.3 2.1 1.7 2.3 2.0

Sign. Level

EOND X X X X X

FH X X X X X

RR X X X X X

Table 10: Classification accuracies for the meta- and base-classifiers. The signifi-

cance of the differences between the meta-classifier is indicated at the bottom of the

table.
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m = 5 EOND-4 RR EOND-1 FH

Dataset C4.5 LR VP C4.5 LR VP C4.5 LR VP C4.5 LR VP

2D Planes 75.3 65.1 65.7 75.3 66.5 65.9 75.3 65.0 65.4 75.3 65.1 66.0

Abalone 49.2 52.2 47.7 49.2 52.4 49.4 48.5 52.0 47.0 48.4 51.4 45.7

Ailerons 58.0 61.2 24.1 57.3 61.2 26.3 56.8 61.2 23.9 57.5 61.0 23.2

Auto MPG 59.9 66.8 21.7 57.8 66.0 19.5 58.3 66.8 22.8 60.7 66.9 24.6

Auto Price 62.5 54.6 27.9 61.5 56.3 33.9 61.7 53.6 26.2 61.5 55.1 25.6

Bank 32NH 39.3 48.3 47.4 39.6 48.2 47.8 38.0 48.2 47.1 38.4 48.2 47.0

Bank 8FM 73.7 78.9 74.4 73.4 79.0 74.3 73.0 78.9 74.4 73.2 78.9 74.6

Boston Hous. 61.0 65.1 36.4 61.0 64.5 39.3 59.7 64.9 34.9 60.7 65.0 31.3

Cal. Hous. 64.8 54.7 31.9 63.7 54.9 33.8 63.1 54.7 30.7 63.2 54.6 27.5

CPU Act 68.1 71.9 39.0 67.4 71.9 38.4 67.0 71.8 38.6 67.3 71.8 40.4

CPU Small 65.1 66.7 39.6 64.3 66.7 38.4 64.0 66.6 39.0 64.3 66.7 40.4

D. Ailerons 56.0 56.4 46.2 55.9 56.8 48.1 55.5 56.3 45.5 54.7 55.7 38.7

D. Elevators 48.6 49.4 39.2 48.7 49.4 40.5 48.3 49.4 39.0 47.7 49.3 38.4

Diabetes 27.1 24.9 28.5 25.2 25.3 26.2 27.0 25.5 25.5 24.5 26.4 28.3

Elevators 50.9 57.1 31.5 50.5 57.3 33.2 49.1 57.0 31.0 48.9 57.0 28.9

Friedman Art. 66.5 55.5 54.7 65.4 55.5 55.5 65.1 55.4 54.8 65.6 55.4 54.7

House 16H 52.8 49.0 20.0 52.3 49.7 20.0 51.3 48.6 20.0 51.0 46.9 20.0

House 8L 53.6 49.5 20.7 52.9 50.5 20.1 52.5 49.0 20.8 52.5 47.6 20.3

Kinematics 47.7 41.6 40.0 46.6 40.6 41.1 45.0 41.5 39.2 46.2 41.7 38.4

Machine CPU 56.3 60.8 20.9 56.4 60.9 19.9 56.0 60.6 21.7 56.8 60.5 22.7

MV Artificial 99.1 89.6 44.8 99.0 91.4 57.1 99.0 89.5 41.3 99.0 88.3 31.3

Pole Telecom 94.4 81.9 80.9 94.3 82.8 80.5 94.2 81.7 80.2 94.3 80.8 80.4

Pumadyn 32H 64.9 38.5 36.8 64.7 37.8 37.8 64.3 38.5 33.9 64.7 38.9 28.3

Pumadyn 8NH 50.5 47.4 43.1 50.2 48.3 47.3 50.0 47.3 42.0 49.7 45.7 37.7

Pyrimidines 41.3 46.4 32.6 41.0 48.2 33.6 39.9 45.0 30.6 42.1 46.8 29.2

Servo 61.4 69.3 53.6 63.9 68.6 54.5 60.7 68.7 52.7 55.5 68.7 50.5

Stocks 84.5 81.2 59.0 84.2 82.2 60.8 84.0 79.7 56.1 84.5 77.9 49.9

Triazines 36.3 34.9 29.8 35.6 35.3 30.7 35.7 33.4 28.2 34.9 33.6 27.9

W. Breast C. 21.5 21.9 20.0 23.8 20.5 19.4 22.3 22.4 20.0 21.1 22.1 19.5

Table 11: Classification accuracies for variants of EOND in comparison to RR and

FH.
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